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A B S T R A C T

While the visual world is rich and complex, importantly, it nevertheless contains many statistical regularities. For 
example, environmental feature distributions tend to remain relatively stable from one moment to the next. 
Recent findings have shown how observers can learn surprising details of environmental color distributions, even 
when the colors belong to actively ignored stimuli such as distractors in visual search. Our aim was to determine 
whether such learning influences orienting in the visual environment, measured with saccadic eye movements. In 
two visual search experiments, observers had to find an odd-one-out target. Firstly, we tested cases where ob-
servers selected targets by fixating them. Secondly, we measured saccadic eye movements when observers made 
judgments on the target and responded manually. Trials were structured in blocks, containing learning trials 
where distractors came from the same color distribution (uniform or Gaussian) while on subsequent test trials, the 
target was at different distances from the mean of the learning distractor distribution. For both manual and 
saccadic measures, performance improved throughout the learning trials and was better when the distractor 
colors came from a Gaussian distribution. Moreover, saccade latencies during test trials depended on the distance 
between the color of the current target and the distractors on learning trials, replicating results obtained with 
manual responses. Latencies were slowed when the target color was within the learning distractor color distri-
bution and also revealed that observers learned the difference between uniform and Gaussian distributions. The 
importance of several variables in predicting saccadic and manual reaction times was studied using random 
forests, revealing similar rankings for both modalities, although previous distractor color had a higher impact on 
free eye movements. Overall, our results demonstrate learning of detailed characteristics of environmental color 
distributions that affects early attentional selection rather than later decisional processes.

1. Introduction

Finding a specific target within the visual environment, for example, 
your favorite book on a shelf, requires selecting relevant items for 
further processing while filtering out irrelevant ones. An internal rep-
resentation of the target, typically called attentional template, encom-
passing task-related features is essential for this (Bundesen, 1990; 
Carlisle et al., 2011; Desimone & Duncan, 1995; Huynh Cong & Kerzel, 
2021; Kristjánsson, 2023; Mehrpour et al., 2020; Oberauer, 2019). The 
role of attentional templates is to guide visual search by prioritizing 
sensory information that aligns with the features in the target template 
(e.g., Eimer, 2014).

Conversely, in certain contexts, templates for rejection tuned to non- 
target items can guide attention away from features, resulting in 

distractor suppression effects (Carlisle, 2023; Chelazzi et al., 2019; 
Gaspelin & Luck, 2018; Geng, 2014; Geng et al., 2019). For instance, 
presenting participants with a pre-cue of a distractor facilitates visual 
search compared to presenting a neutral cue (Arita et al., 2012; Zhang & 
Carlisle, 2023). According to Geng et al. (2019), such distractor sup-
pression may arise from explicit strategies, implicitly learned statistical 
regularities or habituation. What is the nature of such templates, espe-
cially when observers interact with ensembles of targets and distractors? 
In a recent review, Kristjánsson (2023) suggests that tuning attentional 
templates to a precise feature value would not provide particularly 
effective guidance. For example, the color of an object can change 
depending on room lighting or differ among multiple targets in tasks like 
foraging. To accommodate this variability, encoding templates in a 
probabilistic manner, to a certain range of values, might offer better 
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guidance. Several studies have suggested that the visual system can 
encode ensembles of objects as summary statistics (mean and variance) 
for efficient processing and to save resources (e.g., Utochkin, 2015; 
Whitney & Yamanashi Leib, 2018). Taking this further, recent research 
demonstrates that the probability distribution of target or distractor 
features can also be encoded and used during visual exploration (e.g., 
Chetverikov et al., 2016, 2017, 2020; Hansmann-Roth et al., 2021; 
Witkowski & Geng, 2022).

An example of probabilistic encoding of distractor colors comes from 
a visual search study by Chetverikov et al. (2017). The authors employed 
a method known as Feature Distribution Learning (FDL; Chetverikov 
et al., 2020) to probe distractor representations. Participants were pre-
sented with a visual search display containing 36 heterogeneously 
colored diamonds, each with one corner cut off. They had to find the 
diamond with the hue most unlike the others and report which corner 
was missing. The experiment was divided into blocks, composed of 
learning trials and test trials. The distractor color distribution was either 
Gaussian or uniform during learning trials and was kept constant. 
Response times in test trials as a function of the distance in color space 
between the color of the target and the mean color of the distractors on 
learning trials (called Current Target – Previous Distractor distance; CT- 
PD) reflected the shape of the learning distractor color distribution. 
When the previous learning distractor distribution was Gaussian, the 
most probable distractor color (at the mean of the Gaussian distribu-
tion), led to the slowest search time in test trials. Less probable distractor 
colors led to faster search times, and reaction times decreased linearly. 
In contrast, following a uniform distribution, search times in test trials 
were similar for targets falling within the range of the previous dis-
tractor distribution. This outcome mirrored the properties of the dis-
tribution, as distractor colors within the uniform distribution range were 
equally probable. These results showed how participants had detailed 
representations of the shape of distractor color distribution. Hansmann- 
Roth et al. (2021) reached the same conclusion using the FDL method 
but also showed that in contrast, observers’ explicit judgments about 
appearance were limited to the mean and the variance of the color 
distributions.

Our aim was to assess how distribution-based information affects 
oculomotor selection. Most of the studies cited above have explored 
attentional selection through manual response times (e.g., key press). 
There is typically a strong correlation between the number of eye 
movements and manual response times in visual search (Zelinsky & 
Sheinberg, 1997). However, there are also fundamental differences be-
tween eye movements and manual responses. In visual search, eye 
movements are predominantly employed for exploring the visual display 
and accumulating evidence regarding the target’s location, leading to a 
subsequent perceptual decision. In contrast, manual responses signify 
the final perceptual decision made about the target, such as determining 
the side on which a cut corner is located. Many argue that visual search 
involves multiple sequential processing stages: target search, decision- 
making regarding selected candidate targets, and response selection 
and execution (Huang et al., 2004; Treisman, 1988; Wolfe, 2021). 
Examining eye movements enables the investigation of effects occurring 
at the initial attentional stage (target search), distinct from subsequent 
decisional stages. In contrast, manual response times in our context 
represent the cumulative processes involved.

Overall, eye movements are linked to spatial exploration in reti-
notopic space. Moreover, coupled with manual responses, eye move-
ment analyses can yield insights into the search process, as attention and 
saccades have been considered to be tightly connected (Deubel & 
Schneider, 1996; see Kowler, 2011, Hoffman, 2016 and Kristjánsson, 
2011 for reviews). For example, during feature-based foraging, gaze 
foraging is associated with a higher number of fixations, larger saccade 
amplitude, and shorter fixation durations than foraging with mouse 
cursor selection (Tagu & Kristjánsson, 2022a).

There is still debate concerning whether the programming of eye 
movements and manual response calls on the same representations or 

mechanisms. First, there is evidence indicating that the learning of 
preceding target or distractor features affects oculomotor selection in 
visual search. Therefore, distractors that have the same color as the 
target on a previous trial are selected more frequently than distractors 
with a different color (Becker et al., 2009; Becker, 2010a, 2010b; 
McPeek et al., 1999; Shurygina et al., 2019; see Kristjánsson & Campana, 
2010, and Kristjánsson & Ásgeirsson, 2019 for reviews).

