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In this study, we propose a deep learning (DL)-based orthogonal frequency division multiplexing (OFDM)
receiver for underwater acoustic (UWA) communications. Compared to existing deep neural network
(DNN) OFDM receivers composed of fully connected (FC) layers, our model tailors complex UWA commu-
nications with precision. To this end, it utilizes a convolutional neural network with skip connections to
perform signal recovery. The stacks of convolutional layers with skip connections can effectively extract
promising features from received signals and reconstruct the original transmitted symbols. Then, a mul-
tilayer perceptron is used for demodulation. To demonstrate the performance of the proposed DL-based
UWA-OFDM communication system, the training and testing sets are generated using the strength of the
measured-at-sea WATERMARK dataset. The experimental results show that the proposed model with skip
connections can outperform the existing approaches (i.e., traditional UWA-OFDM with least squares
channel estimation, and FC-DNN-based framework) in terms of both accuracy and efficiency. This is
prominent in harsh UWA environments with strong multipath spread and rapid time-varying
characteristics.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Underwater acoustic (UWA) channels are known as one of the
most challenging communication media [1–3]. A set of character-
istics distinguishes UWA communications from general wireless
communication scenarios, including severe transmission loss,
time-varying multipath propagation, significant Doppler spread,
and complex ocean noise. In the past few decades, the orthogonal
frequency division multiplexing (OFDM) scheme has been adopted
in UWA communications to overcome the long multipath spread in
UWA channels [4–6]. As a multicarrier system, OFDM divides the
bandwidth into several orthogonal narrowband subcarriers. The
low symbol rate renders the use of a guard interval between sym-
bols possible and affordable, enabling the system to handle time-
spreading and eliminate inter-symbol interference (ISI). Because
the channel suffers from frequency-selective fading and time-
varying factors in certain UWA environments [7], channel estima-
tion becomes crucial in a UWA OFDM communication system. To
this end, fixed pilot symbols are usually sent with the data subcar-
riers for accurate channel estimation [8].

Recently, deep learning (DL) techniques have been increasingly
utilized for applications in communications. In OFDM communica-
tion scenarios where the channel is either unknown or too complex
for an analytical description, DL has been proven to be particularly
useful [9–11]. Some prior studies demonstrated improved perfor-
mance as compared to conventional OFDM receivers based on
channel estimation, equalization, and demodulation. Ye et al.
[12] replaced the channel equalization and demodulation blocks
of the receiver by a five-layer fully connected deep neural network
(FC-DNN). Initial experiments showed that the NN-based receiver
was more efficient than traditional methods. Zhang et al. [13]
adopted an FC-DNN to improve the overall performance by
increasing the neural density of the network. Jiang et al. [14] and
Yang et al. [15] also provided similar FC-DNN schemes for OFDM
communication. However, several problems remain to be solved,
for example, the high susceptibility of FC-DNNs to small perturba-
tions and distortions, which renders them unsuitable for UWA
communication in complex and variable environments. Moreover,
FC-DNNs require a large number of parameters, and the complex-
ity grows exponentially with code length, which renders them
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impractical for resource-constrained UWA hardware platforms. In
addition, channel datasets for training and testing in [13,14] are
generated using the ray-tracing software BELLHOP, which simu-
lates static channels instead of the typical real-life time-varying
UWA channels. In other words, the simulation data cannot depict
the overall characteristics of a real UWA environment.

On the other hand, compared to FC-DNN-based OFDM receiver
schemes, convolutional neural networks (CNNs) have strong fea-
ture extraction capabilities. A collection of neurons in the CNN only
responds to a restricted area of given inputs. Because the ISI only
exists between consecutive bits of the transmitted sequence and
the influence of ocean noise is independent for each bit, a CNN is
suitable for UWA communication systems. Xu et al. [16] proposed
a joint neural network equalizer and decoder; the CNN equalizer
was utilized to compensate for signal distortion. However, as the
CNN-based channel equalizer had only six standard convolutional
layers (sequentially connected), it was too simple to extract and
transform expert knowledge in communications. In addition, the
DL-based model was only tested under a wireless communication
channel; such experimental results might not hold in UWA
environments.

