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In visual search, our gaze is guided by mental
representations of stimulus features, known as
attentional templates. These templates are thought to
be probabilistic, shaped by environmental regularities.
For example, participants can learn to distinguish
between the shapes of different distractor color
distributions in visual search. The present study
assessed whether such subtle differences in distractor
color distributions (Gaussian vs. uniform) are reflected
in saccade endpoints. We conducted two experiments,
each consisting of learning trials, designed to prime a
specific distractor color distribution, and test trials,
where target color varied in its distance from the mean
of previously presented distractor distributions. Saccade
endpoint deviations were observed through the global
effect, where the saccades tended to land between two
nearby stimuli. The experiments differed in difficulty,
with test trials in Experiment 2 involving more
distractors and colors. During test trials, reaction times
and saccade endpoints were affected by target distance
from the mean of the preceding distractor distribution.
The farther the target color was from this mean, the less
the saccade deviated from the target and the lower the
reaction times. However, saccade endpoints did not
reflect the shape of distractor color distributions, an
effect that was observed only on reaction times in
Experiment 2. Overall, color priming affects both
reaction times and saccade deviations, but distractor
feature distribution learning depends on search
difficulty and response measures, with saccade
endpoints less sensitive to subtle differences in the
shape of color distributions.

Introduction

The visual world is rich in color; however, these
colors are generally not distributed randomly but follow
statistical regularities. For example, a blade of grass
is usually green, whereas a poppy flower is typically
red. Yet, the exact hues of these objects can vary due
to differences in lighting conditions or the objects
themselves, as not all blades of grass or poppies share
identical shades. Given our limited visual capacity, how
precisely can we represent the colors within ensembles
of objects? Recently, Kristjánsson (2023) argued that,
to account for natural variations, templates tuned
probabilistically to a broad spectrum of colors would
be more effective than those focused on a single color.
For example, when picking poppy flowers, our mental
representation of a poppy flower would encompass a
range of red hues rather than being fixed on a single
one.

Feature distribution learning

A substantial body of evidence indicates that
humans can rapidly extract statistical summaries of
ensembles of similar stimuli, including the average and
variability of features (for a review, see Alvarez, 2011;
Whitney & Yamanashi Leib, 2018). Recent studies
have demonstrated that our perceptual system can
learn even more complex aspects of ensembles, such
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as the shape of the probability distribution of visual
features (Chetverikov, Campana, & Kristjánsson,
2016; Chetverikov, Campana, & Kristjánsson, 2017;
Iakovlev & Utochkin, 2023; Kim & Chong, 2020). In
this context, feature ensembles (such as colors) can
be encoded as probability distributions, representing
the likelihood of specific values from the most to the
least probable. Chetverikov et al. (Chetverikov et al.,
2016; Chetverikov et al., 2017) used a method referred
to as feature distribution learning (FDL) to reveal
such probabilistic encoding (for details on the method,
see Chetverikov, Hansmann-Roth, Tanrıkulu, &
Kristjansson, 2020). FDL takes advantage of priming
effects in visual search to assess distractor feature
representations. In these studies, participants are asked
to identify an odd-one-out target across visual search
trials. The feature values of the distractors are drawn
from a probability distribution that remains fixed
during learning trials. Then, in so-called test trials, target
and distractor features are switched, producing role
reversal effects that typically reduce search efficiency
(Chetverikov & Kristjánsson, 2015; Kristjánsson &
Driver, 2008). Plotting the response time in test trials as
a function of the distance between the target feature and
the mean of the previous distractor feature distribution
(current target – previous distractor distance [CT–PD])
reveals the subject’s internal representation of the
previous distractor feature distribution.

An example of evidence for probabilistic learning
of feature distributions in the context of color
ensembles comes from Chetverikov et al. (2017)
(see also Entzmann, Ásgeirsson, & Kristjánsson,
2025; Hansmann-Roth, Chetverikov, & Kristjánsson,
2019; Hansmann-Roth, Kristjánsson, Whitney, &
Chetverikov, 2021). This study examined how distractor
colors are represented during visual search using the
FDL method. During learning trials, participants
had to find an odd-one-out color diamond among 35
distractors and make a perceptual judgment about
the target (report which corner of the diamond was
cut off). Distractor colors were drawn from either
a Gaussian or a uniform distribution. In test trials,
the CT–PD distance was manipulated to probe the
participants’ internal representation of the learning
distractor color distribution. Participants’ internal
representations mirrored the actual distribution shapes
(Gaussian or uniform). When the previous distractor
distribution was Gaussian, reaction times in test trials
were highest when the target color matched the mean
of the previous distractor distribution and decreased
linearly as the target color moved away from the mean.
When the previous distractor distribution was uniform,
reaction times were similar for all possible distractor
colors. These findings suggest that color ensembles
can be represented with precision, encompassing not
only summary statistics but also color distribution
shapes.

In a recent study, we demonstrated that FDL
extends beyond manual response times, influencing
eye movements during visual search (Entzmann et al.,
2025). Specifically, learning of color distributions
guided eye movements regardless of whether saccades
were used as behavioral responses (Experiment 1) or
as part of natural exploratory behavior (Experiment 2),
underscoring its role in early attentional orienting. In
initial FDL studies, manual reaction times reflected
the time it takes to make a perceptual judgment on
a target. Several studies have already demonstrated
a close relationship between perception and eye
movements. For example, in an influential study,
Kowler, Anderson, Dosher, and Blaser (1995)
demonstrated that summoning perceptual attention to
a target also facilitates saccades and that perceptual
identification is enhanced at the saccadic goal (for
related results, see Deubel, Schneider, & Paprotta,
1998; Zhao, Gersch, Schnitzer, Dosher, & Kowler,
2012). Additionally, although some attentional
resources could be allocated away from the saccadic
goal without cost, excessive diversion impaired
saccadic performance. Overall, spatial attention and
eye-movements are tightly coupled, but the precise
nature of this coupling is debated. The premotor
theory of attention suggests that a shift of attention
necessarily entails a saccadic plan (Rizzolatti, Riggio,
Dascola, & Umiltá, 1987; Sheliga, Riggio, & Rizzolatti,
1994; for reviews, see Kowler, 1999; Kristjánsson,
2011). More recent studies indicate that, although
they are linked, there is not a one-to-one relationship
between saccades and attention (e.g., Belopolsky
& Theeuwes, 2012; Hanning, Szinte, & Deubel,
2019).

Our main goal with the current research was to test
whether FDL is reflected in saccade endpoints. Saccade
programming is thought to be guided by a retinotopic
priority map, where bottom–up and top–down factors
are integrated (Belopolsky, 2015; Bisley & Mirpour,
2019; Fecteau & Munoz, 2006; Klink, Jentgens, &
Lorteije, 2014; Zelinsky & Bisley, 2015). A priority
value (i.e., weight) is assumed to be assigned to each
location in a two-dimensional visual scene. The saccadic
goal corresponds to the location with the highest
weight, and the strength of the competition with
other locations plays a large role in determining the
time it takes to elicit a saccade to it. We suggest that
FDL results in probabilistic weighting in the priority
map. Signals from preceding distractors are inhibited,
which is reflected in the weights in the priority map.
An item with a previous distractor color would have
a lower weight, and lower still if this distractor color
is one of the most probable (for example, close to the
mean of a Gaussian distractor color distribution). We
suggest that this weighting influences not only the time
it takes to saccade to the target but also the saccade
endpoints.
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The global effect

In certain contexts, a so-called global effect is
observed on saccade endpoints. Also known as saccade
averaging, the global effect is the finding that, when
two elements in a visual scene are in close proximity,
a saccade targeted at one of them generally lands in
between the two, instead of on one of them (e.g.,
Findlay, 1982; Van der Stigchel & Nijboer, 2011).
Even if the saccade lands in-between the two stimuli,
attention has been shown to be directed to the location
of the target and distractor, rather than to the exact
location where the saccade lands (which is between
the target and the distractor) (Van der Stigchel and
de Vries, 2015; Wollenberg, Deubel, & Szinte, 2018).
This phenomenon is thought to result from overlapping
target and distractor signals within priority maps
(Findlay & Walker, 1999; Wilimzig, Schneider, &
Schöner, 2006). He and Kowler (1989) were among
the first to demonstrate that saccade averaging is
influenced by top–down processes, challenging the
earlier view that it is merely a reflexive response
to ambiguous visual signals. Their findings showed
that short-latency saccades are guided not only by
immediate visual input but also by prior expectations
and the probability of target locations. When target
discrimination was easy, averaging effects were reduced;
when the target appeared alone, saccades were highly
accurate. We can hypothesize that the relative strength
of the target and distractor signals determines the
magnitude of saccade deviation away from the
target, with stronger target signals leading to less
deviation and stronger distractor signals causing more
deviation.

