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ABSTRACT

Encoding of visual scenes remains under-explored due to methodological limitations. In this study,
we evaluated the relationship between memory accuracy for visual scenes and eye movements at
encoding. First, we used data-driven methods, a fixation density map (using iMap4) and a saliency
map (using GBVS), to analyse the visual attention for items. Second, and in a more novel way, we
conducted scanpath analyses without a priori (using ScanMatch). Scene memory accuracy was
assessed by asking participants to discriminate identical scenes (targets) among rearranged
scenes sharing some items with targets (distractors) and new scenes. Shorter fixation duration
in regions of interest (ROIls) at encoding was associated with a better rejection of distractors;
there was no significant difference in the relative fixation time in ROIs at encoding, between
subsequent hits and misses at test. Hence, density of eye fixations in data-driven ROIs seems to
be a marker of subsequent memory discrimination and pattern separation. Interestingly, we also
identified a negative correlation between average MultiDimensional Scaling (MDS) distance
scanpaths and the correct rejection of distractors, indicating that scanpath consistency
significantly affects the ability to discriminate distractors from targets. These data suggest that
visual exploration at encoding participates in discrimination processes at test.
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The interest in using eye tracking to study memory
processes is growing. The majority of studies analysed
the link between encoding and the subsequent rec-
ognition without going further into the process of dis-
crimination (Schurgin, 2018). Research on visual
scenes adds a layer of difficulty, because of their com-
plexity and diversity. Scenes are consensually defined
as a human-scaled view of an environment, associat-
ing items arranged in specific locations with larger
surfaces and elements that constitute the back-
ground, which together form a coherent semantic
concept (see Williams & Castelhano, 2019, for a
review). During visual exploration, eye movements
bring the image of a stimulus to the fovea, and
each eye movement to a position is preceded by a
shift of attention to that position (Hoffman, 1998).
Eye-tracking methodology provides the opportunity
to capture these eye movements and therefore to
explore overt attention for visual stimuli such as

scenes, focusing on fixations, defined as the station-
ary states of the eyes during which gaze is held
upon a specific location in the image, and saccades,
that correspond to rapid eye movements between
fixations, but provides only limited insights on
covert attention (see Vidal et al., 2012, for a review).

Encoding of natural scenes depends on both the
visual properties of the scene, i.e., saliency, semantic
integrity (i.e., semantically congruent vs. incongruent
objects within a scene context), spatial associations,
and the task set, i.e., search, memorization, or free
viewing (see Castelhano & Krzys, 2020; and Williams
& Castelhano, 2019, for reviews). Eye-tracking
studies on visual scene encoding have so far assessed
the link between eye movements and subsequent
recognition performance (using old/new paradigms)
or awareness (using remember/know paradigms).
Some studies identified that the number of fixation
points made during scene encoding is associated
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with greater subsequent recognition performance
(Choe et al,, 2017), or memory awareness (Kafkas &
Montaldi, 2012). In addition, the spatial distribution
of clustered eye fixations during encoding has been
found to predict subsequent remembering awareness
of visual scenes relative to knowing, due to the recog-
nition of distinct details (Sharot et al, 2008). With
regards to the duration of fixations, shorter fixation
durations during face encoding (considering the
whole face as the area of interest) have been found
to predict subsequent hits over misses (Parag &
Vakil, 2018). Eye fixation can also be guided by
visual saliency, which encompasses low-level scene
features. The bottom-up saliency map hypothesis (Itti
& Koch, 2001) points to the role of salient low-level
features in capturing attention during free-viewing
or explicit memory tasks (Underwood & Foulsham,
2006), but not in a search task (Foulsham & Under-
wood, 2011). Henderson and Hayes (2018) go
beyond this model by showing that both meaning
and image saliency predicted the distribution of
attention during explicit encoding.

To date, no eye-tracking study on scenes encoding
has assessed memory discrimination, which differs
from memory recognition, on methodological, behav-
ioural, and neural levels. Memory discrimination tasks
require participants to recognize previously encoded
stimuli among highly similar lures and new stimuli
(i.e., old/lure discrimination), and rely on detailed
memory representations of the old stimuli, while
memory recognition tasks (i.e., old/new discrimi-
nation) do not need such detailed representations,
and can be achieved at least with gist-based rep-
resentations of the old stimuli (Loiotile & Courtney,
2015). Memory discrimination and memory recog-
nition tasks explore respectively pattern separation
at encoding, and pattern completion at retrieval,
which are episodic memory processes involving
different hippocampal subfields (Liu et al, 2016).
Pattern separation is based on dentate gyrus activity,
and allows to assign different neural codes to events
with overlapping content, which results in distinct
representations stored in memory, and supports sub-
sequent old/lure discrimination (Hainmueller &
Bartos, 2020; Rolls, 2016). Pattern completion is
based on the activity of the cornus ammonis (CA3),
and triggers, from partial cues, the retrieval of the
whole representation of the encoded stimuli (Liu
et al., 2016). Only one eye-tracking study has been