In this study, we propose a DL architecture to replace the con-
ventional or FC-DNN-based receiver for UWA-OFDM communica-
tions. The main contributions of this study are summarized as
follows:

1 We consider the OFDM signal passing through UWA channels
as the interfered signal with multipath effects and ocean noise,
which can be regarded as a black-box problem. Subsequently,
we apply a CNN model to the physical layer to extract features
of structured data in a higher-dimensional latent space and
attempt to learn the underlying relationships between its
inputs and outputs. In addition, the skip-connection structure
provides the CNN model with maximal flexibility to achieve
the best performance [17]. Furthermore, because we view the
demodulation problem as a classification task, a multilayer per-
ceptron (MLP) with three layers is cascaded after the CNN for
demodulation.
2 The UWA channel database for network training and testing is
developed using the time-varying channel impulse response
(CIR) from the WATERMARK dataset [18,19]. WATERMARK is a
benchmark for UWA communication physical-layer schemes.
This allows researchers to test and compare algorithms under
realistic and reproducible conditions. In this study, we also pro-
vide a criterion for channel quality evaluation under different
UWA environments, which can be used as a guide for the anal-
ysis of the results. Numerical results show that the proposed
model outperforms conventional OFDM communication sys-
tems as well as the FC-DNN-based model in terms of bit error
rate (BER). Significant performance improvements are espe-
cially evident under harsh UWA environments.

The remainder of this paper is organized as follows. In Section 2,
the conventional UWA-OFDM system model is briefly reviewed.
Section 3 presents the proposed DL-based model for UWA-OFDM
systems, including basic knowledge, network architectures, and
network training. The experimental results and analyses are pre-
sented in Section 4. Finally, Section 5 concludes the paper.
2. UWA-OFDM communication system

A schematic of the conventional baseband UWA-OFDM system
model is shown in Fig. 1.

Let h t; sð Þ be the general expression of the UWA CIR, which can
be represented as follows:
2

h t; sð Þ ¼
XI

i¼1

Ai tð Þd s� si tð Þð Þ: ð1Þ

Here, we assume that the UWA channel can be well approximated
by I dominant discrete paths, which is denoted in the following as a
”path-based” channel model. Ai tð Þ and si tð Þ are the complex gain
and time delay of the i-th path at time t, respectively.

The real path amplitudes change with delays. The attenuation is
related to the distance traveled, as well as the physics of the prop-
agation processes (sound refraction in the water, sound reflection
at the surface, bottom, and any objects). In addition, the time vari-
ability of UWA channels is clearly induced by random effects,
where fast variations are often caused by the rapid motion of the
sea surface (waves) or the system itself. These variations appear
randomly and thus require an additional stage of statistical model-
ing. However, researchers are still struggling to establish standard
models that concisely describe the statistics of typical UWA chan-
nels [20]. Therefore, in this study, we utilize the feature matching
strength of the DL method to recover the signal received after
propagation over UWA channels.

On the transmitter side, the transmitted symbols inserted with
pilots are first converted to a parallel data stream; then, the inverse
discrete Fourier transform (IDFT) unit is used to modulate them on
different subcarriers. Following the IDFT unit, a cyclic extension of
the time length or a cyclic prefix (CP) is inserted to mitigate the ISI.
Note that the length of the CP should not be shorter than the max-
imum delay spread of the channel.

The received signal can be expressed as

y tð Þ ¼ x tð Þ � h tð Þ þw tð Þ; ð2Þ

where � denotes the circular convolution, and x tð Þ and w tð Þ repre-
sent the transmitted signal and additive white Gaussian noise
(AWGN), respectively. To simplify the notation, the UWA channel
impulse response is denoted as h tð Þ, wherein a time-invariant chan-
nel within each OFDM symbol is assumed. After removing the CP
and performing DFT, the received frequency-domain signal
becomes

Y kð Þ ¼ X kð ÞH kð Þ þW kð Þ; ð3Þ

where Y kð Þ;X kð Þ;H kð Þ, and W kð Þ are the DFTs of y tð Þ; x tð Þ;h tð Þ, and
w tð Þ, respectively.

In the traditional UWA-OFDM system, pilot signals are
extracted and utilized for channel estimation. The least squares
(LS) estimation of H kð Þ can be expressed as [21]

HLS kð Þ ¼ Ypilot kð Þ
Xpilot kð Þ ¼ H kð Þ þ W kð Þ

Xpilot kð Þ ; ð4Þ

and the corresponding mean-squared error (MSE) is

JLS ¼ E jjH kð Þ � HLS kð Þjj22
n o

/ 1
r2

X=r2
W

: ð5Þ

From Eq. 5, we can see that the MSE of the LS estimation is inversely
proportional to the signal-to-noise ratio (SNR) defined as r2

X=r2
W .