In relation to color priming, previous studies have
provided evidence that saccade endpoints measured
through the global effect are modulated by primed
target and distractor colors in visual search. Priming
effects are characterized by improved performance
when target and distractor features are repeated
(for a review, see Kristjánsson & Ásgeirsson, 2019;
Kristjánsson & Campana, 2010). Van der Stigchel
and Meeter (2017) investigated whether color priming
stemmed from target signal enhancement or distractor
signal suppression by analyzing the global effect. Their
rationale was as follows: if priming enhances target
signals, saccades will land closer to distractors when
they match the previous target color. Conversely,
if priming suppresses distractor signals, saccades
will land farther from targets when they match the
previous distractor color. Participants performed a
task requiring saccades to a color or shape singleton
among distractors, where the target or distractor
could share the color of the target or distractor of
the previous trial. The results showed that both target
enhancement and distractor suppression contributed to
priming effects. Interestingly, in another study where

only two items were present, there was no evidence of
distractor signal suppression (i.e., only target signal
enhancement was observed) (Meeter &Van der Stigchel,
2013).

Current study

Whereas studies of priming effects on saccade
endpoints have focused on a single specific color value,
the objective here was to extend this approach by
priming an entire color distribution using FDL. Our
participants were trained on classic FDL learning
trials to prime a specific distractor color distribution,
followed by test trials designed to measure any
global effect. The test trials therefore differed from
those in previous FDL studies where they typically
involved numerous distractors surrounding the target,
which complicates isolating the specific contribution
of any single distractor to the observed effects.
Additionally, the global effect can be observed in
specific locations of the visual field, up to 35° in polar
angle from the initial fixation (Van der Stigchel &
Nijboer, 2013), so it is essential to ensure that both
the target and distractor appear in this region, which
is not guaranteed with traditional FDL test trials.
Overall, our hypothesis was that, similar to reaction
times, saccade endpoints will vary, influenced by the
CT–PD distance, and reflect the encoding of the
shape of the distractor distribution (Gaussian vs.
uniform).

In this paper, we present two FDL experiments
varying the degree of competition between the target
and distractors in test trials (i.e., varying search
difficulty). In Experiment 1, there was low competition,
with only three distractors, all sharing the same color
(the color farthest from the target). In Experiment 2,
competition was higher, with five distractors and more
variable distractor colors.

Experiment 1: Low competition
setting

Materials and methods

Participants
Fifteen participants (nine females and six males;

mean age, 25 ± 8.4 years) were recruited for this
experiment. Informed written consent was obtained
from each individual prior to participation. The study
was conducted in accordance with the requirements
of the local ethical committee and the tenets of the
Declaration of Helsinki for experiments involving
humans. Participation was voluntary and unpaid. One
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participant completed only 90% of the experiment
due to time constraints; however, their data were still
included in the analysis. As no previous analyses of
saccade endpoints in FDL tasks exist, we decided to
recruit a similar number of participants as in previous
studies related to color distribution learning and
saccadic responses (e.g., 16 participants in Entzmann
et al., 2025; 13 participants in Van der Stigchel &
Meeters, 2017).

Stimuli and procedure
The experiment consisted of two sessions, each

lasting approximately 50 minutes. Participants had the
option of completing both sessions one after the other
or at separate times. There were no differences between
the sessions, and dividing participation into two sessions
was done to avoid participant fatigue. As in classical
FDL studies, trials were structured into blocks. Each
block included three or four learning trials followed by
one test trial. According to Chetverikov et al. (2020),
for simple distributions such as Gaussian or uniform
ones, as few as one or two trials may be sufficient for
participants to begin learning the distribution shape.
However, they recommended using at least three or
four learning trials to minimize carryover effects from
previous sequences. In our design, the length of the
learning streak randomly varied between three and
four trials to prevent any predictability in the patterns
and prevent participants from anticipating the start or
end of a block. At the beginning of the experiment,
both the number of trials per learning sequence (three
or four) and the distractor distribution type (uniform
or Gaussian) were balanced and randomly assigned
on a trial-by-trial basis. Each session consisted of 364
blocks. The first session was preceded by a 100-block
training phase designed to familiarize participants with
the task. The same training was provided before the
second session for participants who chose to complete
the sessions in different time slots (four participants).

Figure 1A illustrates an example block, showing both
learning and test trial displays. During the learning
trials, participants were presented with a search display
composed of 36 diamonds arranged in a centrally
aligned 6 × 6 grid spanning 14° × 14° of visual angle.
Each diamond measured 1.4° of visual angle (diagonal
length) and had one of its corners cut. The individual
diamond positions of the grid were slightly jittered
by adding a random value within ±0.5° to both the
horizontal and vertical coordinates. One diamond
was the target, and the remaining 35 were distractors.
For both training and test trials, target position was
randomly selected at the beginning of each trial. The
target was defined by being the diamond with the color
that differed the most from all the other diamonds.
Participants were told that the target was the diamond
whose color was most different from all the others and

were instructed to indicate which corner of the target
diamond was missing by pressing the corresponding
arrow key on the keyboard. For example, if the upper
corner was missing, then the participant would press
the up arrow. Thus, unlike in classical global effect
paradigms, this experiment did not involve an explicit
saccade task, as participants were not required to make
an eye movement to the target. However, participants
tended to shift their gaze to this location in order to
perform the perceptual judgment. No feedback was
given for correct responses, and the next trial began
following the participant’s response. For incorrect
responses, an error message was displayed for one
second.

Colors were selected from an isoluminant hue circle
comprised of 48 distinct hues, with adjacent hues
separated by one just noticeable difference (JND). The
color space was obtained fromWitzel and Gegenfurtner
(2013) and was the same as in previous FDL studies
using color as a feature (e.g., Chetverikov et al., 2017;
Entzmann et al., 2025; Hansmann-Roth et al., 2019;
Hansmann-Roth et al., 2021).

For each block of adjacent learning and test trials,
the color distribution of the distractors was kept
constant within the learning trials, as either a uniform
or a Gaussian distribution. The mean of the distractor
distribution was randomly selected at the beginning
of each block. During each learning trial, distractor
colors were randomly sampled from the chosen uniform
or Gaussian distribution, which remained consistent
throughout the block. The uniform distribution
spanned a range of 24 JNDs; the Gaussian distribution
had a standard deviation of 6 JNDs and was truncated
to exclude color values more than 2 SD away from
the mean, ensuring that the range matched that of the
uniform distribution. The target color was randomly
selected from within a range of 18 to 24 JNDs from
the mean of the distractor distribution. Figure 1B
presents examples of learning trials, showing the
color distribution that the distractors are drawn from,
along with the target color placed within the color
space. Overall, the learning trial display was similar to
previous FDL studies using color as a feature (e.g.,
Chetverikov et al., 2017; Entzmann et al., 2025).

Test trial displays were designed to maximize the
chances of detecting any global effect on endpoint
deviations resulting from FDL. In most studies on the
global effect, a single distractor has been presented
close to the target, with its location tightly controlled
(for a review, see Van der Stigchel & Nijboer, 2013).
In contrast, the learning trials in our study included
35 distractors with jittered positions, many of which
were close to the target, making it difficult to isolate
the contribution of individual distractors to the global
effect. To address this issue, the number of distractors
in the test trials was reduced drastically, and the search
display consisted of only four diamonds. Two diamonds
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Figure 1. (A) Illustration of a block of trials. Each block included three or four learning trials followed by one test trial. (B) Examples of
visual search displays for learning trials with distractor colors drawn from a uniform (left) or Gaussian (right) distractor distribution.
Example displays are presented to the right of the color distribution from which their distractors are drawn.

were positioned along an imaginary circle in each
visual field: one located 11° clockwise and the other
11° counterclockwise relative to the horizontal plane.
Each diamond was placed 7.7° of visual angle from the
center of the screen. The target color was determined
based on a balanced CT–PD distance from the mean of
the previous distractors, and the distractor color was
set as the opposite hue on the color wheel, maintaining
a 24 JND distance from the target. A fixation cross was
presented before the test display for a pseudo-random
duration of 500 to 750 ms, followed by a 200-ms gap
before the search displays appeared.

Breaks were scheduled every 100 blocks. A calibration
phase was conducted at the start of each session and
following every break. During the calibration phase,
participants were instructed to fixate on nine dots that
appeared sequentially in a 3 × 3 grid spanning the
entire screen. Drift correction was performed every

eight blocks; if the drift exceeded 0.5°, a calibration was
initiated.

Materials

A desktop computer with a 24-inch liquid-crystal
display (LCD) monitor was used for the experimental
display, with a resolution of 1920 × 1080 and a refresh
rate of 144 Hz using MATLAB R2017b (MathWorks,
Natick, MA) and Psychtoolbox-3 (Kleiner, Brainard,
& Pelli, 2007). Eye movements were recorded using an
EyeLink 1000 Plus eye tracker (SR Research, Ottawa,
ON, Canada) with a 1000-Hz sampling frequency.
Saccades were detected if they had a minimum velocity
of 30°/s, a minimum acceleration of 8000°/s2, and a
minimum motion of 0.15°. Blinks were detected when
the pupil was partially or totally occluded, and fixations
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were detected when there was no blink or any saccade
in progress. Viewing was binocular but eye tracking
was monocular, and only the position of the dominant
eye was recorded. During the experiment, the head
of each participant was stabilized using a chin-rest
at a viewing distance of 94 cm. To correct for screen
parameters, color calibration was performed using a
ColorCAL MKII photometer (Cambridge Research
Systems, Rochester, UK).