conducted on memory discrimination, by Molitor
et al. (2014), in which participants at test had to recog-
nize old items (i.e., pictures of everyday objects)
among similar distractors and new different items.
Compared to hits, false alarms were associated with
fewer fixations to the target at encoding, suggesting
that errors were driven by diminished encoding (the
poor encoding hypothesis).

The methodology of more recent research on eye
fixations in relation to recognition rates and aware-
ness has been based on fixation maps, which corre-
spond to duration-weighted fixation density.
Damiano and Walther (2019) used a paradigm in
which observers were asked either to fixate or to
explore scenes. During the study phase, exploration,
relative to fixation, led to higher subsequent recog-
nition rates, while at test, exploration, relative to
fixation, led to the same hit rates but a higher rejec-
tion rate of new scenes. This demonstrates that
fixations do not completely reflect visual attention,
and what is encoded/recognized. In contrast to
these results, Wynn et al. (2020) evaluated the level
of similarity between fixation maps at encoding and
retrieval (i.e., gaze reinstatement) during a pattern
completion paradigm, and found similar gaze rein-
statement for hit and false alarm responses at test.
Other studies have replicated previous findings on

spatial distribution of fixations, finding that a
broader exploration during encoding leads to
higher recognition performance (Damiano &

Walther, 2019), and stronger familiarity awareness
(Ramey et al,, 2020a). Looking at the inter-observer
congruency of fixation maps, Lyu et al. (2019) ident-
ified that scene memory is related to the consistency
of fixation maps across viewers at encoding, which is
itself related to the signal-to-noise fixation ratio
between preferentially viewed regions of the scene
and other regions.

Research focusing on scanpaths, i.e., the spatial
distributions of eye gaze, were initially guided by
the scanpath theory, which postulates that scanpath
similarity between encoding and retrieval is predic-
tive of memory performance (Noton & Stark, 1971).
Subsequent studies have shown that scanpaths are
idiosyncratic, showing a greater individual consist-
ency between encoding and retrieval, than
between different observers viewing the same
image (e.g., Foulsham et al., 2012; French et al,
2017). Similarly to research using fixation maps,



more recent research on scanpaths tends to identify
specific patterns of eye movement associated with
memory formation, and distinct roles for eye move-
ments during encoding and retrieval. Analysing
scanpath rehearsal during study phase, Megha-
nathan et al. (2019) described different types of
refixations (the repetition in time of fixation
sequences), which supported memory-encoding
strategies in free viewing. Comparing scanpath for
novel and repeated scenes during a search task,
Wynn et al. (2016) evidenced a scanpath repetition
of initial and final but not middle fixations during
repeated scene; early scanpath similarity increased
search efficiency by reducing search time at test.
These results have therefore challenged the scan-
path theory. Arizpe et al. (2019) used faces to
propose an alternative model, suggesting that an
increasing number of fixations during encoding
enables the gradual integration of disparate infor-
mation into a coherent representation, that can be
activated during recognition within a small number
of fixations. Scanpath analysis allows a population
to be distinguished with typical development from
participants with neuropsychiatric disorders (see
Armstrong & Olatunji, 2012; and Toh et al., 2011,
for reviews). Notably, during scene encoding and
recognition, Shakespeare et al. (2015) have evi-
denced a greater consistency of scanpaths between
healthy participants compared to participants with
neurological conditions, suggesting that healthy
participants looked more appropriately at task-rel-
evant regions of the scene.