We assume that the pilot symbols are present in the first OFDM
block, while the following OFDM blocks consist of the transmitted
data. Together, they form a frame. Here, the received signal con-
sisting of one pilot block and one data block is taken as the input
of the proposed DL model.
3. DL-based UWA-OFDM receiver

In this section, the design and training approaches for the DL-
based OFDM receiver are introduced.



Fig. 1. Block diagram of the conventional UWA-OFDM communication system.

Fig. 2. DL-based UWA-OFDM system architecture.
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As shown in Fig. 2, the CNN-based equalizer is utilized to com-
pensate for the distortion of received signals. Then, the MLP is cas-
caded to realize demodulation.
3.1. CNN equalizer

The CNN architecture adopted in this study is shown in Fig. 3. It
comprises several convolutional layers and dilated convolutional
layers for the down-sampling and up-sampling, respectively. The
novel structures of the residual and skip connections are added
to the model as well [17].

As shown in Fig. 3, the CNN equalizer component consists of
multiple convolutional layers. The input is the training data, that
is, the received signal Y kð Þ. The last layer of the CNN outputs data

that approach the expected value, denoted by bX kð Þ. The multiple
convolutional layers are special layers where the network does
not indicate the exact form or value of the output. They are only
used to extract the signal features and inner connections among
them. The output of the previous layer is the input to the next hid-
den layer. Accordingly, the output of the CNN can be expressed as
3

bX kð Þ ¼ f 6 f 5 � � � f 1 Y kð Þð Þð Þð Þ; ð6Þ

where Y kð Þ denotes the input data, bX kð Þ denotes the output of the
CNN equalizer, and function f n �ð Þ denotes the convolutional opera-
tion in each layer. Specifically, under channel equalization, the
input of the CNN is a 1-D vector instead of the 2-D image, common
in the field of computer vision; hence, the received complex signal
Y kð Þ must first be separated into real and imaginary parts. Then, we
can rewrite the 2-D convolution with rectified linear units (ReLU)
into a 1-D form for each convolutional layer f n �ð Þ.

hnþ1;m;j ¼ f n hn;c;kþj

� � ¼ r
XC
c¼1

XK
k¼1

wn;m;c;khn;c;kþj þ bn;m

 !
; ð7Þ

where hn;c;kþj is the input of layer n;w 2 RN�M�C�K denotes the
weight tensor ofM filters with C channels for N layers, each contain-
ing a 1� K sized filter. In addition, bn;m is the m-th element of the
bias vector b 2 RN�M in layer n, and r �ð Þ denotes the ReLU function
max x;0ð Þ. The 1-D convolution and dilated convolution are depicted
in Fig. 4.



Fig. 3. CNN equalizer.

Fig. 4. Implementation of the 1-D convolution and dilated convolution.

Fig. 5. MLP demodulator.
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In addition, with regard to channel equalization, there is a large
amount of low-level information shared between the input and
output. Thus, it is desirable to shuttle the information directly
across the model. Many low-level details can be lost when recon-
structing the transmitted OFDM signal if we force all information
to flow through the bottleneck layer. Therefore, we add symmetri-
cal long skip connections following the general shape of a ”U-Net”
[22] to transfer features from the previous feature maps. This
ensures feature reusability with the same dimensionality of the
earlier layers. Specifically, each skip connection simply concate-
nates all channels in layer i with those in layer n� i, where n is
the total number of layers. In addition, it is easier to optimize the
weights, as the gradients can flow deeper through the entire
model.

3.2. MLP demodulator

MLP shares a similar feedforward structure with CNN but with
neurons that are densely connected to the previous layer in a fully
connected layer, as illustrated in Fig. 5. MLP converts the complex
demodulated data (e.g., quadrature phase shift keying (QPSK)) into
soft bits and represents each bit with two real numbers (e.g., log-
Likelihoods of 0 and 1).

Here, we use MLP to demodulate the output of the CNN equal-
izer, which can be expressed as

bS kð Þ ¼ g2 g1
bX kð Þ
� �� �

: ð8Þ

The computation of the single layer gn �ð Þ in MLP can be formulated
as the following matrix multiplication:

hnþ1;q ¼ gn hn;p
� � ¼ r

XP
p¼1

wn;p;qhn;p þ bn;q

 !
; ð9Þ

where hn;p is the p-th input of layer n;wn;p;q is the weight vector
between the p-th input and q-th output, and bn;q is the bias. Note
4

that r �ð Þ denotes the activation function. The sigmoid activation

1þ e�xð Þ�1 is applied to limit the output of the MLP to the range
0;1ð Þ.