The question of whether similar attentional templates are used to 
decide where to move the eyes and to make a final search decision was 
addressed by Eckstein et al. (2007) in the context of search for a bright 
Gaussian-shaped target. Their results suggested that representations for 
both perceptual decisions and oculomotor action are similar. Addition-
ally, computational modeling showed that a common target template for 
perceptual decisions and eye movements was optimal and might be 
expected to evolve through natural selection (Zhang & Eckstein, 2010). 
Overall, similar templates for perception and saccadic actions during 
visual search would not necessarily imply that a single pathway medi-
ates both, rather, visual information could be shared between the two 
systems due to their large overlap (Eckstein, 2011). In the same sense, in 
a search for two targets, Navalpakkam et al. (2010) found that decisions 
expressed through a manual keypress or a saccadic eye movement were 
influenced similarly by reward value and feature contrast. In contrast, 
dissimilarities between saccadic and manual responses have sometimes 
been found, for moving objects (Lisi & Cavanagh, 2015), spatial repre-
sentations (Greenwood et al., 2017), and inhibition of return (Pratt & 
Neggers, 2008). For moving objects, motion perception and pursuit eye 
movements may rely on similar signals although, they may have sepa-
rate noise sources (Schütz et al., 2011).

Saccadic eye movements are sometimes used as behavioral re-
sponses, enabling a direct comparison between saccadic and manual 
responses. For instance, participants may be instructed to either execute 
a saccade toward a target or indicate the target’s location through key 
presses (e.g., Bacon-Macé et al., 2007; Bannerman et al., 2009; Bompas 
et al., 2017). Saccadic latencies are consistently faster than manual re-
sponses. Using computational modeling, Bompas et al. (2017) concluded 
that these latency differences reflect distinct dynamics within the brain 
areas involved. Faster visual information transmission and quicker 
output generation for the saccadic system would lead to shorter saccadic 
latencies, rather than fundamental differences in decision-making pro-
cesses. Beyond latency disparities, saccadic responses may exhibit 
greater sensitivity to specific visual signals, such as distractors (Bompas 
& Sumner, 2008) or emotional facial expressions (Bannerman et al., 
2009). This may arise from different dynamics, as computational 
modeling suggests that exogenous signals, such as distractors, influence 
the saccadic system earlier than the motor system (Bompas et al., 2017). 
Overall, it may be important to differentiate between studies where eye 
movements are used as responses and those where responses are 
manual, allowing for more natural eye movements. Indeed, Becker et al. 
(2009) showed that in manual response tasks, saccade latencies are 
faster, and irrelevant distractors are selected more frequently than in 
tasks where eye movements are used as a response.

2. Current study

To assess how distribution-based information affects oculomotor 
selection, we analyzed eye movements during a feature distribution 
learning task. We used a visual search task where participants needed to 
find the diamond whose color was the most different from the others. 
Therefore, the experiment consisted of a sequence of blocks of 3–4 
learning trials, followed by one test trial. The distractor color distribu-
tion was constant throughout the learning trials of any given block, 
following either a Gaussian or uniform pattern. We expected that 
saccadic reaction times (SRTs) —measured as the time between display 
onset and the initiation of the first saccade reaching the target— would 
decrease throughout the learning trials. Concurrently, we expected 
improved accuracy throughout the learning trials. During subsequent 
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test trials, we expected that, like Manual Reaction Times (MRTs), SRTs 
would mirror the acquired knowledge of the distractor feature distri-
bution. Overall, we expected to find similar patterns in the eye-tracking 
measurements to the results obtained with manual responses in FDL 
studies. This hypothesis was based on previous evidence showing 
priming effects on saccade latencies (e.g., Becker, 2010a, 2010b; Becker 
et al., 2009; McPeek et al., 1999; Tagu & Kristjánsson, 2022a, 2022b) 
and similar attentional templates for eye movements and manual re-
sponses (e.g., Eckstein et al., 2007; Zhang & Eckstein, 2010).

In Experiment 1, participants were instructed to make a saccade 
toward the target, so that the saccadic eye movement was also the 
behavioral response. In Experiment 2, participants were instructed to 
make a perceptual judgment about the target and respond with keypress 
(4 alternative forced-choice task), matching the original design of 
Chetverikov et al. (2017). Eye movements in Experiment 2 were there-
fore naturally used to explore the display and can be considered as free 
eye movements, unlike the constrained eye movements in Experiment 1. 
This dual-experiment approach allows us to assess the relationship 

between distribution-based learning, oculomotor selection, and manual 
responses, providing an understanding of how visual information in-
fluences eye movements in comparison to traditional manual responses.

In an additional random forest analysis, reaction times obtained with 
saccadic responses, manual responses, and free eye movements were 
compared. The goal was to assess the forces that drive the visual search 
and rank them for each modality. Indeed, attention in visual search is 
guided by several factors, such as bottom-up salience, top-down feature 
guidance, scene structure and meaning, and the previous history of 
search (e.g., Eckstein, 2011; MacInnes et al., 2014; Schütz et al., 2011; 
Wolfe & Horowitz, 2017). We expected that all these factors would in-
fluence search time and explored their relative contribution for each 
response modality. For this, we performed a variable importance anal-
ysis using random forests (Breiman, 2001; see Boulesteix et al., 2012 and 
Biau & Scornet, 2016 for practical guidance; and Wei et al., 2015 for 
review).

Fig. 1. (A) Illustration of a block. Each block included 3–4 learning trials followed by one test trial. Every trial started with the presentation of a fixation cross for 500 
to 1000 ms, followed by a 200 ms gap and the visual search display. Participants were asked to make a saccade toward the diamond with the color the most different 
from the other diamonds. The trial ended when a saccade reached the target or after 1500 ms. (B) Examples of visual search displays for learning trials with distractor 
colors drawn from a uniform (left) or Gaussian (middle) distractor distribution, along with a test-trial example with distractor colors drawn from a Gaussian (right) 
distractor distribution. Displays are presented above the color distribution their distractors are drawn from. During learning trials, uniform distributions spanned a 
range of 24 JND, and the standard deviation of the Gaussian distributions was 6 JND. During test trials, the standard deviation of the Gaussian distribution was 3 
JND. The distance between target color and the mean of the distractor distribution ranged from 18 to 24 JND.
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3. Experiment 1: saccadic responses

3.1. Materials and method

3.1.1. Participants
Sixteen participants (8 females and 8 males; 28.8 ± 4.22 years) were 

included in this experiment. As there was no previous report of eye- 
tracking measures in this kind of task, the strength of the expected ef-
fects was difficult to estimate. Overall, we decided to recruit a similar 
number of participants as in previous studies where similar color dis-
tribution learning was involved (e.g., 10 participants in Chetverikov 
et al., 2017; 18 in Hansmann-Roth et al., 2021). All participants gave 
their informed written consent before participating in the study, which 
was carried out in accordance with the requirements of the local ethical 
committee and the declaration of Helsinki for experiments involving 
humans. Undergraduate psychology students received course credits for 
participating in the experiment.

3.1.2. Stimuli and procedure
The visual search display consisted of 36 diamonds arranged in a 

centrally aligned 6 × 6 grid spanning 14 × 14◦ of visual angle (Fig. 1). 
Each diamond covered 1.4◦ of visual angle (the length of the diagonals). 
Individual diamond positions on the grid were jittered, involving the 
addition of a random value ranging between +/− 0.5◦ to both horizontal 
and vertical coordinates. One diamond was the target, while the 
remaining 35 were distractors. The target was defined by being the 
diamond with the color the most different from all the other diamonds. 
Each diamond had a central dot to encourage participants to fixate the 
target’s center. The colors were drawn from a linear color space 
featuring 48 isoluminant hues where adjacent hues are separated by one 
just-noticeable-difference (JND), computed using measurements from 
Witzel and Gegenfurtner (2013).

The experiment was divided into blocks, each comprising 3 or 4 
learning trials followed by one test trial (see Chetverikov et al., 2020). 
Participants were not aware of the division of the experiment into 
blocks. In previous FDL studies, participants never reported having any 
knowledge of the nature of the trial structure (Chetverikov et al., 2020). 
An illustration of a block is presented in Fig. 1 (A) with examples of 
learning and test displays in Fig. 1 (B).