To summarize, both fixation map and scanpath
eye-tracking studies using scenes suggest that eye-
movements during encoding are predictive of recog-
nition rates and awareness at test, but so far no study
has explored memory discrimination via pattern sep-
aration processes. Hence, the present methodological
study aimed to determine what patterns of eye move-
ments during scene encoding are related to memory
discrimination for visual scenes, focusing on fixations
and scanpaths that predict correct recognition and
false alarms. We designed an old/rearranged/new
paradigm suitable to test memory accuracy and
pattern separation processes, including an incidental
encoding phase using drawings of scenes, followed
by a surprise recognition phase in which participants
had to recognize “target” scenes (same items and
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background), among “distractor” scenes (same
items but new background) and new scenes (items
and background were new). Incidental encoding of
scenes fosters memory for visual features rather
than for the whole scene, with images containing
many features being richly encoded when compared
to other kind of images (Evans & Baddeley, 2018).
Drawings and photographs of scenes share large
similarities; however, drawings allow a better hand-
ling of the content including many details and are
more attractive compared to photographs (Park
et al, 2019). First, we used data-driven methods, a
fixation density map (using iMap4), to evaluate the
visual attention for items. We proposed to extend
the Molitor et al. (2014) results to fixation durations
and predicted an association between increased
false alarm rate and longer fixation durations on
details shared between targets and distractors.
Such an association would support the presence of
an attentional bias at encoding, that would increase
interference during the recognition phase. We also
generated a saliency map (using GBVS) to ensure
that our data-driven fixation maps were not related
to low-level features, mainly saliency. Second, and
in a more novel way, we conducted scanpath ana-
lyses without semantic a priori expectations in the
definition of ROIs. Memory discrimination relies on
detailed memory representations, and presumably
on extensive exploration of visual scenes at encod-
ing. Hence, without a priori analyses, which are
based on a high number of similar ROIs, each con-
taining a variable amount of semantic information,
seem more suitable than a priori analyses which
focus on specific items, for assessing participants’
exploration of the whole visual scene. We considered
that inter-observer scanpath consistency would be a
valuable marker of the quality of the memory trace
and predicted that greater scanpath consistency at
encoding would be associated with higher discrimi-
nation at test.

Method
Participants

Forty-nine healthy young adults were recruited for
this study (26 males, mean age 21.3+2.41 years,
mean level education 13.81+ 1.86 years). Of these
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49 participants, 42 were right-handed (assessed by
the checklist of De Agostini & Dellatolas, 1988), and
41 had right ocular dominance. All participants had
normal or corrected-to-normal vision. None reported
recent use of alcohol or illicit drugs, current or past
mental disorder, neurological disorder (including
history of head trauma with loss of consciousness,
or seizures), or current medical condition. An intellec-
tual impairment was ruled out, using the Wechsler
Adult Intelligence Scale-IV (Verbal Comprehension
Index=111.60+ 17, Perceptual Reasoning Index=
101.62 + 12.60). Forty-two participants were retained
for analysis (1 participant was excluded because he
did not look sufficiently at some pictures, i.e., total
visit duration <3% of total scene duration for one
picture, and <43% for two pictures) and six partici-
pants were excluded due to eye tracker dysfunction
including calibration. When using Molitor’s results as
criteria, the required sample size was about 35 partici-
pants for Alpha=0.05 (power goal=0.90). We
decided to increase the number of inclusions to
have a minimum of 35 participants for analyses: 42
participants were retained for analyses, we aimed
for this large number of participants to compensate
for the small number of stimuli.

This study was conducted in accordance with the
Code of Ethics of the World Medical Association
(Declaration of Helsinki, 2008), and was approved by
the local ethics committee before it started (CPP
Nord Ouest lll, N° ID RCB: 2013-A01800-45); all partici-
pants signed for consent.

Material

A total of 43 coloured pictures (1024 x 717 pixels)
created by a professional cartoonist were used
(Figure 1): seven were used for the training phase
before study phase, six were used to avoid primacy
and recency effects at study phase, and the remaining
30 were used in the data analyses. These 30 item-
background pictures belonged to one of 10
different semantic categories (rural, farm, forest,
garden, mountain, snow, car park, swimming pool,
beach, and city). Three pictures were created for
each semantic category: a “target” picture identical
at study and at test phase, a “distractor” picture,
and a “new” picture. The “distractor” picture con-
tained the same items in the foreground as the
“target” picture combined with a new background

from the same semantic category. The foreground
items, common to both the target and distractor,
were two or three per picture (3 for “forest” and
“beach” categories, and 2 for other categories). The
“new” picture combined new foreground items and
a new background from the same semantic category
as the “target.”

Procedure

E-Prime software (PST, Pittsburgh, PA) was used to
control stimulus presentation and to record partici-
pants’ responses. Participants were sitting comforta-
bly 79 cm from the screen in a dimly lit room during
the whole experiment. Eye positions and gaze dur-
ations were measured at 60 Hz with a remote eye
tracker (Tobii X120 A, Tobii Technology AB, Stock-
holm, Sweden). A box with infrared sources and a
camera were set below a 22-inch TFT flat-screen
monitor (HP, x22LED). Stimuli were presented in full
screen at a resolution of 1024 x 768 pixels. The size
of the projection screen was 47.75 x 26.92 cm?, sub-
tended 33.6°x19.4° in visual angle. Before each
recording, a 9-point eye-tracker calibration and vali-
dation procedure was performed.