3.3. Training

The performance of a neural network depends greatly on the
training process. First, the loss function should be carefully
selected to provide an accurate measure of the distance between
the model outputs and true labels. In addition, the hyperparame-
ters related to the network structure and training determine the
capabilities of neural networks. In this study, the MSE and BER
are applied as the total loss functions of the model, where the
BER can prevent a diminishing gradient when the MSE is very
small.

Ltotal ¼ LMSE þLBER; ð10Þ
where

LMSE ¼ 1
N

X
i

bSi � Si
� �2

; ð11Þ

and

LBER ¼ 1
N

X
i

j bSi

� �
� Si

� �2
: ð12Þ



Table 2
Summary of system parameters.

Parameters Value

Optimizer Adam
Learning rate 0.0005
Batch number 1000
Epoch number 60000
Modulation scheme OFDM with QPSK
Training SNR 5:5:25 dB
Test SNR 0:1:10 dB
UWA channel WATERMARK
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bS and S represent the output soft bits of the MLP model and true
information bits, respectively. j �ð Þ denotes the operation of a hard
decision, and N is the number of transmitted bits.

Because the learning rate determines the convergence rate of
the DL network, a self-adaptive learning rate algorithm, namely,
the Adam algorithm, is adopted in our offline training [23]. The
Adam algorithm exploits the exponential moving averages of the
gradient and squared gradient to scale the learning rate. With its
loss function, the Adam optimizer utilizes back-propagation to find
optimal parameters that can result in minimal loss.

4. Experiments

In this section, we evaluate the performance improvement
owing to the proposed model in an OFDM system. Several experi-
ments were conducted to compare our model with other OFDM
receiver schemes for UWA communication, including conventional
methods and the FC-DNN model described in [12]. We first present
the implementation process and then discuss the results.

4.1. Implementation

The proposed models were implemented on the advanced DL
framework Tensorflow; the flow graph is presented in Table 1,
wherein the parameters and hyperparameters for the model were
chosen after optimization.

Other related parameters of the UWA-OFDM system and neural
network training used in the simulation are listed in Table 2.

The SNR of the received signal is defined as

SNR ¼ 10log

XK
i¼1

Ssignal kið Þ�� ��2
XK
i¼1

Snoise kið Þj j2

0BBBB@
1CCCCA; ð13Þ

where Ssignal is the OFDM signal at frequency ki; Snoise is the noise
adjacent to the signal, and K is the number of narrowband
frequencies.

To demonstrate the performance of our proposed OFDM recei-
ver model, it was experimentally compared with two other
approaches:

� [(1)] Traditional UWA-OFDM system with LS channel estima-
tion [21]. This is a commonmethod for pilot-based channel esti-
mation because it offers good performance with reasonable
complexity.

� [(2)] FC-DNN model. This is a typical DL-based OFDM receiver
design with only fully connected layers; the number of neurons
in each layer is 256, 512, 256, 120, and 128, similar to the archi-
tecture described in [12].
Table 1
Flow graph of the proposed model.

Layer Type Inp

Input Reshape -
Conv1 Convolutional layer (8,3,2) Inp
Conv2 Convolutional layer (32,3,2) Con
Conv3 Convolutional layer (128,3,2) Con
Conv4 Deconvolutional layer (32,3,1) Con
Conv5 Deconvolutional layer (8,3,1) Con
Conv6 Deconvolutional layer (2,3,1) Con
Flatten Flatten Con
FC1 Fully connected layer n = 256 Flat
FC2 Fully connected layer n = 512 FC1
FC3 Fully connected layer n = 128 FC2
Output Reshape FC3

The convolutional/deconvolutional layer (C;K , stride). C: channel number, K: kernel size

5

Additionally, to increase the experimental reliability and accuracy,
we generated UWA channels for simulations from theWATERMARK
dataset, which is driven by at-sea measurements of the time-
varying impulse response. Here, we chose three typical UWA chan-
nels measured in Norway (two sites) and Hawaii, named Norway-
Oslofjord (NOF1), Norway-Continental Shelf (NCS1), and Kauai
(KAU1&2). Table 3 summarizes the measurement conditions for
each channel, while Fig. 6 provides schematics of the deployed
platforms.

In our following experiments, the ratio of the training set to
testing set was approximately 3:1. Figs. 7–9 represent the time-
varying channels sampled from NOF1, NCS1, and KAU1&2,
respectively.