Throughout the learning trials, distractor colors were randomly 
drawn from either a uniform or a Gaussian distribution (constant across 
each sequence of learning trials). The uniform distribution spanned a 
range of 24 JND and the Gaussian distribution had a standard deviation 
of 6 JND and was truncated to exclude color values above or below 2 SD 
from the mean, to equate the range of the uniform distribution. Within 
each block, the mean of the distractor distribution for learning trials was 
chosen randomly. The target color was randomly selected but always 
with a distance between 18 and 24 JND from the distractor mean. On 
test trials, distractor colors were randomly drawn from a Gaussian dis-
tribution with a standard deviation of 3 JND (excluding values beyond 
two standard deviations). In these trials, performance as a function of 
CT-PD is of central interest.

Both learning and test trials started with the presentation of a fixa-
tion cross for a pseudo-random duration (500 to 1000 ms). The visual 
search display appeared following a 200 ms gap. Participants were asked 
to make an eye movement to the central dot within the diamond with the 
color most different from the other diamonds. The trial ended when a 
saccade reached the target (landing within a radius of 1.4◦ around the 
center of the target). If, after 1500 ms, no saccade reached the target, an 
error message briefly appeared. The experiment was divided into 2 
sessions, each comprising 272 blocks (one block = training trials with a 
test trial). Before each session, a 50-block training phase familiarized 
participants with the task. Each session lasted approximately 1 h. A 
calibration phase was performed every 70 blocks, and drift correction 
every 8 blocks (if the drift was larger than 1◦, a recalibration was per-
formed). During calibration, participants were asked to fixate nine dots 

appearing sequentially in a 3 × 3 grid covering the entire screen.

3.1.3. Materials
Stimuli were displayed on a 24-in. LCD monitor with a resolution of 

1920 × 1080 and a refresh rate of 144 Hz using Matlab R2017b and 
Psychtoolbox-3 (Kleiner et al., 2007) on a desktop computer running. 
Color calibration was performed using a Cambridge Research Systems 
(Rochester, England) ColorCal MK2 photometer. Participants’ heads 
were stabilized using a chin-rest at a viewing distance of 94 cm. Eye 
movements were recorded using an Eyelink 1000 plus (SR Research) 
eye-tracker with a 1000-Hz sampling frequency. Saccades were detected 
if they had a minimum velocity of 30 degrees/s, a minimum acceleration 
of 8000 degrees/s2, and a minimum motion of 0.15 degrees. Blinks were 
detected when the pupil was partially or totally occluded, and fixations 
were detected when there was no blink and no saccade in progress. 
Viewing was binocular, while eye-tracking was monocular, and only the 
position of the dominant eye was recorded.

3.1.4. Data analysis
Statistical analyses were carried out using the open-source software 

R 4.2.2 (R Core Team, 2022) with R Studio 2022.7.2.576 (RStudio 
Team, 2022). Note that a correct trial was defined as a trial with a 
saccade toward the target. Moreover, both error and post-error trials 
were excluded from latency analysis (leading to 82.4 % of the learning 
trials and 87.4 % of the test trial included in latency analysis). Finally, 
effects were considered significant if p-values were below α = 0.05.

First, we analyzed performance during learning trials. The propor-
tion of correct trials and the SRT (the time between display onset and the 
initiation of the saccade reaching the target) were the main dependent 
variables. We used a paired-samples t-test to compare performance be-
tween each Distractor Distribution (Gaussian, uniform), and Helmert 
contrasts comparing performance on each Trial Number Within 
Learning Sequence (1, 2, 3, 4) with the average performance on subse-
quent trials. We chose to use t-tests and Helmert contrasts independently 
instead of a more classical ANOVA because we were primarily interested 
in the main effects of Distractor Distribution and Trial Number, without 
any hypotheses or interest in studying their interaction. Helmert con-
trasts are particularly useful for ordinal variables. In this context, we 
anticipated improved performance throughout the learning trials up to a 
certain point. Our focus was not on comparing each trial number with 
another, but rather on comparing each trial number with the subsequent 
ones to determine whether performance improved after each trial (e.g., 
1 vs. 2–3–4, 2 vs. 3–4, 3 vs. 4). However, the results from repeated 
measures ANOVA that test both main effects and the interaction be-
tween Distractor Distribution and Trial Number are included in the 
Supplementary Materials (S.1.).

Subsequently, we measured SRTs on test trials, comparing the shape 
of the curve representing the SRT as a function of the CT-PD (in absolute 
value and sampled in bins of 4 JND; 0, 4, 8, 12, 16, 20, 24) for the two 
Previous Distractor Distributions (Uniform or Gaussian). Segmented 
regression analyses were used for this purpose, both at the group level (i. 
e., approximating the curves obtained aggregating all participants) and 
individual level (i.e., approximating the curves obtained for each 
participant). Segmented regression searches for significant breakpoints 
in the SRT curve at some particular CT-PD. We expected that both 
uniform and Gaussian SRT curves could be approximated as two seg-
ments, as obtained in Chetverikov et al. (2017). Following a uniform 
distractor distribution, the first segment of the SRT ~ CT-PD function 
should be flat, and the second should have a negative slope, with a 
breakpoint around 9 JND (see Fig. 1). Following a Gaussian distribution, 
the first segment should have a negative slope, and the second should be 
flat, with a breakpoint around 17 JND (although in another FDL study, 
there was no significant breakpoint in this case; Chetverikov et al., 
2020). We used the segmented package (Muggeo, 2008) to estimate 
breakpoints. At the group level, a Davies test was used to assess the 
significance of the difference between a model with 1 breakpoint and a 
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linear model with no breakpoint.
At the individual level, we performed a repeated measures ANOVA 

on the Slope Coefficient obtained for each participant with Coefficient 
(β0, β1; before and after the range of the distractor distributions) and 
Previous Distractor Distribution (Uniform or Gaussian) as within-subject 
factors. We expected an interaction between the Previous Distractor 
Distribution and the Coefficient, reflecting the difference in slopes be-
tween a uniform a Gaussian distribution, within and outside of the 
distractor distribution range. This analysis was conducted indepen-
dently of the segmented regression results obtained at the group level, 
providing insights based on individual data rather than solely on 
aggregated data. Before the breakpoint, we expected the slope coeffi-
cient to be higher (i.e., closer to 0) for the uniform distribution, whereas 
we expected the opposite after the breakpoint. For the uniform distri-
bution, we expected a higher (closer to zero) slope coefficient before the 
breakpoint and the opposite for the Gaussian distribution (replicating 
the pattern observed with a breakpoint at 9 JND in Chetverikov et al., 
2017).

Note that test trial analysis throughout the manuscript focused on 
reaction time measures, which are commonly studied in Feature Dis-
tribution Learning paradigms, while accuracy measures often exhibit a 
ceiling effect. Specifically, accuracy is very high in test trials, and 
therefore less informative about distractor templates (see Supplemen-
tary Materials S.2. for accuracy in test trials).

3.2. Results

3.2.1. Learning trials
Fig. 2 shows mean proportion of correct trials and SRTs during 

learning trials as a function of trial number within the learning sequence 
and distractor distribution. The task was easier with distractors drawn 
from a Gaussian than a uniform color distribution. The proportion of 
correct trials was higher, t(15) = 9.71, p < .001, d = 2.43, and SRTs 
faster, t(15) = − 11.2, p < .001, d = 2.79, for the Gaussian (M ± SD for 
the proportion of correct trials = 0.92 ± 0.069; M ± SD for the SRT =
328 ± 32 ms) than the uniform distribution (M ± SD for the proportion 
of correct trials = 0.87 ± 0.059; M ± SD for the SRT = 358 ± 27.6 ms).