The incidental memory task included a study phase
followed by a surprise recognition phase (Figure 2). At
study phase, a trial started with a dynamic fixation
central white cross presented on a black background
for 1280 ms. A picture then appeared on the screen
for 5000 ms, followed by a black screen for 500 ms.
The 10 “target” pictures were presented in pseudo-
random order. Participants were asked to freely and
carefully explore each picture for the full duration of
the presentation. The test phase was provided after
a 20-minute break during which participants per-
formed unrelated tests (i.e., Rey’s figure test, and a
verbal fluency test, not affecting participants’ ability
to complete the test phase; no fatigue was observed).
The test phase started with four familiarization trials
comprising of four pictures (not presented in the
study phase), followed by the 30 pictures of interest
presented in pseudo-random order (10 “target,” 10
“distractor,” and 10 “new” pictures). Participants
were instructed to identify “target” pictures and
reject other kinds of pictures, i.e., “distractor” and
“new” pictures. In both cases, participants responded
by pressing one of two keys on a computer mouse.
There was no time limit to respond. A trial started
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Figure 2. Experimental design. In the study phase (left), participants were presented with pictures and were asked to watch carefully.
In the recognition phase (right), participants were presented with pictures again and were asked to decide whether they had seen
them in the study phase or not. Pictures in the recognition phase were presented until the participant responded.

by means of a fixation cross, then pictures were pre-
sented on the screen until the participant responded,
followed by a 500 ms black screen as in the study
phase.

Eye-tracking analyses

Eye tracking recording and analyses were carried out
separately for each picture, using data from the study
phase only (Figure 3).

Data preprocessing

An |-VT filter (Velocity-Threshold Identification filter:
classifier: 30°s; velocity calculator window length:
20 ms) was applied to the eye-tracking data prior to
exporting as recommended by the eye tracker manu-
facturer. The output was based on the average of
both eyes. The data were then exported (Identifier,
Scene Name, Gaze Event Duration, Fixation Point X,
Fixation Point Y) into MATLAB. All data processing
and analyses were performed using MATLAB
(R2015a) software. The data were preprocessed
before statistical analyses.

As the picture sizes were smaller than the screen
size, fixations on the screen but outside of the pic-
tures were removed from all analyses. For the same
reason, the gaze point coordinates were recalculated
to reflect this shift.

For each trial, the first fixation was discarded if it
was central, as it was likely to be a reflection (or rema-
nence) of the fixation cross presented just before the
scene, and therefore was not informative (Hayes &
Henderson, 2017; Ramey et al., 2020b; Wang et al.,

2015). As a result, 37 first fixations (8.8% of all first
fixations) which were not to the picture centre and
thus were informative, were kept for analyses. All
the remaining fixations were used for the analyses
(see Table 1).

Fixation analysis

Gaze fixation location data were analysed using
iMap4 (Caldara & Miellet, 2011; Lao et al., 2017; and
see also Nicholls et al,, 2019, with visual scenes), a
freely available MATLAB open source toolbox for the
statistical fixation mapping of eye movement data.
iMap4 requires a two-step process: first, iMap4 gener-
ates fixation duration maps for each participant and
every picture, creating individual fixation maps
which are smoothed by convoluting them with a
two-dimensional Gaussian Kernel function. These
individual maps can be averaged to produce a
group fixation map (heatmap). Second, these 3D
fixation maps (dimensions are x, y, and fixation dur-
ation) are compared to produce statistically signifi-
cant duration-weighted difference maps. The main
advantage of this method is that it is data-driven,
inspired by methods used in functional Magnetic Res-
onance Imaging, and no prior segmentation of pic-
tures into ROIs is required.

Toolbox parameters were adapted for the scene
stimuli. In order to clearly identify the items
embedded in the scenes, the smoothing parameter
was set to a 2.5° visual angle. To reduce memory
usage and computational time, picture size was
rescaled. We used the default scaler parameter of
0.24 (updated x size =246 pixels, updated y size =
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Figure 3. Schematic representation of the procedures for eye-tracking data analysis.
Note: in order to represent the MDS space in the figure, the size of the n-dimensional space was chosen equal to 3 (but in the analysis, 8 was used).