Data analysis
Statistical analyses were carried out using R 4.2.2

(R Core Team, 2022) with R Studio 2022.7.2.576
(RStudio Team, 2022), separately for learning and
test trials. For each analysis, outliers, defined as values
falling outside 1.5 times the interquartile range above
the upper quartile or below the lower quartile, were
removed. A saccade toward the target was defined as a
saccade that landed within a 1.4° visual angle radius
around the target. Effects were considered significant if
p values were lower than α = 0.05.
Learning trials: For the learning trials, three dependent
variables were analyzed: the proportion of correct
responses; the manual reaction times (MRTs), defined
as the time between the start of a trial and the keypress;
and the saccadic reaction times (SRTs), defined as
the time between the start of a trial and the initiation
of a saccade toward the target. For MRTs, incorrect
and post-error trials were excluded from the analysis,
resulting in 92.2% of trials being included. For SRTs,
we also removed trials without a saccade toward the
target, resulting in 84.5% of trials being included. We
performed pairwise t-tests to compare performance
across each distractor distribution (Gaussian or
uniform) and used Helmert contrasts to compare
performance on each trial number within the learning
sequence (1, 2, 3, 4) with the average performance on
subsequent trials.
Test trials: For the test trials, MRTs, SRTs, and the
endpoint deviations were analyzed. Incorrect and
post-error trials were excluded from all test trial
analyses, resulting in 95% of trials being included. For
SRTs, we also removed trials without a saccade toward
the target, resulting in 93.2% of trials being included.

Deviation was calculated from the first saccade
performed in the trial, measured as the proportion of
angle between the target and the distractor. Only trials
in which the first saccade was sufficiently large (≥4° of
visual angle) and directed correctly (i.e., not toward the
left when the target was on the right, and vice versa)
were included. This selection process resulted in 77.7%
of the initial number of test trials being retained for the
endpoint analysis. More precisely, the deviation was
computed as a proportion of angle between the two
stimuli, as in Meeter and Van der Stigchel (2013) and
Van der Stigchel and Meeter (2017), yielding a value

where 0 indicates that the saccade angle matches the
target angle, 0.5 indicates a flat saccade, and 1 indicates
that the saccade angle corresponds to the distractor
angle. Therefore, a higher deviation value indicates a
greater deviation away from the target or toward the
distractor. Figure 2 displays a visual representation of
the deviation measure for Experiments 1 and 2.

The same analyses were performed on the three
dependent variables (i.e., MRT, SRT and deviation).
Specifically, we analyzed the relationship between
each dependent variable and the CT–PD distance (in
absolute values and sampled in bins of four JNDs;
0, 4, 8, 12, 16, 20, 24) for the two previous distractor
distributions (uniform and Gaussian).

First, a paired-samples t-test was used to compare
each dependent variable across the two sides of the
CT–PD values (side: within or outside of the previous
distractor distribution, depending on whether the
CT–PD was higher or lower than 12 JNDs). To assess
how well each observed dependent variable (i.e.,
MRT, SRT, and deviation) matches the underlying
previous distractor distribution, several approaches
can be used, including segmented regression and
model fitting, as described by Chetverikov et al.
(2020). For simple distributions, such as Gaussian
or uniform, segmented regression is typically used.
Segmented regression involves identifying significant
changes in the dependent variable at specific CT–PD
distances, referred to as breakpoints. Following a
uniform distractor distribution, the curve is expected
to exhibit a flat segment within the distribution range
(reflecting equal probabilities of all feature values),
followed by a sharp decrease beyond the range. In
our study and previous ones using the same color
set, the estimated breakpoint would theoretically be
12 JNDs, corresponding to the range of the uniform
distribution used during learning. Indeed, the uniform
distribution spanned 24 JNDs, meaning that the
true breakpoint should theoretically occur at ±12
JNDs from the center, as all distractors fall within 12
JNDs of the mean distractor color. In practice, using
segmented regression, previous studies have revealed
that the breakpoint in the reaction time ∼ CT–PD
curve following a uniform distribution was below
the theoretical value. For example, Chetverikov et al.
(2017) reported a breakpoint around nine JNDs, and
Entzmann et al. (2025) around eight JNDs.

Segmented regression can be applied at the individual
participant level, and statistical comparisons can
be made by analyzing the average slope coefficient
before and after a predefined breakpoint which would
correspond to the uniform distribution range (as in
Chetverikov et al., 2017; Entzmann et al., 2025). The
rationale is as follows: Following a Gaussian distractor
distribution, a monotonic decrease is expected as the
CT–PD distance increases, resulting in similar negative
slope coefficients before and after the breakpoint. In
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Figure 2. Example of a test trial display and illustration of the saccade endpoint deviation measure in Experiment 1 (left) and 2 (right),
calculated based on the first saccade angle, as an angular proportion between the target and the distractor. In Experiment 1, the
target and distractor colors (cyan and orange, respectively) were separated by 24 JNDs, corresponding to opposite values on the color
wheel. In Experiment 2, distractor colors are drawn from a Gaussian distribution with a standard deviation of three JNDs. The distance
between target color (e.g., orange) and the mean of the distractor distribution (e.g., cyan) was 24 JNDs.

Figure 3. Visualization of the slope coefficient estimation process. Slope coefficients were obtained from MRTs, SRTs, and saccade
endpoint deviations in test trials, plotted as a function of CT–PD for each previous distractor distribution. In this example, we present
simulated SRT data for a single participant across various CT–PD values (solid lines) for each previous distractor distribution. First, a
two-segment model was fitted to each curve, with a breakpoint at nine JNDs (dotted lines). Second, the slope coefficients for the first
and second segments were extracted (red boxes) for each distribution.

contrast, following a uniform distractor distribution,
the curve is expected to show a flat segment within
the distribution range (i.e., a flat slope before the
breakpoint), reflecting equal probabilities for all
feature values, followed by a negative slope beyond
the breakpoint. We used the segmented package
(Muggeo, 2008) to estimate slope coefficients using
a fixed breakpoint for each participant. We set the
breakpoint at nine JNDs, below the true 12 JND
breakpoint, to be consistent with underestimations in

past FDL studies. In Chetverikov et al. (2017), the slope
coefficient analysis was performed using a breakpoint
at nine JNDs, whereas in Entzmann et al. (2025), the
actual breakpoint was retained. A visual representation
of the slope coefficient estimation process is presented
in Figure 3.

We then performed a repeated-measures analysis of
variance (ANOVA) on the slope coefficient obtained for
each participant with CT–PD (β0, β1; before and after
the breakpoint) and previous distractor distribution
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(uniform or Gaussian) as within-subject factors. We
expected an interaction between the previous distractor
distribution and CT–PD, as observed in Chetverikov
et al. (2017) and Entzmann et al. (2025). Before the
breakpoint, the slope should be flat when the previous
distribution is uniform and decrease linearly when
the previous distribution is Gaussian. We should,
in other words, expect the slope coefficient to be
higher (i.e., closer to 0) for the uniform than Gaussian
distribution. After the breakpoint, the pattern should
be the opposite (see Figure 3). When the previous
distribution is uniform, the slope should be flat before
the breakpoint followed by a linear decrease; whereas,
when it is Gaussian, there should be a linear decrease
before the breakpoint but a smaller decrease after it. We
then expected a higher (closer to zero) slope coefficient
before than after the breakpoint when the previous
distribution is uniform and the opposite when it is
Gaussian. Only the interaction was tested, not the main
effects. When significant, pairwise t-tests were reported.
Greenhouse–Geisser corrections were applied when the
assumption of sphericity was violated.

In cases where the frequentist repeated-measures
ANOVA did not reveal the expected interaction between
previous distractor distribution and CT–PD on the
slope coefficient (i.e., the expected FDL effect), the null
hypothesis (H0, no interaction) cannot be rejected, and
no firm conclusion can be drawn (Hoijtink, Mulder,
van Lissa, & Gu, 2019; Wagenmakers, 2007), especially
because non-significant interactions may result from
insufficient statistical power. Therefore, as an alternative
to the frequentist ANOVA, we used Bayes factors (BFs)
(Kass & Raftery, 1995). Specifically, we implemented
a Bayesian ANOVA to assess the probability of the
presence or absence of an interaction between the
previous distractor distribution and CT–PD on the

slope coefficient for each dependent variable. The
Bayesian ANOVA included two within-subjects factors:
previous distractor distribution (uniform, Gaussian)
and CT–PD (β0, β1; before and after the breakpoint),
and was implemented using the BayesFactor package
(Morey et al., 2015). We report the BFs associated with
the interaction effect, as well as a brief interpretation
based on the Jeffreys scale (Jeffreys, 1961; see also
Wagenmakers, Wetzels, Borsboom, & Van Der Maas,
2011).