Helmert contrasts then revealed that the task became easier over the 
learning trials with a lower proportion of correct trials, t(45) = − 6.91, p 
< .001, and slower SRTs, t(45) =59.8, p < .001, on the first learning trial 
than later ones. Moreover, SRTs were also slower on the second trial 

than on later trials, t(45) = 13.9, p < .001, demonstrating an attentional 
priming effect, with easier target detection and faster saccades when 
target and distractor characteristics are repeated. For the proportion of 
correct trials, the difference between the second trial and later trials, was 
not significant, t(45) = − 1.07, p = .29. The difference between the third 
and the fourth trial was not significant, neither for the proportion of 
correct trials, t(45) = − 0.59, p = .55, nor for SRTs, t(45) = 1.63, p = .11.

3.2.2. Test trials
Fig. 3 (A) shows SRTs on test trials as a function of CT-PD and the 

distractor distribution on learning trials. SRTs were slower when the 
color of the target was within the range of the previous distractor dis-
tribution (i.e., when the CT-PD is below 12 JND; M ± SD = 325 ± 41.5 
ms), than when it was outside this range (M ± SD = 277 ± 42.8 ms), t 
(15) = − 13.4, p < .001, d = 3.35.

Group-level segmented regression showed that following the uni-
form learning distribution, SRTs can be described as a two-segment 
linear function with a breakpoint at 8 JND (95 % CI = [4.75, 11.25]) 
away from the mean of the learning distribution. The first segment is 
essentially flat with a slope coefficient of 0.17 (95 % CI = [− 1.59, 1.93]; 
non-significantly different from zero, p = .84), while the second segment 
has a negative slope coefficient of − 4.44 (95 % CI = [− 5.52, − 3.36]; 
significantly different from zero, p < .001). A Davies test comparing this 
two-line model with a linear model showed that this slope difference 
was significant, p < .001. Following a Gaussian learning distribution, 
however, the difference between a two-line and a linear model was not 
significant (p = .26).

A repeated measures ANOVA performed on the slope coefficient for 
each participant before and after 12 JND revealed a marginally signifi-
cant interaction between the Previous Distractor Distribution and the 
Coefficient, F(1,15) = 4.38, p = .054, ηp

2 = 0.23. Pairwise t-tests showed 
that following a uniform learning distribution the slope coefficient was 
higher (i.e., closer to zero) before than after the breakpoint, p < .001 (M 
± SD before the breakpoint = − 1.25 ± 1.94; M ± SD after the break-
point = − 5.05 ± 2.13). Following a Gaussian learning distribution, the 
slope difference was not significant (M ± SD before the breakpoint =
− 2.89 ± 2.4; M ± SD after the breakpoint = − 4.14 ± 2.08, p = .23). 
Before the breakpoint, the slope coefficient was significantly higher 
following a uniform than Gaussian distribution, p = .03. Conversely, 
after the breakpoint, the opposite non-significant pattern was observed 
(p = .21). Fig. 3 (B) displays boxplots obtained from the slope coefficient 

Fig. 2. (A) Mean proportion of correct trials, (B) Saccadic Reaction Time (SRT) during learning trials, as a function of trial number within learning sequence and 
distractor distribution. Error bars represent the standard error of the mean.
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before and after the breakpoint for each participant as a function of the 
previous distractor distribution.

3.3. Discussion

Overall, participants were able to perform the task with high accu-
racy, although accuracy was lower than in studies with manual re-
sponses. Reaction times were shorter here than in previous studies with 
manual responses, and often, the task was performed with only 1 or 2 
saccades (47 % of correct trials were performed with 1 saccade; 35 % 
with 2 saccades).

The results demonstrated an attentional priming effect on SRT and 
the proportion of correct saccadic responses, with easier target detection 
and faster saccades when target and distractor characteristics were 
repeated. This replicates the results obtained for manual responses in 
previous studies of color distribution learning (Chetverikov et al., 2017; 
Hansmann-Roth et al., 2021). Most importantly, test trial analyses 
revealed that participants learned the previous distractor distribution. 
First, a breakpoint was found only for the SRT curve following a uniform 
distribution, with a breakpoint around 8 JND. This value is lower than 
the real breakpoint (12 JND) but importantly, this aligns with previous 
results (Chetverikov et al., 2017). Second, the slope before the break-
point was shallower following the uniform than the Gaussian distribu-
tion. Additionally, the slope after the uniform distribution was shallower 
before than after the breakpoint, which was not the case after the 
Gaussian distribution. This replicates the results obtained in Chetver-
ikov et al. (2017).

With this experiment, we show that color distribution learning is 
reflected in saccadic responses. However, eye movements were con-
strained, and may therefore not optimally reflect natural eye movement 
behavior. In Experiment 2 we studied the effect of color distribution 
learning on manual responses and more natural saccadic responses 
when saccades are not the response modality.

4. Experiment 2: manual responses with eye movement 
recording

4.1. Method

4.1.1. Participants
There were twenty participants (11 females, 9 males; 28.7 ± 7.1 

years), all giving informed written consent before participating. Un-
dergraduate psychology students received course credits for their 
participation in the experiment. The experiment was carried out in 
accordance with the requirements of the local ethics committee and 
declaration of Helsinki for experiments involving humans.

4.1.2. Stimuli and procedure
There were a few minor changes to the visual search display from 

Experiment 1. Notably, each diamond now had a notch at one corner, 
and there was no central dot. Additionally, a score was now presented in 
the top left corner, along with the current and total trial number, to 
motivate participants. The score was calculated using the same formula 
as in prior FDL studies (Chetverikov et al., 2020), appearing in green for 
accurate responses faster than 1 s (denoting increased scores), and in red 
otherwise (denoting decreased scores).

Now, participants reported (using the keyboard arrows), which 
corner of the target diamond was missing. Again, the target was the 
diamond with the color the most different from all the rest. For example, 
if the right corner of the target was missing, participants should press the 
right arrow on the keyboard. Target and distractor colors were selected 
as in Experiment 1 (from the same color distributions, uniform or 
Gaussian, with the same parameters). Unlike Experiment 1, there was no 
fixation cross and gap between trials. Therefore, a new trial started right 
after the previous response was given (see Fig. 4). The experiment was 
divided into 2 sessions, each with 364 blocks preceded by a training 
phase of 100 blocks. Each session lasted approximately 1 h. Overall, the 
experiment design was made to align with Chetverikov et al.’s, 2017
original design. The only differences were a larger number of blocks and 
the addition of eye-tracking in the present experiment.

4.1.3. Data analysis
Note that a correct trial was defined as a trial with a correct response. 

Moreover, both error and post-error trials were excluded from latency 
analysis (leading to 91 % of the learning trials and 94.2 % of the test 
trials included in latency analysis for MRTs). For SRTs, trials in which 
there was no saccade to the target were also excluded (leading to 81 % of 
the learning trials and 86.7 % of the test trials included in the SRT 
analysis).

We first analyzed manual response and eye movement measures 
during learning trials. For manual responses, the proportion of correct 
trials and the reaction times (MRTs), were the dependent variables. For 

Fig. 3. (A) Mean Saccadic Reaction Time (SRT) during test trials as a function of CT-PD (color distance between the target in the test trial and the mean of the 
distractor distribution on learning trials, in JND) and previous distractor distribution. Curves are smoothed using local polynomial regression, and gray areas 
represent the 95 % confidence intervals. (B) Boxplots obtained from the slope coefficient before (β0) and after (β1) the breakpoint (set at 12 JND) for each participant 
as a function of the previous distractor distribution. Red dots show the mean in each condition. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)
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eye movements, the SRTs were the dependent variable. As in Experiment 
1, paired-samples t-tests were used to compare performance following 
Gaussian and uniform learning distributions, and Helmert contrasts 
were used to compare performance on each Trial Number Within 
Learning Sequence (1, 2, 3, 4) with the average performance on subse-
quent trials. We next analyzed MRTs and SRTs during test trials using 
the same statistical tests as in Experiment 1 (i.e., segmented regressions, 
both at group and individual levels).