173). An average “duration map” was computed for  test: hits (correctly recognized “targets”), misses
each picture. A one-tailed t-test was then performed (unrecognized “targets”), correct rejections (correctly
against the “baseline activation” (“the mean fixation  rejected “distractors”), and false alarms (“distractors”
intensity within the iMap mask”). We used an alpha  incorrectly identified as “targets”). The relative
level of 0.01 Bonferroni-corrected for multiple com-  fixation duration in ROIs was equal to the sum of
parisons. The output provided, for each scene, a fixation durations spent in ROl divided by the sum
map showing the significant above-chance fixation  of all fixation durations spent in the picture. A
duration regions. From these maps, we extracted stat-  Mann-Whitney test was used to compare relative
istical iMap regions of interest (data-driven ROIls),  time spent in ROIs at study phase for each category.
where each data-driven ROl corresponded to a stat-
istically significant cluster of voxels. These data-  Visual saliency analysis
driven ROIs were binarized. To simulate the central  Visual saliency map. For each picture, a saliency map
foveal vision, binary ROIs were dilated by 25 pixels, = was created using the GBVS MATLAB toolbox (Graph-
which corresponded to the size, on the image, of  Based Visual Saliency, Harel et al., 2007). GBVS was
half of a viewing angle of 1.5°. selected over other saliency toolboxes because it
Using these parameters, we calculated the relative  offers the highest prediction level for saliency-based
fixation duration spent in data-driven ROIls at study  ocular fixations, especially for scenes (Borji et al,
phase for four subsequent response categories at  2013). The GBVS process is divided into two stages:

Table 1. Total number of fixations and number of first fixations retained for analysis for each target picture.
Picture
1 2 3 4 5 6 7 8 9 10 Total

Total no. of fixations retained 652 708 670 644 626 656 680 658 653 664 6611
No. of 1st fixation retained 4 3 3 4 4 2 4 5 2 6 37
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activation maps are first created using specific feature
channels, which are then normalized in a way that
highlights conspicuity and admits combination with
other maps, to generate a final saliency map. We
used the default parameters of GBVS.

Fixation duration map. For each participant and for
each image, an individual fixation duration map was
constructed, by taking the set of locations where
the eyes were fixated and the duration of the gaze
point. A fixation duration map was computed for
each image by adding up the fixation durations of
all participants (O'Connell & Walther, 2015). To simu-
late the central foveal vision, the result was then con-
volved with a Gaussian kernel. The full width at half
maximum of the Gaussian kernel was set to 1.5° of
visual angle.

Correlation between saliency map and fixation dur-
ation map. For each picture, a Spearman’s rank corre-
lation was used to measure the similarity between
saliency map and fixation duration map (Riche et al.,
2013).

Correlation between visual saliency and fixation
ROI. A Spearman’s rank correlation was used to test
the relation between saliency and data-driven ROI
fixation duration found using iMap. In the saliency
interaction analysis, pixel-level saliency for each ROI
was selected as the maximum value of the object
region in order to minimize the object size effect.
This was because big objects tend to include
uniform texture regions and thus have much smaller
average pixel-level saliency, while fixations were nor-
mally attracted to the most salient region of an object.
Thus, maximum saliency rather than average saliency
was more representative of pixel-level saliency of an
object (Wang et al., 2015).

Scanpath analysis

The similarity between participants’ sequences of eye
movements was analysed using the ScanMatch open
source MATLAB toolbox (Cristino et al.,, 2010). This
choice was guided by the Anderson et al. (2015)
study which compared scanpaths methods and con-
cluded that ScanMatch is the best adapted tool for
analysing fixation sequences, since it can take into
account spatial location, temporal duration, and
sequential similarity between scanpaths.

Forthe spatial binning, each picture was divided with
a grid composed of 96 (12 x 8) rectangular ROIs of 85 x
89 pixels. This grid size was determined without a priori:
we used the same size bin as Cristino et al. (2010). Each
rectangular ROl was labelled by a combination of two
letters. Each fixation within the ROl was tagged with
its name in the string sequence: a sequence contains
a list of visited ROIs, respecting the order of fixations
for a specific picture. For the temporal binning, the
letters corresponding to a ROl were repeated in the
sequence proportionally to the fixation duration:
string sequences were divided into 100 ms bins.

Then, the ScanMatch string-edit distance method-
ology was used to find the best alignment over the
whole string of two sequences by maximizing its
score. This methodology was based on the Needle-
man-Wunsch  algorithm  which  has  been
implemented to compare DNA sequence. To this
end, the sequences were aligned based on a substi-
tution matrix which provides a score for every align-
ment, based on the spatial relationship between
ROls. A similarity score of 1 corresponds to sequences
being identical, while a similarity score of 0 indicates
that there is no similarity.

We used a gap penalty of 0 which means that
adding gaps decreased similarity scores (Frame
etal,, 2019). The “threshold value” was equal to 2 stan-
dard deviations of all the saccade amplitudes. This
means that the alignment algorithm only aimed to
align regions which were within the variability of
the saccade amplitudes (Cristino et al., 2010).