Results

Learning trials
Figure 4 shows the mean proportion of correct trials,

MRTs, and SRTs during learning trials as a function of
trial number within the learning sequence and distractor
distribution. MRTs were faster, t(14) = −5.58, p <
0.001, d = 1.44, for the Gaussian distribution (M ± SD
= 858 ± 185 ms) than the uniform distribution (M ±
SD = 989 ± 258 ms). Additionally, SRTs were faster,
t(14) = −9.7, p < 0.001, d = 2.5, for the Gaussian
distribution (M ± SD = 361 ± 59.8 ms) than the
uniform distribution (M ± SD = 404 ± 70.8 ms). There
was no significant effect of distractor distribution on
the proportion of correct responses, t(14) = −1.48, p =
0.16, d = 0.38 (for the Gaussian distribution, M ± SD
= 0.955 ± 0.011; for the uniform distribution, M ± SD
= 0.958 ± 0.011).

Helmert contrasts revealed that task performance
improved over the learning trials. Specifically, compared
with the later trials, the first learning trial was associated
with a lower proportion of correct responses, t(42)
= −9.62, p < 0.001; slower MRT, t(42) = 13.1, p
< 0.001; and slower SRTs, t(42) = 18.5, p < 0.001.

Figure 4. Learning trial results in Experiment 1. Mean proportion of correct trials, MRTs, and SRTs during learning trials, as a function
of trial number within learning sequence and distractor distribution. Error bars represent the standard error of the mean.
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Figure 5. Test trial results in Experiment 1. (A) MRTs, SRTs, and deviations during test trials as a function of CT–PD (color distance
between the target in the test trial and the mean of the distractor distribution on learning trials, in JNDs) and previous distractor
distribution (upper plots). Curves were smoothed using local polynomial regression, and gray areas represent the 95% confidence
intervals. The dotted line provides a visual reference for the nine-JND breakpoint that we used to compute β0 and β1. (B) Boxplots
obtained from the slope coefficient before (β0) and after (β1) the breakpoint (set at nine JNDs) for each participant as a function of
the previous distractor distribution (lower plots). Red dots represent the mean in each condition.

Additionally, the proportion of correct responses was
lower on the second trial than on subsequent trials,
t(42) = −2.8, p = 0.008, and SRTs were marginally
slower on the second trial than later trials, t(42) = 1.76,
p = 0.087.

Test trials
Figure 5 presents the MRTs, SRTs, and deviations on

test trials as a function of CT–PD for each distractor

learning distribution (upper plots), along with the slope
coefficients calculated before and after the breakpoint
(lower plots). MRTs were significantly higher when the
target belonged to the previous distractor distribution
(M ± SD = 695 ± 68.7 ms) than when it did not (M ±
SD = 611 ± 81.5 ms), t(14) = −17.1, p < 0.001, d =
4.42. A repeated-measures ANOVA performed on slope
coefficients before and after nine JNDs revealed no
significant interaction between the previous distractor
distribution and CT–PD, F(1, 14) = 1.64, p = 0.22,
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η2
p = 0.1. For MRTs, the BF for the interaction was 0.7

(i.e., there was anecdotal evidence for the absence of an
interaction).

Similarly, SRTs were significantly higher when the
target belonged to the previous distractor distribution
(M ± SD = 301 ± 21.9 ms) than when it did not (M ±
SD = 223 ± 22.3 ms), t(14) = −22, p < 0.001, d = 5.67.
The repeated-measures ANOVA performed on slope
coefficients before and after nine JNDs revealed no
significant interaction between the previous distractor
distribution and CT–PD, F(1, 14) = 1.26, p = 0.28, η2

p
= 0.08. For SRTs, the BF for the interaction was 1.03
(i.e., there was anecdotal evidence for an interaction1).

Most notably, for our current purposes, endpoint
deviations were significantly larger when the target
belonged to the previous distractor distribution (M
± SD = 0.51 ± 0.07) than when it did not (M ± SD
= 0.22 ± 0.07), t(14) = −19.35, p < 0.001, d = 5. As
with MRTs and SRTs, the repeated-measures ANOVA
conducted on slope coefficients before and after nine
JNDs revealed no significant interaction between the
previous distractor distribution and CT–PD, F(1, 14) =
1.04, p = 0.32, η2

p = 0.07. For deviation, the BF for the
interaction was 0.77 (i.e., there was anecdotal evidence
for the absence of an interaction).

Discussion

Experiment 1 combined standard FDL learning
trials with test trials designed to elicit a global effect.
As expected, in learning trials we observed classic FDL
outcomes, including priming effects on accuracy, MRTs,
and SRTs. On test trials, the CT–PD distance influenced
MRTs, SRTs, and, most interestingly, saccade endpoint
deviation. Specifically, targets closer in color to the
mean of the distractor distribution on the learning
trials resulted in endpoints deviating further toward
the adjacent distractor; therefore, colored target
weighting depends on previous distractor colors, or
previous target colors. As the CT–PD correlates with
previous target distance and no FDL effect emerged,
observed effects can emerge from previous target
color. Targets resembling average distractor colors or
differing strongly from the previous target received
lower weights. Analogous results were recorded for
the MRT and SRT measure, where response times
were negatively associated with CT–PD. However, the
precise shape of the previous distractor distribution
(Gaussian or uniform) had no effect on MRTs, SRTs,
or endpoints. Unlike most FDL studies, there was
a distinct difference between the learning and test
conditions in this experiment, potentially limiting
the influence of FDL on the test trial measures. In
Experiment 2, we adjusted the test trials to increase
target discrimination difficulty by introducing greater

variability in distractor colors and increasing the
number of distractors (five instead of three). These
changes served two purposes. First, they reduced the
disparity between learning and test environments, and,
second, they heightened competition between the target
and distractors, making the test trials more challenging.

Experiment 2: High competition
setting

Materials and methods

Participants
Seventeen participants (13 females and four males;

mean age, 36 ± 12.4 years) were recruited for this
experiment. Informed written consent was obtained
from each individual prior to participation. The study
was conducted in accordance with the requirements
of the local ethical committee and the tenets of the
Declaration of Helsinki for experiments involving
humans. Participation in the research was voluntary
and unpaid.

Stimuli and procedure
Experiment 2 closely resembled Experiment 1, except

for one major modification to the test trial display.
Instead of four diamonds, the test display now consisted
of six diamonds. For each visual field, three diamonds
were arranged on an imaginary circle: one positioned
22° clockwise, another 22° counterclockwise, and the
third directly on the horizontal plane. Therefore, the
angular distance between two adjacent diamonds was
22°, corresponding to the angular distance between the
distractor and the target in Experiment 1. All diamonds
were placed at a distance of 7.7° of visual angle from
the center of the screen. The distractor colors were
drawn from a Gaussian distribution with a standard
deviation of three JNDs, excluding values beyond 2
SD. The mean of the distractor distribution was set 24
JNDs away from the target color (i.e., the opposite color
on the color wheel). Trials where the target appeared
on the horizontal plane were excluded from deviation
analyses, as the endpoints in these trials cannot be
meaningfully interpreted in terms of deviation toward
or away from other elements. To compensate for data
loss, additional blocks were introduced, resulting in the
experiment being divided into 812 blocks, split into two
sessions of 406 blocks each.

Data analysis
We used the same statistical analyses as on the

data from Experiment 1. The key difference was that,

Downloaded from jov.arvojournals.org on 01/16/2026



Journal of Vision (2025) 25(14):18, 1–19 Entzmann, Kristjánsson, & Ásgeirsson 11

Figure 6. Learning trial results in Experiment 2. Mean proportion of correct trials, MRTs, and SRTs during learning trials in
Experiment 2, as a function of trial number within learning sequence and distractor distribution. Error bars represent the standard
error of the mean.

in addition to the previous criteria, trials where the
target appeared in the horizontal plane from fixation
were excluded from the deviation analyses. Figure 2
provides a visual representation of a test trial display
alongside the deviation measure used in Experiment 2.
For the learning trial analysis, 91% and 82% of
the initial trials were included in the MRT analyses
(after excluding incorrect and post-error trials) and
SRT analyses (additionally excluding trials with no
saccade to the target), respectively. For the test trial
analysis, 92%, 83%, and 56% of the initial trials were
included in the MRT (after filtering out incorrect and
post-error trials), SRT (additionally excluding trials
with no saccade to the target), and deviation analyses
(additionally excluding trials where the target was
on the horizontal plane or where the first saccade
was either too small or not in the correct direction),
respectively.