Additionally, in a more exploratory analysis we tested whether 
specific locations or colors were more likely to attract gaze during the 
search. On many trials, the target was found with just one saccade. This 
analysis focused on the remaining trials, in which one or multiple sac-
cades were elicited before fixating the target. It examined the charac-
teristics of the initial saccade landing site, specifically the properties of 
the distractor closest to the first saccade landing position. Both learning 
and test trials were included, excluding incorrect and post-error trials. 
Two repeated measures ANOVA were used with the number of first 
saccades as a dependent variable. In the first ANOVA, Location (Central; 
Peripheral) was used as a within-subject factor, determined by whether 

the fixated diamond was one of the four central diamonds or not. In the 
second ANOVA, Color Distance (Close; Far) was used as a within-subject 
factor, determined by whether the target color was close to the mean 
distractor color (i.e., a distance to the mean of <6 JND) or not. This 
ANOVA was performed on trials with a uniform distractor color distri-
bution, where all distractor colors had an equal probability of appearing, 
making the interpretation of the results more straightforward.

4.2. Results

4.2.1. Learning trials
Fig. 5 shows the mean proportion of correct trials, MRTs, and SRTs 

during learning trials as a function of trial number within learning se-
quences and distractor distribution on learning trials.

Paired samples t-tests revealed that the task was easier with dis-
tractors from a Gaussian than uniform distribution. The MRTs were 
faster, t(19) = − 16.6, p < .001, d = 3.71, for the Gaussian (M ± SD =
745 ± 77.3 ms) than the uniform distribution (M ± SD = 777 ± 73.5 
ms). Similarly, SRTs were faster, t(19) = − 13.24, p < .001, d = 2.96, 

Fig. 4. Illustration of a block. Each block was composed of 3–4 learning trials followed by one test trial. Participants were asked to find the diamond with the most 
different color from the others and to report the missing corner using the keyboard arrows. Each trial ended upon response.

Fig. 5. (A) Mean proportion of correct trials, (B) Manual Reaction Time (MRT), (C) Saccadic Reaction Time (SRT) during learning trials, as a function of the trial 
number within learning sequence and distractor distribution from Experiment 2. Error bars represent the standard error of the mean.
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with a Gaussian (M ± SD = 345 ± 31.8 ms) than uniform distribution (M 
± SD = 374 ± 30.4 ms). Also, the proportion of correct trials was 
marginally lower, t(19) = − 1.99, p = .06, d = 0.45, with a Gaussian (M 
± SD = 0.952 ± 0.019) than a uniform (M ± SD = 0.948 ± 0.021) 
distribution.

Helmert contrasts revealed that search became easier throughout the 
learning sequence. The proportion of correct trials was lower, t(57) =
− 11.2, p < .001, MRTs were slower, t(57) = 26.5, p < .001, and SRTs 
were slower, t(57) = 28.9, p < .001, on the first than later trials within 
the learning block. Moreover, the proportion of correct trials was lower, 
t(57) = − 2.36, p = .021, MRTs were slower, t(57) = 2.15, p = .035, and 
SRTs were marginally slower on the second trial compared to later trials, 
t(57) = 1.76, p = .083. The difference between the third and the fourth 
trial was not significant, neither for the proportion of correct trials, t(57) 
= 1.31, p = .19, nor for SRTs, t(57) = 0.35, p = .76, or MRTs, t(57) =
0.88, p = .36.

4.2.2. Manual reaction time during test trials
Fig. 6 (A) shows MRTs during test trials as a function of CT-PD and 

the previous distractor distribution. Overall, MRTs were slower when 

target color was within the range of the previous distractor distribution 
(i.e., when the CT-PD is below 12 JND; M ± SD = 817 ± 112 ms;), than 
when it was outside it (M ± SD = 704 ± 99 ms), t(19) = − 14.9, p < .001, 
d = 3.34).

Segmented regression at the group level showed that following the 
uniform learning distribution, MRTs can be described as a two-segment 
linear function with a breakpoint at 7.91 JND (95 % CI = [4.95, 10.9]) 
from the learning distribution mean. The first segment is nearly flat, 
with a slope coefficient of − 0.28 (95 % CI = [− 3.97, 3.4]; non- 
significantly different from zero, p = .88), while the second segment 
has a negative slope coefficient of − 8.51 (95 % CI = [− 9.32–7.69]; 
significantly different from zero, p < .001). A Davies test confirmed that 
the difference in slopes was significant, p < .001. Following a Gaussian 
learning distribution, the difference between a two-line and a linear 
model was also significant, p = .009. with a breakpoint at 4.07 JND (95 
% CI = [1.51, 6.63]). The first segment was nearly flat with a slope 
coefficient of − 1.02 (95 % CI = [− 4.74, 2.71]; non-significantly 
different from zero, p = .59), the second segment had a negative slope 
coefficient of − 7 (95 % CI = [− 7.81, − 6.17]; significantly different from 
zero, p < .001).

Fig. 6. (A) Mean Manual Reaction Times (MRTs) during test trials as a function of CT-PD (color distance between the target in the test trial and the mean of the 
distractor distribution on learning trials, in JND) and previous distractor distribution. Curves are smoothed with local polynomial regression and gray areas represent 
the 95 % confidence intervals. (B) Boxplots obtained from the slope coefficient of the MRT curve before (β0) and after (β1) the breakpoint (set at 12 JND) for each 
participant as a function of the previous distractor distribution. Red dots show the mean for each condition. (C), (D), same as (A), (B) but for Saccadic Reaction Times 
(SRTs) instead of the MRTs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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A repeated measures ANOVA on the slope coefficients for each 
participant before and after 12 JND revealed a significant interaction 
between the learning distribution and Coefficient, F(1,19) = 8.85, p =
.008, ηp

2 = 0.32. Pairwise t-tests showed that following a uniform dis-
tribution the slope coefficient was higher (i.e., closer to zero) before 
than after the breakpoint, p < .001 (M ± SD before the breakpoint = −

3.68 ± 2.43; M ± SD after the breakpoint = − 8.89 ± 3.14). Following a 
Gaussian learning distribution, the slope difference was not significant 
(M ± SD before the breakpoint = − 5.62 ± 3.84; M ± SD after the 
breakpoint = − 7.16 ± 3.04; p = .19). Before the breakpoint, the slope 
coefficient was higher (i.e., closer to zero) following a uniform than a 
Gaussian distribution, p = .015. Conversely, after the breakpoint, the 
opposite pattern was observed, p = .02. Fig. 6 (B) shows boxplots for 
slope coefficients before and after the breakpoint for each participant as 
a function of the previous distractor distribution.

4.2.3. Saccadic reaction time on test trials
Fig. 6 (C) shows SRTs during test trials as a function of CT-PD and the 

previous distractor distribution. Overall, SRTs were slower when target 
color was within the range of the previous distractor distribution (i.e., 
when CT-PD is below 12 JND; M ± SD = 403 ± 47.4 ms), than when it 
was outside it (M ± SD = 300 ± 34.4 ms), t(19) = − 14.4, p < .001, d =
3.21.