The ScanMatch algorithm was used to calculate the
similarity score between participant pairs, resulting in
between-participant ScanMatch score matrix (matrix
size: 42 x 42 participants).

ScanMatch statistical analysis. This matrix was
transformed with MATLAB function “mdscale,”
allowing MultiDimensional Scaling (MDS) to be
performed (Kruskal, 1964) and projection of each
participant in an n-dimensional space. MDS
then computed the participant coordinates in this
n-dimensional space.

Beforehand, it was necessary to determine the
number of dimensions of this space. The goodness-
of-fit of such space was quantified using a residual
sum of squares called the stress of the map. Stress
values are positive and small values are better, eg., a
stress value of 10% indicates a fair fit (Kruskal, 1964).



The stress value depends on the space dimension: the
greater the n-dimensional space, the smaller the stress
value. We chose the size of the n-dimensional space so
that the stress value of all the scenes was strictly less
than 7.5%, which guaranteed a correct fit.

At the end of this procedure, MDS provided relative
locations for all participants. Participants with similar
temporo-spatial gaze patterns were plotted close
together near the centre of the space while those
with atypical gaze patterns were plotted towards the
periphery. The median location of the group, i.e., the
MDS median point, was defined as the centre of the
participants’ group and represented the standard
temporo-spatial gaze pattern. The relative location of
participants was then computed by calculating the
Euclidean distance (i.e., L2-norm) between the respect-
ive MDS coordinates participants and MDS median
point. The mean MDS-distance of the 42 participants
was calculated for each picture based on eye gaze pat-
terns at study phase; higher MDS-distance values
reflected dissimilar temporo-spatial gaze patterns.

To test the relation between dissimilarity at study
phase and the subsequent recognition performance
at test, we conducted Spearman correlations
between the mean MDS-distance of 42 participants
and accuracy scores, i.e., the number of targets cor-
rectly recognized and distractors correctly rejected.

Results
Behavioural performance

During the test phase, participants correctly recog-
nized 79.52+13.96% of target scenes, correctly
rejected 70.24 +15.85% of distractor scenes and cor-
rectly rejected 97.86 + 4.15% of new scenes (Figure 4).
A Friedman'’s test (three conditions: target, distractor,
new) revealed a main effect of condition (xf(2)=
64.78, p<0.001). A Wilcoxon signed-rank test indi-
cated that all of these results were significantly
different from each other: Target (Mdn = 80%) vs Dis-
tractor (Mdn =70%): T=129, z=2.71, p <0.01; Target
vs New (Mdn=100%): T=5.5, z=5.07, p <0.001; Dis-
tractor vs New: T=0, z=5.65, p < 0.001.

Fixation duration in iMap data-driven ROIs

A total of 20 data-driven ROIs were identified, at study
phase, in the 10 target scenes (Table 2, Figure 5).
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There was no significant difference in the relative
fixation time in data-driven ROIs at study phase,
between subsequent correctly recognized targets
(Hits) (Mdn =30.22%) and missed targets (Misses) at
test (Mdn=31.55%), (U(Nuis=334, Npisses=86) =
14,099, z=0.40, p=0.80, Mann Whitney) (Figure 6).
By contrast, we found a significant difference in the
relative fixation time in data-driven ROIs at study
phase, between false recognitions (false alarms) and
correct rejection of distractors, with longer fixation
durations for the former (Mdn =38.46%) compared
to correct rejections (Mdn=29.98%), (U(Ncorrect
Rejections = 295, Nraise Alarms = 125) = 14191, z=3.73,p
<0.001, Mann Whitney) (Figure 6). This means that
the more time participants spent looking in data-
driven ROIs in the study phase, the less successful
they were at rejecting “distractor” pictures in the
test phase.

Visual saliency

We found a significant positive correlation between
visual saliency and fixation duration for whole pic-
tures at study phase (Spearman rho range: [0.526;
0.773], p <0.001, N=1024 x 717 pixels) (Figure 7). By
contrast, there was no significant correlation
between the visual saliency of data-driven ROIs and
the relative fixation duration time in these ROls
(Spearman rho=0.332, N=2840), which confirmed
that fixations were not driven by low-level scene fea-
tures, i.e., saliency.

Scanmatch results

We chose a size of 8 for the n-dimensional space, for
which all the stress values of images were strictly less
than 7.5% (Figure 8). The stress values, found and
used to determine the goodness of fit of an MDS sol-
ution, are in accordance with the literature. For
instance, in an eye-tracking study consisting of sen-
tence analysis in 44 students (von der Malsburg &
Vasishth, 2011), the stress value was found to be
22% for a 2-dimensional space and decreased to
8.1% in a 7-dimensional space.