In this study, the logarithmic BER was used as a measurement
indicator to evaluate the estimation performance for SNR values
in a certain interval, which is defined as follows:

BER ¼ log
1
N

X
i

j bSi

� �
� Si

� �2 !
; ð14Þ

where bS and S represent the output soft bits of the proposed model
and true information bits, respectively. j �ð Þ denotes the operation of
a hard decision, and N is the number of transmitted bits.

To further illustrate the quality of the aforementioned WATER-
MARK UWA channels, the empirical mode decomposition (EMD)
described in [24] is utilized to separate the random component
from the original channel tap:

hi tð Þ ¼ di tð Þ þwi tð Þ; ð15Þ

where hi tð Þ represents the t-th sample of the i-th UWA channel tap.
di tð Þ is called the trend, which can be interpreted as the contribu-
tion of the pseudo-deterministic physical phenomena to channel
fluctuations. In addition, wi tð Þ is a zero-mean wide-sense stationary
uncorrelated scattering (WSS) ergodic random process, which rep-
resents the channel fluctuations attributable to the scatterers that
result in fast fading [25]. It is noteworthy that the conventional
EMDmethod is limited to real-valued time series applications; thus,
ut layer Activation Output shape

- (1000,128,2)
ut ReLU (1000,64,8)
v1 ReLU (1000,32,32)
v2 ReLU (1000,16,128)
v3 ReLU (1000,32,32)
v4 + Conv2 ReLU (1000,64,8)
v5 + Conv1 ReLU (1000,128,2)
v6 + Input - (1000,256)
ten ReLU (1000,256)

ReLU (1000,512)
Sigmoid (1000,128)
- 128000

, stride: stride of the convolution.



Table 3
Measurement conditions of WATERMARK channels.

Name NOF1 NCS1 KAU1 KAU2

Environment Fjord Shelf Shelf Shelf
Time of year June June July July
Range/m 750 540 1080 3160

Water depth/m 10 80 100 100
Transmitter depl. Bottom Bottom Towed Towed
Receiver depl. Bottom Bottom Suspended Suspended

Fig. 6. Schematics of the deployment setups.

Fig. 7. NOF1 channel impulse response.
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we utilize the extension to complex-valued time series proposed in
[26] (the EMD-based channel separation detailed in [25]).

Owing to EMD filtering, it is possible to evaluate each UWA
channel by calculating the average fade rate (AFR) as
AFR ¼ 10log
Pow wð Þ
Pow hð Þ

� �
¼ 10log

XT
t¼1

XI

i¼1

wi tð Þj j2

XT
t¼1

XI

i¼1

hi tð Þj j2

0BBBB@
1CCCCA: ð16Þ
Thus, we summarize the AFR values of eachWATERMARK channel in
Table 4. The NOF1 channel is of high quality because its stable paths
carry most of the received signal energy. However, NCS1 and
KAU1&2 with high AFR values are more challenging channels, car-
rying many distinct trailing paths and fluctuating arrivals.
6

4.2. BER performance under WATERMARK channels

In our study, cross-validation was performed to verify DL-based
models for UWA-OFDM communications. The purpose of cross-
validation is to choose the optimal model parameters and deter-
mine the true prediction performance of a statistical model. Here,
we used 3=4 part of the total dataset to fit the model, whereas the
remaining 1=4 part was used to test the model. Figs. 10–12 present
the BER performance of the proposed scheme compared to the LS-
based UWA-OFDM and a five-layer FC-DNN model. More accurate
quantitative evaluation results are reported in Table 5. To prevent
the interaction of various communication system modules from
affecting the results, we did not utilize channel coding and match-
ing filters to further improve the overall communication perfor-
mance. The simulations were performed using an Intel Core i5
CPU at 1.60 GHz and 8 GB of memory storage.

As shown in Table 5, the proposed model, with a 30% reduction
in parameter numbers compared to the FC-DNN model, yields the



Fig. 8. NCS1 channel impulse response.

Fig. 9. KAU1&2 channel impulse response.

Table 4
Separation of WATERMARK channels.