Results

Learning trials
Figure 6 presents the mean proportions of correct

trials, MRTs, and SRTs during the learning trials as a
function of trial number within the learning sequence
and distractor distribution. MRTs were significantly
faster for the Gaussian distribution (M ± SD = 913 ±
163 ms) than the uniform distribution (M ± SD = 1058
± 206 ms), t(16) = −7.41, p < 0.001, d = 1.79. Similarly,
SRTs were faster for the Gaussian distribution (M ±
SD = 360 ± 45 ms) than for the uniform distribution
(M ± SD = 407 ± 54 ms), t(16) = −11.7, p < 0.001,
d = 2.83. There was no significant effect of distractor

distribution on the proportion of correct responses,
t(16) = 0.61, p = 0.62, d = 0.12 (for the Gaussian
distribution, M ± SD = 0.954 ± 0.024; for the uniform
distribution, M ± SD = 0.952 ± 0.038).

Helmert contrasts revealed improvements in task
performance over the course of the learning trials.
Specifically, participants were less accurate, t(48) =
−8.78, p < 0.001, and their MRTs, t(48) = 15.8, p <
0.001), and SRTs, t(48) = 23.5, p < 0.001, were slower
on the first learning trial than on subsequent ones.
Additionally, response accuracy was significantly lower
on the second learning trial than later trials, t(42) =
−2.04, p = 0.047.

Test trials
Figure 7 shows, for each distractor learning

distribution, the MRTs, SRTs, and deviation on test
trials as a function of CT–PD (upper plots), along with
the slope coefficients calculated before and after the
breakpoint (lower plot). MRTs were significantly slower
when the target belonged to the previous distractor
distribution (M ± SD = 893 ± 95 ms) than when it
did not (M ± SD = 738 ± 97 ms), t(16) = −18.2,
p < 0.001, d = 4.4. A repeated-measures ANOVA
performed on the slope coefficients before and after
nine JNDs revealed a significant interaction between
the previous distractor distribution and the CT–PD,
F(1, 16) = 16.2, p = 0.022, η2

p = 0.29. Pairwise t-tests
showed that the slope coefficient was higher before
than after the breakpoint for both the uniform (M ±
SD before the breakpoint = −1.81 ± 4.2 ms; M ± SD
after the breakpoint = −14.8 ± 3 ms) and Gaussian
distributions (M ± SD before the breakpoint = −4.26
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Figure 7. Test trial results in Experiment 2. (A) MRTs, SRTs, and
deviations during test trials as a function of CT–PD (color
distance between the target in the test trial and the mean of
the distractor distribution on learning trials, in JNDs) and
previous distractor distribution (upper plots). Curves were
smoothed using local polynomial regression, and gray areas
represent the 95% confidence intervals. The dotted line
provides a visual reference for the nine-JND breakpoint that we
used to compute β0 and β1. (B) Boxplots obtained from the
slope coefficient before (β0) and after (β1) the breakpoint (set
at nine JNDs) for each participant as a function of the previous
distractor distribution (lower plots).

± 3.93 ms; M ± SD after the breakpoint = −13 ±
2.93 ms; p < 0.001). Before the breakpoint, the slope
coefficient was significantly higher after the uniform
distribution (p = 0.048), but, after the breakpoint, the
pattern was the opposite (p = 0.042). For MRTs, the BF
for the interaction was 7.41 (i.e., there was substantial
evidence for an interaction).

SRTs were significantly higher when the target
belonged to the previous distractor distribution (M ±
SD = 407 ± 34.4 ms) than when it did not (M ± SD
= 280 ± 28 ms), t(16) = −37.3, p < 0.001, d = 9. A
repeated-measures ANOVA performed on the slope
coefficients revealed a significant interaction between
the previous distractor distribution and the CT–PD,
F(1, 16) = 24.6, p = 0.001, ηp

2 = 0.62. Pairwise t-tests
showed that the slope coefficient was higher before than
after the breakpoint for the uniform distributions (M ±
SD before the breakpoint = −2.59. ± 2.47 ms;M ± SD
after the breakpoint = −11.2 ± 1.48 ms; p < 0.001) and
Gaussian distributions (M ± SD before the breakpoint
= −6.74 ± 2.7 ms; M ± SD after the breakpoint =
−9.1 ± 1.62 ms; p = 0.02). Before the breakpoint,
the slope coefficient was higher following the uniform

distribution (p = 0.001), whereas, after the breakpoint,
the pattern was the reverse (p < 0.001). For SRTs, the
BF for the interaction was 9492 (i.e., there was extreme
evidence for an interaction).

Finally, there were significantly higher deviations
when the target belonged to the previous distractor
distribution (M ± SD = 0.87 ± 0.11) than when it did
not (M ± SD = 0.4 ± 0.09), t(16) = −28.8, p < 0.001, d
= 7. However, a repeated-measures ANOVA performed
on the slope coefficients did not show a significant
interaction between the previous distractor distribution
and the CT–PD, F(1, 16) = 1.66, p = 0.22, η2

p = 0.094.
For deviations, the BF for the interaction was 0.86 (i.e.,
there was anecdotal evidence for the absence of an
interaction).

FDL modulation across measures
We conducted a post hoc analysis to test whether

the FDL effect differed across the dependent variables
(MRT, SRT, and deviation). The FDL effect is reflected
in the interaction between the CT–PD and the previous
distractor distribution. To assess how this effect
varies across measures, we ran a repeated-measures
ANOVA on the slope coefficients, with CT–PD (β0
and β1), previous distractor distribution (uniform or
Gaussian), and measure (MRT, SRT, or deviation) as
within-subject factors. For Experiment 2, we specifically
expected a three-way interaction among previous
distractor distribution, CT–PD, and measure, as we
anticipated the FDL effect to emerge only for SRT
and MRT. We used the same dataset as in the test-trial
analyses conducted for each measure. No additional
pairwise comparisons were performed, as they would
be redundant with those already reported in the main
analyses.

This three-way interaction was significant, F(2, 32)
= 6.46, p = 0.009, η2

p = 0.29, in Experiment 2. In
Experiment 1, this interaction was not significant. The
emergence of FDL in Experiment 2 therefore depended
on the measure.

FDL modulation across experiments
To test for FDL effects across experiments, we ran an

ANOVA on the slope coefficients with CT–PD (β0 and
β1) and previous distractor distribution (uniform or
Gaussian) as within-subject factors, and Experiments 1
and 2 as between-subject factors. We expected a
three-way interaction among previous distractor
distribution, CT–PD, and experiment, specifically for
MRT and SRT, as the FDL effect was expected to
emerge only in Experiment 2 for these two measures.

Notably, for MRT and deviation, this three-way
interaction was not significant, but it was significant
for SRTs, F(1, 30) = 12.74, p = 0.001, η2

p = 0.30. This
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Figure 8. Mean X and Y endpoint coordinates during test trials
in Experiments 1 and 2 when the target was located in the
top-right position. Coordinates are averaged across participants
and CT–PD values; therefore, each data point represents a
participant’s average fixation location for a given CT–PD value.
The color gradient represents the CT–PD value, with blue
indicating trials where the target color closely matched the
previous distractor mean color and red indicating trials where
the target color was furthest from it.

means that the emergence of FDL effects upon SRT
depended on the experiment and consequently the task
difficulty.

Discussion

In Experiment 2, the difficulty of the test trials was
increased by adding more distractors and varying
their colors. As in Experiment 1, the CT–PD distance
significantly influenced MRTs, SRTs, and saccade
endpoint deviation. Specifically, targets closer in
color to previous distractors led to greater endpoint
deviations (see Figure 8 for a visual representation
of saccade endpoints in Experiments 1 and 2) and
longer MRTs and SRTs. Although Experiment 1
provided no evidence that the shape of the previous
distractor distribution (Gaussian or uniform) guided
attention during test trials, Experiment 2 revealed that
the distribution shape influenced MRTs and SRTs.
However, saccade endpoint deviations were unaffected
by the distribution shape.

General discussion

We investigated how learning of distractor
color distributions influences saccade endpoints to
odd-one-out colored targets in two visual search
experiments. Following the FDL method (Chetverikov
et al., 2016; Chetverikov et al., 2020), the experiments
were structured into blocks containing learning and test
trials. During the learning trials, the distractor color
distribution remained constant (uniform or Gaussian).
We analyzed SRTs, MRTs, and saccade endpoints in the
subsequent test trials as a function of the color distance
between the test trial target and the mean color of the

previous distractor distribution. The two experiments
differed in the level of competition between the target
and distractors during the test trials.

Across both experiments, results from the learning
trials revealed classical priming effects on accuracy,
MRTs, and SRTs, indicating that participants
successfully learned target or distractor color features.
In test trials, the CT–PD distance significantly
influenced MRTs, SRTs, and saccade endpoint
deviations. Specifically, targets in test trials that were
more similar in color to the previous distractor mean
color led to higher endpoint deviations (i.e., endpoints
were further away from the target), MRTs, and SRTs.
Our main hypothesis was that the shape of the previous
distractor distribution (Gaussian or uniform) would
guide attention and eye movements during test trials,
affectingMRTs, SRTs, and saccade endpoints. However,
in Experiment 1, we found no evidence that the precise
distribution shape influenced any of these measures. In
Experiment 2, on the other hand, distribution shape
affected MRTs and SRTs (as in previous FDL studies),
but saccade endpoint deviations were unaffected.