Using an 8-dimensional space, we determined the
mean MDS-distance of 42 subjects for each picture
seen during the study phase (L2-norm mean, Table 3),
and calculated the Spearman correlation coefficients
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Note: The red line indicates the median, the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the
most extreme data points not considered outliers, and the outliers are plotted individually using the '+ symbol.

between recognition performances (Hits for “targets”
and Correct Rejection of “distractors”) and this average
distance.

There was no significant correlation between the
proportion of correctly recognized targets and
average MDS-distance (Spearman rho=-0.092, p=
0.80, N=10) (Figure 9). By contrast, we identified a
significant negative correlation between the

Table 2. Number of data-driven regions of interest identified in
each target picture during study phase.
Picture

1T 2 3 4 5 6 7 8 9 10

NumberofROI 3 2 2 1 2 1 2 2 3 2 20

Total

proportion of correctly rejected distractors and
average MDS-distance (Spearman rho=-0.659, p =
0.04, N=10) (Figure 9). This result indicates that the
more similar the picture exploration was between
subjects in the study phase, the more correctly they
rejected “distractor” pictures at test.

Discussion

This study aimed to provide a better understanding of
how scene exploration strategies during free viewing
at study phase are associated with subsequent
memory discrimination between targets, distractors,
and new scenes at test phase. Eye movement data



VISUAL COGNITION 1

Scene iMap ROls Visual Saliency map

p—— B

Rural

Farm

Forest

Garden

Mountain

Figure 5. Data-driven ROIs (p < 0.01 Bonferroni corrected, significant area marked by dark line) and visual saliency (obtained using
GBVS) for scene viewing during study phase.
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were analysed at study phase using two data-driven
methods, namely a fixation density map (using
iMap4) associated with a saliency map (using GBVS),
and scanpath analyses without a priori (using the
ScanMatch toolbox). First, we identified longer
fixation durations in data-driven ROIs for subsequent
false alarms over rejection of distractors, while there
was no significant difference in the relative fixation
time in data-driven ROIs between subsequent hits
and misses, indicating that fixation maps were more
an indicator of memory discrimination accuracy
than of recognition performance. Second, we

1
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Figure 7. Spearman’s rank correlation between visual saliency
and fixation duration, during the study phase, in the whole
picture for each target picture. The numbers above each bar cor-
respond to Spearman'’s rank coefficient.

identified a negative correlation between average
MDS-distance scanpaths and the correct rejection of
distractors, and no significant correlation between
average MDS-distance and target recognition per-
formance, which suggests that scanpath consistency
(or inter-observer congruency of scanpaths) at study
phase was a factor of subsequent memory discrimi-
nation abilities, rather than of memory performance.
Taken together, eye-tracking can provide insights
into the pattern separation process, suggesting that
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Figure 8. Stress value and dimensional-space for the 10 scenes;
0.075 corresponds to the maximum accepted value for the stress
value.



Table 3. For each target picture, % of participants who
recognized target correctly, rejected distractor correctly, and
L2-norm mean.

% of target pictures % of distractor pictures L2-norm
Picture correctly recognized correctly rejected mean
1 78.57 52.38 0.3619
2 69.05 64.29 0.40743
3 73.81 85.71 0.35782
4 80.95 78.57 0.35135
5 88.10 40.48 0.40763
6 85.71 83.33 0.34745
7 80.95 69.05 0.37707
8 88.10 83.33 0.38137
9 61.90 59.52 0.39328
10 88.10 85.71 0.36134
Total 79.52 70.24

a broad and consistent exploration during encoding
increases subsequent memory discrimination.