Group-level segmented regression showed that following the uni-
form learning distribution, SRTs can be described as a two-segment 
linear function with a breakpoint at 7.3 JND (95 % CI = [4.65, 10]) 
away from the mean of the learning distribution. The first segment has a 
nearly flat slope coefficient of − 0.8 (95 % CI = [− 4.05, 2.45]; non- 
significantly different from zero, p = .63), the second segment has a 
negative slope coefficient of − 8.24 (95 % CI = [− 8.9, − 7.52]; signifi-
cantly different from zero, p < .001. Davies test comparing this two-line 
model with a linear model confirmed that the slope difference was sig-
nificant, p < .001. Following a Gaussian learning distribution, the dif-
ference between a two-line and a linear model was also significant, p =
.009. The estimated two-line model had a breakpoint at 5.08 JND (95 % 
CI = 2.04, 9.66]). The first segment has a negative slope coefficient of 
− 3.18 (95 % CI = [− 6.42, 0.075]; marginally different from zero, p =
.055), and the second segment has a negative slope coefficient of − 7.47 
(95 % CI = [− 8.19, − 6.76]; significantly different from zero, p < .001).

A repeated measures ANOVA on the slope coefficients for each 
participant before and after 12 JND revealed a significant interaction 
between the Previous Distractor Distribution and Position, F(1,19) =
7.63, p = .012; ηp

2 = 0.29. Pairwise t-tests showed that following a 
uniform distribution the slope coefficient was higher (i.e., closer to zero) 
before than after the breakpoint, p < .001 (M ± SD before the 

breakpoint = − 4.27 ± 2.27; M ± SD after the breakpoint = − 8.7 ±
2.88), while a marginally significant opposite trend followed the 
Gaussian distribution, p = .072 (M ± SD before the breakpoint = − 6.03 
± 3; M ± SD after the breakpoint = − 7.42 ± 2.56). Before the break-
point, the slope coefficient was higher following a uniform than a 
Gaussian distribution, p = .025. Conversely, after the breakpoint, the 
opposite trend was observed, p = .034. Fig. 6 (D) shows boxplots for 
slope coefficients before and after the breakpoint for each participant as 
a function of the previous distractor distribution.

4.2.4. Search characteristics
Fig. 7 (A) shows the number of first error saccades per location, and 

Fig. 7 (B) displays the distribution of the number of first error saccades 
per color distance between the targeted distractor and mean distractor 
color. The number of first error saccades was higher for central (M ± SD 
= 169 ± 73.2), than peripheral diamonds (M ± SD = 39.1 ± 4.75; t(19) 
= − 8, p < .001, d = 1.79). Moreover, the number of first error saccades 
was higher for diamonds whose color was far from the mean of the 
distractor color (M ± SD = 55 ± 9.62) than for those close to the mean 
distractor color (M ± SD = 45 ± 11.3), t(19) = 7.85, p < .001, d = 1.75).

4.2.5. Accuracy, MRTs, and SRTs in experiment 1 and 2
Overall, manual response accuracy in this experiment (M ± SD =

0.957 ± 0.017) was higher than saccadic response accuracy in Experi-
ment 1 (M ± SD = 0.909 ± 0.056), t(18.6) = − 3.35, p = .003, d = 1.18. 
Additionally, MRTs in this experiment (M ± SD = 725 ± 0.72.1 ms) 
were higher than SRTs in both Experiments 1 (M ± SD = 329 ± 26.9 
ms), t(24.9) = − 22.8, p < .001, d = 0.6, and Experiment 2 (M ± SD =
348 ± 36.1 ms), t(19) = − 32.3, p < .001, d = 1.18. SRTs in this 
experiment were similar to SRTs in Experiment 1 for learning trials, but 
for test trials SRTs were shorter in Experiment 1 (M ± SD = 297 ± 24.3 
ms) than in Experiment 2 (M ± SD = 350 ± 37.6 ms), t(32.9) = − 5.17, p 
< .001, d = 7.22. Finally, in Experiment 2, MRTs and SRTs are positively 
correlated, r(58198) = − 0.54, p < .001.

4.3. Discussion

Experiment 2 demonstrated an attentional priming effect on SRTs, 
MRTs, and the proportion of correct manual responses during learning 
trials. This followed the same pattern as in Experiment 1. Moreover, test 
trial analyses revealed that participants can differentiate the shapes of 
different learning distributions. First, a breakpoint was found at around 
8 JND for both the SRT and MRT curves following a uniform distribu-
tion. A breakpoint was also found for the SRT and MRT curves following 
a Gaussian distribution at around 4 JND, which was not expected but 

Fig. 7. (A) Number of first error saccades per location and (B) Distribution of the number of first error saccades per color distance between the targeted distractor and 
the mean of the distractor color. Dotted lines correspond to the distribution that the distractor colors are drawn from.
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may reflect noise around the approximation of the mean. We also 
observed an interaction between the coefficient (before or after the 
breakpoint) and distractor distribution upon the slope coefficients for 
both MRT and SRT curves. Overall, very similar patterns were observed 
for both MRTs and SRTs, suggesting that color distribution learning 
affects MRTs and SRTs similarly. Note, importantly, that this argues that 
the color distribution learning observed here affects initial attentional 
guidance. Further support for this comes from an additional analysis on 
saccade numbers on each trial in experiments 1 and 2 (see Supple-
mentary Materials S.3.), where we found that the distribution on 
learning trials influenced how many saccades were needed to locate the 
target on test trials: Observers made more saccades when the target 
came from within the preceding distractor distribution than from 
outside it, supporting the idea that feature distribution learning guides 
initial attention shifts and saccades.

5. Random forests

In an additional exploratory analysis, we used random forest algo-
rithms to explore the relative predictive contribution of several variables 
to Manual and Saccadic Reaction Times (MRT and SRT; separately 
processing the SRT from Experiment 1, where saccades are the response, 
and Experiment 2, involving manual responses, and saccades were used 
to freely explore the display). The goal was to assess the influences 
driving the visual search and rank them for each modality. Random 
forests are a popular machine-learning algorithm introduced by Breiman 
(2001), that combines the output of multiple decision trees to reach a 
single result. Specifically, it can construct a prediction rule for both 
classification and regression problems. Particularly interesting for us is 
that it can easily be used to assess and rank measures of a variable’s 
importance, automatically computed for each predictor within the 
random forest algorithm.

5.1. Method

Both MRTs and SRTs from Experiment 2 and SRTs from Experiment 1 
were predicted for each correct trial based on the following variables: 
First, variables characterizing the current trial: Trial Type (Test, 
Learning), Distractor Distribution (Uniform, Gaussian), Target Position 
(1:36), and Distance (in pixels) between eye position at the beginning of 
the trial and target position. Secondly, variables that characterized the 
current trial in relation to the other trials: Trial Number within learning 
sequence (1, 2, 3, 4), Session (1,2), and whether the trial followed an 
error trial (Post-Error; taking either a value of 1 or 0). Finally, we 
analyzed color distance between the current target and the current 
distractor (between 18 and 24 JND) and color distance between the 
current target and the previous distractor (ranging from 1 to 24). Those 
variables, referred to as predictors, were chosen based on preceding 
results that show that they relate to reaction times.

We developed random forest models using the R package random-
Forest (Liaw & Wiener, 2002) and the randomForest function. The same 
procedure was used for each variable to predict MRT and SRT from 
Experiment 2 and SRT from Experiment 1. First, data were randomly 
split into a 70 % training set and a 30 % testing set. Then, a random 
forest algorithm was computed on the training set, using default pa-
rameters. Specifically, there were 500 trees and 3 predictors randomly 
sampled at each split. Variable importance was computed based on the 
mean decrease in impurity when a variable is included in a tree. The Gini 
impurity index is used, which translates how well a node splits the data 
(the lower the Gini, the better the feature is for splitting the data). 
Measures based on the decrease of impurity are popular because they are 
simple and fast to compute, but they are biased in favor of variables with 
many possible split points (e.g., Nembrini et al., 2018; Strobl et al., 
2007). This procedure was repeated 10 times for each variable to 
compute a reliable mean importance value for each predictor (therefore 
using different training sets).