Distractor FDL effects depend on search
difficulty

Although CT–PD distance influenced all measures
(SRTs, MRTs, and deviations) in both experiments,
only Experiment 2 provided evidence of the learning
of distractor distribution details. This was evidenced
by Gaussian- and uniform-shaped patterns in MRTs
and SRTs during test trials as a function of CT–PD
distance, reflecting the underlying learning distribution,
an effect not observed in Experiment 1. Specifically,
when distractors followed a Gaussian distribution,
MRTs and SRTs decreased monotonically both within
and beyond the distribution range. In contrast, a
uniform distractor distribution produced a flatter
segment within the distribution range, followed by
a sharp decrease outside that range, consistent with
the equal probability of all feature values within
the uniform distribution (replicating previous FDL
effects) (Chetverikov et al., 2016; Chetverikov et al.,
2020; Entzmann et al., 2025). Although this effect
was not observed on saccade endpoint deviation, its
presence on MRTs and SRTs suggests that participants
successfully learned and utilized the precise distractor
color distribution in Experiment 2.

A key question is why FDL emerged in Experiment 2
but not in Experiment 1. We speculated previously
that in the test trials in Experiment 1 the target and
distractor discrimination may have been too easy.
Trying to increase the task difficulty, we added more
distractors and varied their colors in Experiment 2,
creating a display more similar to the learning
trials. Such manipulations also increase minimum
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target–distractor differences and are known to increase
search difficulty (Duncan &Humphreys, 1989;Mihali &
Ma, 2020; Nagy, Neriani, & Young, 2005; Rosenholtz,
2001). The ease of the test trials in Experiment 1 is
reflected in the reaction times measures. For example,
on average, SRTs were shorter in Experiment 1 (261 ms)
than in Experiment 2 (368 ms) and in Experiment 1
than previous experiments presented in Entzmann et
al. (2025), where SRTs averaged 290 ms and 320 ms in
Experiments 1 and 2, respectively. This falls in line with
some previous evidence. For example, He and Kowler
(1989) demonstrated that, although saccade endpoints
are influenced by prior target locations, this effect
diminishes as target–distractor discrimination becomes
easier. Therefore, with the simpler discrimination,
participants may not have needed to rely on learned
information about the likely target location.

A similar question arose in the study by Van der
Stigchel and Meeter (2017) on color priming effects
on saccade endpoint deviation. They found evidence
for priming of distractor colors on saccade endpoints
(experiment 1), whereas, in an earlier study, the same
authors reported no such evidence (Meeter & Van der
Stigchel, 2013). Initially, the absence of distractor color
priming was attributed to the irrelevance of the repeated
feature or to spatial uncertainty. However, Van der
Stigchel and Meeter (2017, experiment 2) demonstrated
that priming of distractor colors still occurred even
when the feature was irrelevant and under conditions
of spatial uncertainty. The remaining difference
between studies was the number of distractors: a single
distractor in Meeter and Van der Stigchel (2013) versus
two (experiment 2) or five (experiment 1) in Van der
Stigchel and Meeter (2017). The authors proposed that
the priming of distractor features is only observed when
multiple distractors result in either strong inhibition of
distractor features, or strong adaptation to them.

This is consistent with other studies showing how
priming is modulated by ambiguity. Meeter and Olivers
(2006) (see also Olivers & Meeter, 2006) proposed an
ambiguity account of priming effects, arguing that
intertrial priming helps resolve uncertainty in stimulus
selection. They suggested that, when the identity of the
target is ambiguous, selection relies more on previous
trials. In this sense, Lamy, Zivony, and Yashar (2011)
also demonstrated that increasing search difficulty, by
reducing target–distractor discriminability, enhances
the selection-based component of priming. When
search is difficult, attentional engagement with the
target is slower, making it more susceptible to feature
repetition priming. Olivers and Meeter (2012) provided
further evidence that priming effects are stronger
when competition is high, and they investigated
several accounts of this. Interestingly, they found
no evidence that competition strengthens learning
itself. Instead, they argued that ambiguity does not
increase the strength of priming but makes subsequent

trials more sensitive to its effects. In other words, the
priming mechanism remains consistent across trials, but
ambiguous trials amplify its benefits.

According to this view, the FDL in Experiments 1
and 2 in our study may be similar in terms of what is
learned, but the observed benefits differ because of the
test trial configuration. Overall, color priming occurs
(whether reflected to target or distractor features) in
both experiments and is reflected in all measures, as
shown by the effect of the CT–PD distance. However,
the shape of the distractor color distribution is not
consistently reflected in test trial performance, which
may depend on test trial difficulty. One important
conclusion from this is that future research on FDL
should consider search difficulty when deviating from
the original paradigm.

The FDLmethod is typically used to reveal distractor
suppression by uncovering attentional templates for
distractors. Classic effects (i.e., reaction times reflecting
the shape of the previous distractor distribution)
suggest learning of distractor features, as this effect
is inherently tied to the distractors itself. However,
target features can also be learned, as the target
consistently appeared 18 to 24 JNDs from the distractor
mean, covering a specific hue range. Van der Stigchel
and Meeter (2017) found in a similar setting as in
Experiment 2 (six items, an odd-one-out color target)
that both target signal enhancement and distractor
suppression occurred. But, in simpler settings, only
target signal enhancement occurred (two items) (Meeter
& Van der Stigchel, 2013). Thus, target-related priming
likely occurred alongside distractor learning. In
Experiment 1, no evidence of distractor feature learning
emerged, as SRTs, MRTs, and saccade deviation
did not reflect the distractor distribution shape. The
observed priming effect, where performance varied with
target distance from the distractor mean, may reflect
target-related learning, given that greater distractor
distance suggests proximity to previous target colors.
Participants could have learned the target mean, its
variance, or recent target colors. In Experiment 2,
distractor suppression was observed through FDL
effects on reaction times. Yet, saccade endpoint effects
could still stem from target enhancement. The use of
distractor information seems to occur only during
difficult trials, whereas the use of target information
appears to be present regardless of task difficulty for
MRTs, SRTs, and deviation.

No evidence of distractor FDL effects on saccade
deviation

Examining the test results from Experiments 1 and 2,
the MRT, SRT, and deviation measures appear overall
quite similar, showing a general decrease as the CT–PD
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distance increased. In Experiment 2, the most notable
difference was that the shape of the previous distractor
color distribution (Gaussian or uniform) was reflected
in MRT and SRT measures but not in saccade endpoint
deviation. However, if FDL occurs, why is it then not
reflected in saccade endpoints?

One explanation could relate to the data exclusion
criteria we applied. A substantial number of trials
were removed from the saccade endpoint analysis,
particularly those in which the first saccade landed on
the incorrect side of the screen. These excluded trials
may reflect instances of high competition, where strong
distractor interference led to erroneous saccades. By
removing them, we may have unintentionally biased
the dataset toward easier trials, thereby diminishing
observable priming effects. This issue also ties into the
challenge of studying the global effect in contexts with
few distractors, which are not ideal for investigating
learning of distributions. Specifically, because our
analysis focused on the first saccade, participants had
to be able to reach the target in a single saccade during
the test trials, a condition that is typically not met in
standard FDL paradigms. To assess the influence of
trial selection on our experimental results, we conducted
a supplementary analysis of MRTs, SRTs, and deviation
using the same subset of test trials (see Supplementary
Material S1). Using the trial set used in MRT or SRT
analyses is problematic for deviations, as it would
involve trials where saccades landed in the wrong
hemifield or far from the target. In such cases, deviation
is not meaningful, because, by definition, the global
effect only applies when the saccade is intended to reach
the target. Therefore, we restricted our supplementary
analyses to the trial subset used for the saccade endpoint
analysis. Results showed that the FDL effect on SRT
and MRT remained significant, although the effect size
of the FDL was reduced, especially for SRT. Overall,
exclusion criteria cannot account for the differences
among the three measures, as the emergence of the
FDL still varied depending on the response measure,
even when using an identical trial set.

Another explanation could be that the difference
between the uniform and Gaussian distributions is
subtle and interacts with multiple factors driving
attention and eye movements. The relative importance
of these factors may vary across different measures,
with endpoint deviations potentially being influenced
by stronger competing factors. Indeed, SRT and
endpoint measures reflect different processes in saccade
generation, with SRT reflecting the time it takes to
reach a threshold and the global effect the overlap in
the weight within the saccade map. In a supplementary
analysis (Supplementary Material S2), we present a
random forest analysis (Breiman, 2001; for a review,
see Wei, Lu, & Song, 2015) based on the results
of Experiments 1 and 2. The goal was to rank the
factors influencing MRTs, SRTs, and saccade endpoint

deviations (e.g., target location, target color relative
to the previous target or distractor color), providing
insights into their contributions to different measures.
In Entzmann et al. (2025) we conducted a similar
analysis, comparing factor rankings for SRTs and
MRTs. In that study, saccadic reaction times were
measured in two contexts: one where saccades served
as a behavioral response and another where saccades
were used naturally, without any instruction, to explore
the visual search display. The results showed similar
rankings, although previous distractor color had a
larger impact on natural eye movements. Replicating
these findings, our analyses showed that CT–PD was a
stronger predictor of SRT than MRT, likely because
SRT reflects less individual variability. The main
difference among MRTs, SRTs, and deviation is that
target position has a stronger influence on deviation
than on MRTs or SRTs.