First, longer fixation durations in data-driven ROls
(using iMap4) were associated with subsequent false
alarms over rejection of distractors. As fixation
locations are a marker of visual attention (Vidal
et al,, 2012), this result implies that the more the par-
ticipants focused their attention on these ROIs at
encoding, the less they explored the rest of the
visual scene, to be able subsequently to reject distrac-
tors. Using single items, Molitor et al. (2014) have pre-
viously suggested that low abilities in memory
discrimination - i.e., false alarms - results from insuffi-
cient number of fixations at study - i.e, the poor
encoding hypothesis. The current results go further,
by showing that the relative fixation duration in
data-driven ROIs is a marker of subsequent memory
discrimination. A high relative fixation duration in
some ROIs implies a low relative fixation duration
outside these ROIs that accounts for a reduced
global exploration and is predictive of false alarms.
Memory discrimination requires high-resolution
mnemonic representations of studied items sup-
ported by the pattern separation process, and the
intra-hippocampal binding of features that consti-
tute an event (Hunsaker & Kesner, 2013). This
suggests that encoding details with high specificity
to be subsequently discriminated from other
similar lures requires a broad exploration of scenes
during encoding. Interestingly, the relative fixation
time in data-driven ROIs at study phase did not
differ for subsequent hits and misses, indicating
that fixation time is not coupled with recognition
performance. In line with this finding, several
studies have shown that recognition performance
is better when fixation times are shorter (see Choe
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et al., 2017, in a search task, and Parag & Vakil,
2018, with faces), or that they are independent par-
ameters (Schomaker & Wittmann, 2017).

Second, the positive correlation between the visual
saliency and fixation duration for the full picture high-
lights the role of visual saliency on full scene explora-
tion, as previously demonstrated in landscape
photographs (Dupont et al., 2016). Interestingly, the
absence of significant correlations between the
visual saliency of data-driven ROIs and the fixation
duration time in these ROIs confirmed that data-
driven fixation maps were not related to low-level
scene features, i.e., saliency.

Third, scanpath analyses revealed no significant
correlation between the average MDS-distance and
target recognition performance which appeared to
be independent factors. This result is consistent with
other studies focusing on scanpaths and scene recog-
nition, which showed that performance is related to
scanpath idiosyncrasy (i.e., greater within- than
between-participants similarity when compared at
encoding and at retrieval, Foulsham et al., 2012), or
that recognition performance is relatively dissociable
from scanpath analyses (Foulsham & Kingstone,
2013). By contrast, we identified a negative corre-
lation between the average MDS-distance and the
correct rejection of distractors, which implies that
scanpath consistency across observers during scene
exploration at study phase is a significant factor in
the ability to discriminate distractors from targets at
test. This hypothesis is congruent with Lyu et al.s
(2019) study which identified that the consistency of
fixation maps across viewers was predictive of scene
memory. A few studies have highlighted scanpath
consistency, using various paradigms. Shakespeare
et al. (2015) observed higher scanpath consistency
between healthy participants compared to neurologi-
cal patients in search and memory tasks with scenes,
although not considering the order or duration of
fixations in their analyses, and suggested a disorga-
nized approach when patients viewed scenes. Using
a deep neural network, Wei et al. (2017) developed
a method to predict which features will capture the
most attention in a visual scene (i.e., gaze agreement),
and the most consistent scanpath across viewers (i.e.,
scanpath agreement). More recently, Frame et al.
(2019), using dynamic surveillance videos and a
guided search task, showed that an effective search
strategy was associated with consistent scanpaths
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across observers. Together, our results suggest that
there may be an optimal scene exploration strategy
during free viewing at study phase to encode fore-
ground and background scene features with high
specificity, leading to a better memory discrimination
at test phase.

Although this study provides interesting results,
there are some limitations that open up opportunities
for further research. First, to further study visual
exploration strategies during scene encoding, we
need to evaluate how the visualization of items of
different sizes may influence fixation density maps
and behavioural performance. Because participants
viewed large items at different points in space,
iMap4 did not detect their fixations, which led us to
use a 2.5° smoothing. In addition, statistical data-
driven ROIs comparisons are more difficult to
realize, and their interpretation is mainly visual.
Second, we used a small number of images, which
may limit the statistical power to assess memory dis-
crimination. In addition, using same items in both
target and distractor supported a certain degree of
visual similarity necessary to assess memory discrimi-
nation, but did not allow control of whether the
proportion of eye movements in these items versus
the background influenced the rejection of the dis-
tractors. Third, we suggested that the consistency of
scanpath at scene encoding affects the subsequent
identification of “distractors” at test. The next step
would be to identify scene characteristics that may
facilitate scanpath consistency and increase memori-
zation. This would open up new possibilities in

terms of care and support for people with memory
difficulties.

Conclusions

To conclude, eye-tracking analysis methods without a
priori are particularly suitable to study encoding in
memory for visual scenes, given their size and the
amount of information they contain. In particular,
we showed that iMap4 and ScanMatch toolboxes
are valuable methods to study gaze movements
associated with scene memory discrimination. The
current study contributes to our growing understand-
ing of memory strategies at encoding. Most impor-
tantly, we identified that scene memory
discrimination is associated with a wide gaze explora-
tion at study phase, and a consistent scanpath. Future
studies may further explore the inter-observer scan-
path consistency and their relationship to memory
and cognitive parameters.
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