5.2. Results

Importance rankings from the random forest analyses are displayed 
in Fig. 8. For all reaction time measures, Distance was the most impor-
tant variable. Target Position was the second most important variable, 
followed by the distance between the current target and the previous 
distractor color. The distance between the current target and the current 
distractor color was the fourth most important variable, followed by the 
trial number within the learning sequence. The importance rankings 
were therefore very similar for all reaction time measures. The only 
difference may be that for the SRT from Experiment 2, the difference 
between Target Position and the distance between the current target and 
the previous distractor color was very small (= 0.0054). Therefore, the 
distance between the current target and the previous distractor color 
may be more important for free eye movements.

6. General discussion

We investigated how color distribution learning affects oculomotor 
selection. We analyzed the effect of color distribution learning on 
saccadic reaction times in two visual search experiments. In Experiment 
1, saccadic eye movements were the behavioral response, while in 
Experiment 2, participants were instructed to respond with keypress, so 
eye movements were used to naturally explore the display.

6.1. Probabilistic learning of distractor features affects oculomotor 
selection

Our key question concerned performance on test trials as a function 
of the characteristics of the preceding learning distribution. The results 
showed that participant’s search performance reflected whether the 
learning distribution was Gaussian or uniform. For both SRTs and MRTs, 
the slope coefficients obtained from the RT ~ CT-PD curve before and 
after the breakpoint (i.e., 12 JND, based on the range of the learning 
distribution) according to the previous distractor distribution followed a 
similar pattern. Before the breakpoint, the slope was shallower 
following the uniform than the Gaussian distribution, while after the 
breakpoint, the opposite pattern was observed. Conversely, the slope 
following the uniform distribution was shallower before, than after the 
breakpoint, a difference that was not significant following the Gaussian 
distribution. Notably, this replicates prior findings obtained with 
manual responses (Chetverikov et al., 2017). Using segmented regres-
sion to estimate breakpoints in the aggregated RT ~ CT-PD curve 
consistently estimated a breakpoint around 8 JND following the uniform 
distractor color distribution. Following the Gaussian distractor color 
distribution, no breakpoint was found in Experiment 1, while there was 
a breakpoint around 4 JND in Experiment 2 (for both MRTs and SRTs). 
While the estimation of a breakpoint around 8 JND following the uni-
form distractor color distribution aligns with previous results, the esti-
mation of a breakpoint in Experiment 2 following the Gaussian 
distractor color distribution was unexpected (Chetverikov et al., 2017).

Following a Gaussian distractor distribution, a monotonically 
decreasing RT curve was expected within and above the distribution 
range, while a flat segment within the distribution range followed by a 
sharp decrease outside that range was anticipated following a uniform 
distractor distribution, given equal probabilities for all feature values 
within the range (Chetverikov et al., 2020). Examining the RT ~ CT-PD 
curves in Experiment 2 following a Gaussian distribution, we observed a 
slower decline in RT with increasing CT-PD below 4 JND, indicating 
non-monotonic performance patterns. This might stem from estimation 
noise in the mean or an overestimation of variance, commonly observed 
in ensemble perception for various features, such as orientation (Witt, 
2019), spread (Witt et al., 2023), or color (Hansmann-Roth et al., 2021). 
Conducting segmented regression on a half-Gaussian curve with a 
standard deviation of, for instance, 12 JND would yield a breakpoint 
around 3.7 JND (see Supplementary Materials S.4.). Overall, despite 
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consistent interactions observed in the slope coefficient at the individual 
level, the estimation obtained with aggregated data appears sensitive to 
noise. But most importantly, the color distributions of the distractors on 
learning trials affected oculomotor and manual responses similarly for 
both MRTs and SRTs.

6.2. Similarities and differences between saccadic responses, manual 
responses and free eye movements

Indeed, there were only minor differences between results obtained 
with manual responses, saccadic responses and free eye movements. 
Although manual response times were generally slower, they mirrored 
similar effects of color distribution learning. Several studies have 
already demonstrated a close relationship between target representa-
tions for perception and eye movements during visual search (Beutter 
et al., 2003; Eckstein et al., 2007; Zhang & Eckstein, 2010). This tight 
coupling between perception and oculomotor selection has also been 
highlighted in other contexts, such as visual illusions (van Zoest & Hunt, 
2011) and microsaccades (White & Rolfs, 2016).

While our findings suggest similar attentional templates for percep-
tual decisions and eye movement programming, they do not preclude 
dissociations in other contexts. For instance, Lisi and Cavanagh (2015)
demonstrated a dissociation between perception and saccade program-
ming for moving objects. They exploited a visual illusion where a 
double-drift stimulus causes deviations in apparent motion trajectories 
(Tse & Hsieh, 2006) showing that saccadic eye movements targeted the 
real object position rather than the deviated perceived trajectories. 

Furthermore, there are numerous situations in which eye movements 
are sensitive to particular visual features that fail to modulate perceptual 
reports (see Spering & Carrasco, 2015, for a review). In our study, 
manual responses do not necessarily reflect explicit reports but possibly 
implicit assessments of distractor color representations. The results 
might differ (e.g., with more dissimilarities between oculomotor and 
manual responses) for explicit judgments. Hansmann-Roth et al. (2021)
showed that observers’ explicit judgments about distractors’ color were 
limited to the summary statistics of color distributions, while implicit 
assessment revealed encoding of distribution shape.

During learning trials, SRT patterns were similar in Experiment 1 (i. 
e. for saccadic responses) and Experiment 2 (i.e., for free eye move-
ments). However, on test trials, SRTs were faster in Experiment 1. This 
difference is particularly noticeable for low CT-PD. This discrepancy 
may be explained by the fact that, while the overall pattern remains 
consistent, previous distractor colors may have larger effects on la-
tencies of free eye movements. This observation would align with the 
results of the Random Forest analysis. Overall, although the ranking was 
the same, the importance of the previous distractor color was higher for 
free eye movements than manual or saccadic responses in Experiment 1. 
This could suggest a potentially greater impact of learning previous 
distractor colors on free eye movements. However, comparing results 
from Experiment 1 and Experiment 2 could be misleading due to 
methodological differences. Notably, the presence of a fixation cross and 
a gap in Experiment 1 could lead to faster saccades, as gaps have been 
shown to be associated with shorter latency saccades (e.g., Saslow, 
1967). Additionally, starting the search with the gaze near the center of 

Fig. 8. Importance of selected variables for predicting (A) SRT in Experiment 1, (B) MRT in Experiment 2, and (C) SRT in Experiment 2. Importance is evaluated 
through the increase in node purity when the variable is included in a split (rescaled between 0 and 1 for the purpose of illustration).
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the screen could make the task easier.
Our Random forest analysis showed that the rankings of variable 

importance were similar for both MRTs and SRTs. Specifically, the dis-
tance between initial fixation and the target emerged as the most crucial 
variable in predicting MRTs and SRTs, followed by target position and 
previous distractor color. It is important to note that the interpretation 
of this ranking requires caution. The measure of variable importance 
that we used is influenced by the number of different values of cate-
gorical inputs, with variables having numerous possible values being 
deemed more important due to their potential for higher prediction 
precision (e.g., Nembrini et al., 2018; Strobl et al., 2007). The goal was 
therefore not to analyze the ranking itself but mostly to compare it 
across different modalities. Overall, although the ranking was the same, 
the importance of the previous distractor color was higher for eye 
movements than manual responses in Experiment 2. This suggests a 
potentially greater impact of learning previous distractor colors on free 
eye movements. Note that, using an unbiased variable importance 
measure, the distance between initial fixation and the target still 
emerged as the most crucial variable, and the importance of the previous 
distractor color was still higher for eye movements than manual re-
sponses in Experiment 2 (see Supplementary Materials S.5).