The effect of target position, both in absolute terms
and relative to the previous target quadrant, on SRT,
MRT, and deviation was further analyzed in another
supplementary analysis (Supplementary Material S3).
Overall, target position influenced only deviation, with
greater deviations observed for targets presented in the
upper visual field. Because saccades tend to follow a
descending trajectory on average, deviations away from
the target are greater when the target is positioned at the
top. This is consistent with studies that have found that
upward saccades tend to undershoot the target, whereas
downward saccades are more likely to overshoot it
(Bonnet et al., 2013; Jagla, Zikmund, Mashonkina, &
Yakimoff, 1992; Yang & Kapoula, 2008). Concerning
target position relative to the previous target quadrant,
we found an effect of the previous target position only
on SRTs and deviation in Experiment 2. More precisely,
SRTs were shorter when the target reappeared in the
same quadrant as on the previous trial, compared
with when it appeared in the opposite quadrant,
hemifield, or vertical position. But, saccade deviations
were smaller when the target appeared in the opposite
quadrant or along the same vertical axis. Although
this is speculative, it could suggest that shifting to a
new spatial location, particularly across hemifields,
may engage stronger top–down control and reduce the
global effect. We also tested the hypothesis that SRTs
and deviation in the more difficult trials (i.e., those for
which the hemifield was not primed) would be more
likely to reveal an FDL effect. There was no evidence
for such an interaction, although, for SRTs, the effect
size for FDL was higher for more difficult trials.

Finally, FDL effects on saccade endpoints may be
restricted to short-latency trials. Previous studies have
shown that the global effect is more pronounced for
saccades with short latencies which are thought to be
less influenced by top–down control (Findlay, 1982).
Notably, Ottes, Van Gisbergen, and Eggermont (1985)
demonstrated that the global effect could be avoided
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by delaying saccade initiation by 300 ms. Meeter and
Van der Stigchel (2013) examined the influence of
priming on the global effect across different saccade
latency bins, each bin comprising 20% of trials. These
latency bins ranged approximately from 125 ms (fastest)
to 220 ms (slowest). Although the global effect was
present across all bins, its magnitude decreased with
increasing saccade latency. In a supplementary analysis
(Supplementary Materials S4), we split the test trials
by median saccade latency to examine whether color
priming and the FDL effects on endpoint deviation
varied with latency. Contrary to previous findings, we
found that the global effect was greater for high-latency
saccades. But, this is likely because the high-latency
saccade group contained more low CT–PD trials and
the low-latency saccade group contains more high
CT–PD trials. Color priming was observed across both
latency groups in Experiments 1 and 2, indicating
that deviation was higher when the target color was
within the previous distractor distribution. There was
no significant evidence of an FDL effect on saccade
deviation for either high- or low-latency saccades across
both experiments.2 However, this result should be
interpreted with caution, as the analysis involved a low
number of trials, unevenly distributed across CT–PD
values.

Conclusions

This study sheds light on (1) how FDL of an
ensemble of distractors guides saccade endpoints in
comparison with manual and saccadic reaction times,
and (2) the extent to which FDL can be observed in
active visual search. First, although previous studies
have shown that a single primed color can influence the
global effect, we primed an entire color distribution.
Our results show a consistent relationship between
target color in relation to previous distractors and
saccade endpoint deviation, measured through the
global effect, such that the deviation becomes more
pronounced as the target approaches the mean color of
the previously learned distractor distribution. However,
the shape of the previous distractor distributions
(Gaussian vs. uniform) did not significantly influence
the deviation. Second, we found that task difficulty
modulated the influence of previously learned distractor
information: more difficult test trials led to greater
reliance on the learned distribution. Notably, this effect
was only reflected in reaction time measures (SRTs
and MRTs), not in saccade endpoint deviations. In
conclusion, our findings demonstrate that learning the
statistical properties of target or distractor features
guides oculomotor behavior, influencing both saccade
deviation and the speed of target fixation. However, the

expression of distractor FDL varies across measures
and depends on task difficulty.

Keywords: visual search, feature distribution learning,
ensemble perception, eye movements, global effect
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Footnotes
1Note that anecdotal results from a BF analysis are barely worth
mentioning (Jeffreys, 1961), and the means are not in the expected
direction; therefore, this will not be further discussed.
2Note that, in Experiment 1, for short-latency saccades, a marginal effect
was observed on the slope coefficient in the expected direction, suggesting
a potential FDL effect on saccade endpoint for short-latency saccades.
But, dividing the data into latency groups resulted in fewer trials per
condition. Moreover, because the short-latency group consisted mainly
of trials with high CT–PD values and the high-latency group primarily
included trials with low CT–PD values, the distribution of trials across
CT–PD values was unbalanced. Because this effect was not reflected
in MRTs or SRTs in Experiment 1, nor in deviation in Experiment 2,
and given the limited number of trials per condition, we refrain from
interpreting this result further.

References

Alvarez, G. A. (2011). Representing multiple objects as
an ensemble enhances visual cognition. Trends in
Cognitive Sciences, 15(3), 122–131.

Belopolsky, A. V. (2015). Common priority map
for selection history, reward and emotion in the
oculomotor system. Perception, 44(8–9), 920–933.

Belopolsky, A. V., & Theeuwes, J. (2012). Updating the
premotor theory: The allocation of attention is
not always accompanied by saccade preparation.
Journal of Experimental Psychology: Human
Perception and Performance, 38(4), 902.

Downloaded from jov.arvojournals.org on 01/16/2026

https://osf.io/zqc46/


Journal of Vision (2025) 25(14):18, 1–19 Entzmann, Kristjánsson, & Ásgeirsson 17

Bisley, J. W., & Mirpour, K. (2019). The neural
instantiation of a priority map. Current Opinion in
Psychology, 29, 108–112.

Bonnet, C., Hanuška, J., Rusz, J., Rivaud-Péchoux, S.,
Sieger, T., Majerová, V., . . . Růžička, E. (2013).
Horizontal and vertical eye movement metrics: what
is important? Clinical Neurophysiology, 124(11),
2216–2229.

Breiman, L. (2001). Random forests.Machine Learning,
45, 5–32.

Chetverikov, A., Campana, G., & Kristjánsson, Á.
(2016). Building ensemble representations: How the
shape of preceding distractor distributions affects
visual search. Cognition, 153(2016), 196–210.

Chetverikov, A., Campana, G., & Kristjánsson, Á.
(2017). Representing color ensembles. Psychological
Science, 28(10), 1510–1517.

Chetverikov, A., Hansmann-Roth, S., Tanrıkulu, Ö.
D., & Kristjansson, A. (2020). Feature distribution
learning (FDL): A new method for studying visual
ensembles perception with priming of attention
shifts. In S. Pollmann (Ed.), Spatial learning and
attention guidance (pp. 37–57). London: Springer
Nature.

Chetverikov, A., & Kristjánsson, Á. (2015). History
effects in visual search as reflected in reaction times,
choice biases, and liking. Attention, Perception &
Psychophysics, 77, 402–412.

Deubel, H., Schneider, W. X., & Paprotta, I. (1998).
Selective dorsal and ventral processing: Evidence
for a common attentional mechanism in reaching
and perception. Visual Cognition, 5(1–2), 81–107.

Duncan, J., & Humphreys, G. W. (1989). Visual search
and stimulus similarity. Psychological Review, 96(3),
433.

Entzmann, L., Ásgeirsson, Á. G., & Kristjánsson, Á.
(2025). How does color distribution learning affect
goal-directed visuomotor behavior? Cognition, 254,
106002.

Fecteau, J. H., & Munoz, D. P. (2006). Salience,
relevance, and firing: A priority map for target
selection. Trends in Cognitive Sciences, 10(8),
382–390.

Findlay, J. M. (1982). Global visual processing for
saccadic eye movements. Vision Research, 22(8),
1033–1045.

Findlay, J. M., & Walker, R. (1999). A model of
saccade generation based on parallel processing
and competitive inhibition. Behavioral and Brain
Sciences, 22(4), 661–674.

Hanning, N. M., Szinte, M., & Deubel, H. (2019).
Visual attention is not limited to the oculomotor
range. Proceedings of the National Academy of
Sciences, 116(19), 9665–9670.

Hansmann-Roth, S., Chetverikov, A., & Kristjánsson,
Á. (2019). Representing color and orientation
ensembles: Can observers learn multiple feature
distributions? Journal of Vision, 19(9):2, 1–17,
https://doi.org/10.1167/19.9.2.

Hansmann-Roth, S., Kristjánsson, Á., Whitney, D. W.,
& Chetverikov, A. (2021). Dissociating implicit and
explicit ensemble representations reveals the limits
of visual perception and the richness of behavior.
Scientific Reports, 11, 3899.

He, P., & Kowler, E. (1989). The role of location
probability in the programming of saccades:
Implications for “center-of-gravity” tendencies.
Vision Research, 29(9), 1165–1181.

Hoijtink, H., Mulder, J., van Lissa, C., & Gu, X. (2019).
A tutorial on testing hypotheses using the Bayes
factor. Psychological Methods, 24(5), 539

Iakovlev, A. U., & Utochkin, I. S. (2023). Ensemble
averaging: What can we learn from skewed feature
distributions? Journal of Vision, 23(1):5, 1–20,
https://doi.org/10.1167/jov.23.1.5.

Jagla, F., Zikmund, V., Mashonkina, T. R., & Yakimoff,
N. A. (1992). The accuracy of saccadic eye
movements is associated with their horizontal and
vertical direction. Bratislavske Lekarske Listy,
93(6), 287–290.

Jeffreys, H. (1961). Theory of probability, Oxford:
Oxford University Press.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors.
Journal of the American Statistical Association,
90(430), 773–795.

Kim, M., & Chong, S. C. (2020). The visual system
does not compute a single mean but summarizes a
distribution. Journal of Experimental Psychology:
Human Perception and Performance, 46(9), 1013.

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s
new in Psychtoolbox-3? Perception, 36, 1–16.

Klink, P. C., Jentgens, P., & Lorteije, J. A. (2014).
Priority maps explain the roles of value, attention,
and salience in goal-oriented behavior. Journal of
Neuroscience, 34(42), 13867–13869.

Kowler, E. (1999). Eye movements and visual attention.
The MIT Encyclopedia of the Cognitive Sciences,
Cambridge: MIT Press; 306–309.

Kowler, E., Anderson, E., Dosher, B., & Blaser, E.
(1995). The role of attention in the programming of
saccades. Vision Research, 35(13), 1897–1916.

Kristjánsson, Á. (2023). Priming of probabilistic
attentional templates. Psychonomic Bulletin &
Review, 30(1), 22–39.

Kristjánsson, A. (2011). The intriguing interactive
relationship between visual attention and saccadic
eye movements. The Oxford handbook of eye
movements. pp. 455–470.

Downloaded from jov.arvojournals.org on 01/16/2026

https://doi.org/10.1167/19.9.2
https://doi.org/10.1167/jov.23.1.5


Journal of Vision (2025) 25(14):18, 1–19 Entzmann, Kristjánsson, & Ásgeirsson 18

Kristjánsson, Á., & Ásgeirsson, Á. G. (2019).
Attentional priming: recent insights and current
controversies. Current Opinion in Psychology, 29,
71–75.

Kristjánsson, Á., & Campana, G. (2010). Where
perception meets memory: A review of repetition
priming in visual search tasks.Attention, Perception,
& Psychophysics, 72(1), 5–18.

Kristjánsson, Á., & Driver, J. (2008). Priming in visual
search: Separating the effects of target repetition,
distractor repetition and role-reversal. Vision
Research, 48(10), 1217–1232.

Lamy, D., Zivony, A., & Yashar, A. (2011). The role of
search difficulty in intertrial feature priming. Vision
Research, 51(19), 2099–2109.

Meeter, M., & Olivers, C. N. (2006). Intertrial priming
stemming from ambiguity: A new account of
priming in visual search. Visual Cognition, 13(2),
202–222.

Meeter, M., & Van der Stigchel, S. (2013). Visual
priming through a boost of the target signal:
Evidence from saccadic landing positions.
Attention, Perception, & Psychophysics, 75,
1336–1341.

Mihali, A., & Ma, W. J. (2020). The psychophysics
of visual search with heterogeneous distractors.
BioRxiv, https://doi.org/10.1101/2020.08.10.
244707.

Morey, R. D., Rouder, J. N., Jamil, T., Urbanek, S.,
Forner, K., & Ly, A. (2015). Package ‘bayesfactor’,
Retrieved from: https://cran.r-project.org/web/
packages/BayesFactor/BayesFactor.pdf.

Muggeo, V. M. (2008). Segmented: an R package to fit
regression models with broken-line relationships. R
News, 8(1), 20–25.

Nagy, A. L., Neriani, K. E., & Young, T. L. (2005).
Effects of target and distractor heterogeneity on
search for a color target. Vision Research, 45(14),
1885–1899.

Olivers, C. N., & Meeter, M. (2006). On the dissociation
between compound and present/absent tasks in
visual search: Intertrial priming is ambiguity driven.
Visual Cognition, 13(1), 1–28.

Olivers, C. N., &Meeter, M. (2012). Current versus past
ambiguity in intertrial priming. Visual Cognition,
20(6), 627–646.

Ottes, F. P., Van Gisbergen, J. A., & Eggermont, J. J.
(1985). Latency dependence of colour-based target
vs nontarget discrimination by the saccadic system.
Vision Research, 25(6), 849–862.

Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C.
(1987). Reorienting attention across the horizontal
and vertical meridians: evidence in favor of a

premotor theory of attention. Neuropsychologia,
25(1), 31–40.

Rosenholtz, R. (2001). Visual search for orientation
among heterogeneous distractors: Experimental
results and implications for signal-detection
theory models of search. Journal of Experimental
Psychology: Human Perception and Performance,
27(4), 985.

R Core Team. (2022). R: A language and environment
for statistical computing, Vienna, Austria: R
Foundation for Statistical Computing.

RStudio Team. (2022). RStudio: Integrated
development environment for R. Retrieved from:
https://www.r-project.org/conferences/useR-2011/
abstracts/180111-allairejj.pdf.

Sheliga, B. M., Riggio, L., & Rizzolatti, G. (1994).
Orienting of attention and eye movements.
Experimental Brain Research, 98, 507–522.

Van der Stigchel, S., & De Vries, J. P. (2015). There
is no attentional global effect: Attentional
shifts are independent of the saccade endpoint.
Journal of Vision, 15(15):17, 1–12, https:
//doi.org/10.1167/15.15.17.

Van der Stigchel, S., & Meeter, M. (2017). Negative
versus positive priming: When are distractors
inhibited? Journal of Eye Movement Research,
10(2).

Van der Stigchel, S., & Nijboer, T. C. W. (2011). The
global effect: what determines where the eyes land?
Journal of Eye Movement Research, 4(2), 1–13.

Van der Stigchel, S., & Nijboer, T. C. W. (2013). How
global is the global effect? The spatial characteristics
of saccade averaging. Vision Research, 84, 6–15.

Wagenmakers, E. J. (2007). A practical solution to
the pervasive problems of p values. Psychonomic
Bulletin & Review, 14(5), 779–804.

Wagenmakers, E. J., Wetzels, R., Borsboom, D., &
Van Der Maas, H. L. (2011). Why psychologists
must change the way they analyze their data: The
case of psi: Comment on Bem (2011). Journal of
Personality and Social Psychology, 100(3), 426–432.

Wei, P., Lu, Z., & Song, J. (2015). Variable importance
analysis: A comprehensive review. Reliability
Engineering & System Safety, 142, 399–432.

Whitney, D., & Yamanashi Leib, A. (2018). Ensemble
perception. Annual Review of Psychology, 69,
105–129.

Wilimzig, C., Schneider, S., & Schöner, G. (2006). The
time course of saccadic decision making: Dynamic
field theory. Neural Networks, 19(8), 1059–1074.

Witzel, C., & Gegenfurtner, K. R. (2013). Categorical
sensitivity to color differences. Journal of Vision,
13(7):1, 1–33, https://doi.org/10.1167/13.7.1.

Downloaded from jov.arvojournals.org on 01/16/2026

https://doi.org/10.1101/2020.08.10.244707
https://cran.r-project.org/web/packages/BayesFactor/BayesFactor.pdf
https://www.r-project.org/conferences/useR-2011/abstracts/180111-allairejj.pdf
https://doi.org/10.1167/15.15.17
https://doi.org/10.1167/13.7.1


Journal of Vision (2025) 25(14):18, 1–19 Entzmann, Kristjánsson, & Ásgeirsson 19

Wollenberg, L., Deubel, H., & Szinte, M. (2018).
Visual attention is not deployed at the endpoint
of averaging saccades. PLoS Biology, 16(6),
e2006548.

Yang, Q., & Kapoula, Z. (2008). Aging does not affect
the accuracy of vertical saccades nor the quality
of their binocular coordination: A study of a
special elderly group. Neurobiology of Aging, 29(4),
622–638.

Zelinsky, G. J., & Bisley, J. W. (2015). The what, where,
and why of priority maps and their interactions
with visual working memory. Annals of the New
York Academy of Sciences, 1339(1), 154–164.

Zhao, M., Gersch, T. M., Schnitzer, B. S., Dosher, B. A.,
& Kowler, E. (2012). Eye movements and attention:
The role of pre-saccadic shifts of attention in
perception, memory and the control of saccades.
Vision Research, 74, 40–60.

Downloaded from jov.arvojournals.org on 01/16/2026