6.3. Search characteristics

Overall, both manual and saccadic reaction times were faster when 
the target was close to initial fixation. This is consistent with the liter-
ature on the eccentricity effect in visual search where search for targets 
further away from initial fixation is less efficient (e.g.,Carrasco et al., 
1995; Wolfe et al., 1998). Longer reaction times are generally associated 
with more saccadic eye movements. When the target is far from initial 
fixation, it is therefore likely that participants will make more than one 
saccade. Since manual responses only reflect the result of the search, 
analyzing eye movements within the FDL paradigm offers insights into 
search characteristics that cannot be gleaned from manual responses 
alone. In both experiments, the target was often found using only one 
saccade (47 % of correct trials were performed with 1 saccade in 
Experiment 1 and 39 % in Experiment 2). But how are fixations selected 
when they do not land on targets on trials with multiple eye movements?

Experiment 2 showed that first saccades that did not land on the 
target, were more likely to land on central than peripheral diamonds. 
When the target location is not immediately apparent, participants may 
plan fixations to optimize the acquisition of information for subsequent 
perceptual decisions, maximizing information gain (Ghahghaei & 
Verghese, 2015; Najemnik & Geisler, 2005; Renninger et al., 2007). 
According to Schütz et al. (2012), short-latency saccades are primarily 
influenced by salience, whereas value information influences long- 
latency saccades. This shift toward a top-down goal is not determined 
by the time needed to integrate value information into the saccade plan 
but rather by the time required to inhibit suddenly appearing salient 
stimuli (Wolf & Lappe, 2020). In our case, the target is always salient 
due to the odd-one-out search, and even more so when it has been 
primed, aligning task demands with saliency content. However, espe-
cially since in Experiment 2 the initial fixation can occur in one corner, 
participants may plan subsequent fixations toward the center of the 
display to gather additional information.

Additionally, in Experiment 2, when distractor colors were equally 
likely (i.e., with a uniform distribution), first error saccades landed more 
frequently on distractors that were furthest away from the mean dis-
tractor color. Therefore, participants tended to fixate distractors that 
closely resemble the target color (i.e., those deviating further from the 
mean of the distractors). This is in line with previous studies showing 
that distractors that are the most similar to (e.g., Ludwig & Gilchrist, 
2002), or differed in the correct direction from the target (in feature 
space, e.g., Becker, 2010a, 2010b) attract gaze more than other 
distractors.

6.4. Evidence for early-level priming of color distributions

Finally, attentional priming was found for both manual responses 
and oculomotor selection. Specifically, repeating target and distractor 
colors during learning trials resulted in decreased SRTs and MRTs, along 
with increased accuracy. Importantly, this replicates previous results 
obtained with manual responses (MRTs and proportion of correct 
manual responses; Chetverikov et al., 2017; Hansmann-Roth et al., 
2021). These results also align with other visual search studies indi-
cating that distractors sharing the same color as the target on preceding 
trials are more frequently selected than those with a different color (e.g., 
Becker, 2010a, 2010b; Becker et al., 2009; McPeek et al., 1999; Shur-
ygina et al., 2019). Examining SRTs, defined as the time taken to initiate 
a saccade to the target, enables the investigation of effects occurring at 
early stages of search, affecting attentional guidance. In contrast, MRTs 
reflect both attentional (target search) and decision-making effects 
(selecting candidate targets, response selection, and execution). In this 
sense, our results suggest that priming influences attentional allocation 
during search, not only decisions. The same conclusions were drawn by 
Becker (2008) who observed that priming effects modulated the preci-
sion and time-course of the first saccade but not fixation durations in 
visual search. Similarly, Sigurdardottir et al. (2008) observed that 
priming improved target detection but did not facilitate acuity judg-
ments for that specific target (see also Ásgeirsson et al., 2014). Our re-
sults go further by showing that priming of not only a single target or 
distractor color, but a whole distractor color distribution, influences 
early attentional processes during search, rather than decisions. Our 
analyses (Supplementary Materials S.3.) that show how the learned 
distribution influences how many saccades are needed to find the target 
supports this conclusion, since, for example, more saccades were needed 
to find the target when it came from the previous distractor distribution.

7. Conclusion

Our study provides important new insights about the interactions 
between oculomotor behavior and learning of environmental statistics: 
previous distractor distributions in visual search influence the time it 
takes to initiate a saccade toward the target. Our results align well with 
previous studies on the probabilistic nature of attentional templates 
(Kristjánsson, 2023; Tanrikulu et al., 2021), but they go further by 
showing how such probabilistic representations can also guide oculo-
motor selection. This shows that priming of probabilistic attentional 
templates affects early attentional selection rather than later decisional 
processes. Additionally, the use of both manual and saccadic responses 
allowed us to shed light on the similarities and differences between 
saccadic and manual responses, as well as free eye movements during 
visual search. The effect of learning history was very similar across 
modalities, although an exploratory random forest analysis suggests a 
larger effect of previous distractor characteristics on free eye move-
ments. Overall, our study demonstrates how learning of detailed char-
acteristics of environmental color distributions guides eye-gaze during 
visual search.
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Kristjánsson, Á., & Campana, G. (2010). Where perception meets memory: A review of 
repetition priming in visual search tasks. Attention, Perception, & Psychophysics, 72 
(1), 5–18.

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2 
(3), 18–22.

Lisi, M., & Cavanagh, P. (2015). Dissociation between the perceptual and saccadic 
localization of moving objects. Current Biology, 25(19), 2535–2540.

Ludwig, C. J., & Gilchrist, I. D. (2002). Stimulus-driven and goal-driven control over 
visual selection. Journal of Experimental Psychology: Human Perception and 
Performance, 28(4), 902.

MacInnes, W. J., Hunt, A. R., Hilchey, M. D., & Klein, R. M. (2014). Driving forces in free 
visual search: An ethology. Attention, Perception, & Psychophysics, 76, 280–295.

McPeek, R. M., Maljkovic, V., & Nakayama, K. (1999). Saccades require focal attention 
and are facilitated by a short-term memory system. Vision Research, 39(8), 
1555–1566.

Mehrpour, V., Martinez-Trujillo, J. C., & Treue, S. (2020). Attention amplifies neural 
representations of changes in sensory input at the expense of perceptual accuracy. 
Nature Communications, 11(1), 2128.

Muggeo, V. M. (2008). Segmented: An R package to fit regression models with broken- 
line relationships. R News, 8(1), 20–25.

Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. 
Nature, 434(7031), 387–391.

Navalpakkam, V., Koch, C., Rangel, A., & Perona, P. (2010). Optimal reward harvesting 
in complex perceptual environments. Proceedings of the National Academy of Sciences, 
107(11), 5232–5237.

Nembrini, S., König, I. R., & Wright, M. N. (2018). The revival of the Gini importance? 
Bioinformatics, 34(21), 3711–3718.

Oberauer, K. (2019). Working memory and attention–a conceptual analysis and review. 
Journal of Cognition, 2(1).

Pratt, J., & Neggers, B. (2008). Inhibition of return in single and dual tasks: Examining 
saccadic, keypress, and pointing responses. Perception & Psychophysics, 70, 257–265.

R Core Team. (2022). R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing. https://www.R-project.org/. 

Renninger, L. W., Verghese, P., & Coughlan, J. (2007). Where to look next? Eye 
movements reduce local uncertainty. Journal of Vision, 7(3), 1–17.

RStudio Team. (2022). RStudio: Integrated Development Environment for R. PBC, Boston, 
MA: RStudio. http://www.rstudio.com/. 

Saslow, M. G. (1967). Effects of components of displacement-step stimuli upon latency 
for saccadic eye movement. Josa, 57(8), 1024–1029.

Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: 
A selective review. Journal of Vision, 11(5), 1–30.
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