Channels Pow(d) Pow(w) Pow(r) AFR

NOF1 0.0018 0.0006 0.0024 0.2581
NCS1 0.0002 0.0043 0.0045 0.9636

KAU1&2 0.0011 0.0063 0.0074 0.8521

Fig. 10. BER vs. SNR for OFDM receiver systems. The channel is NOF1.
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best performance among all methods, while the FC-DNN achieves
inferior performance. Traditional UWA-OFDM with LS channel
estimation cannot achieve optimal performance. More specifically,
in the experiment based on NOF1 channels with an SNR of 10 dB,
the BER of the proposed model was 0.22 and 0.02 lower than that
of the LS algorithm and FC-DNN model, respectively. In the exper-
iment based on NCS1 channels, the BER performance improve-
ments were 0.24 and 0.21. For the KAU1&2 channels, the
improvements were 0.25 and 0.17. As the SNR value decreased,
the performance of each algorithm decreased consistently.
Although the DL-based algorithm was still numerically superior
to the traditional algorithm, there was no better approach to
recover the ideal signal from the received signal in practical appli-
cations. A series of methods, such as channel coding, must be car-
ried out to further improve the communication performance in low
SNR cases.
7

Regarding the complexity comparison of each algorithm, the
DL-based algorithm includes offline training and online deploy-
ment. When offline training is completed, the model parameters



Fig. 11. BER vs. SNR for OFDM receiver systems. The channel is NCS1.

Fig. 12. BER vs. SNR for OFDM receiver systems. The channel is KAU1&2.

Fig. 13. Convergence performance of the proposed method with and without skip
connections.
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are fixed. In the online deployment stage, signal detection is real-
ized by forward propagation through a well-trained DL model.
Therefore, the actual calculation amount, as presented in Table 5,
is not large, where each runtime on a single OFDM block has the
same magnitude.

In summary, the LS method performs poorly under UWA cir-
cumstances because it is inversely proportional to the SNR, as
demonstrated in Eq. 5. Although it is easy to implement, such sim-
plicity is at the cost of relatively low accuracy. The FC-DNN model
is more accurate than the traditional LS algorithm because of its
Table 5
BER and real-time performances for different approaches.

Algorithms BER (SNR = 10 dB)

NOF1 NCS1

LS -1.25 -1.00
FC-DNN -1.45 -1.03

The proposed method -1.47 -1.24

8

good fitting ability. However, there are also non-convex optimiza-
tion and gradient disappearance problems in a fully connected
structure, making it less robust when dealing with complex and
variable scenarios, such as NCS1 channels and KAU1&2 channels
with high AFR values. In contrast, the CNN model proposed in this
study has a strong feature extraction ability, ensuring an accurate
signal recovery. In addition, the proposed model can save approx-
imately 30% of the storage resources compared to the FC-DNN
model.

For real-world applications, it is important that the DL-based
model possesses a good generalization ability so that it can work
effectively when the online UWA environments do not exactly
match the UWA channels used in the training stage. According to
the experimental results, improvements are not obvious under
NOF1 channels characterized by a simple multipath structure
and slow time-varying dynamics. However, in the experiments
on NCS1 and KAU1&2, because of the more challenging channel
structure and rapid time-varying characteristics according to
Table 4, the proposed model can provide significant performance
benefits owing to its excellent signal recovery capability. This is
in line with the above analysis. A further robustness test of the pro-
posed model under UWA channel mismatches is presented in
Section 4.4.
4.3. BER performance with or without skip connections

To further verify the effect of skip connections on the proposed
model, we evaluated and compared it under the NOF1, NCS1, and
KAU1&2 channels. As shown in Fig. 13, the skip connections in
the proposed model can not only improve the accuracy of the fit-
ting task but also effectively accelerate the convergence rate. The
results demonstrate that the model with skip connections achieves
a significant gain of 0.14, 0.22, and 0.18 under the three above-
mentioned channels.
Parameter numbers Runtime (ms)

KAU1&2

-1.04 - 10.9
-1.12 308224 26.9
-1.29 223152 47.8



Fig. 14. BER vs. SNR with mismatches between training and testing stages.
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4.4. Robustness analysis under UWA environment mismatches

According to the simulations above, the testing stage UWA chan-
nels were sampled from the same environments used in the train-
ing stage. Substantial prior information is required to provide a
priori guidance for model training. However, channel mismatches
may occur between the two stages in real-world applications.
Hence, it is essential to study the network behavior when the envi-
ronmental conditions of the testing stage do not agree with those of
the training stage. In this section, the impact of channelmismatches
on the proposedmodel is explained. Here, themodel is trained with
the KAU1&2 channel and tested with the NOF1 channel. Then, for
comparison, we swap the training and testing environments, that
is, train the model with NOF1 and test it with KAU1&2.

As shown in Fig. 14a, when the model adapts from KAU1&2 to
NOF1, the channel mismatch does not affect the performance of
our model significantly; it can still achieve results close to that of
environment consistent training, that is, both training and testing
with NOF1. On the contrary, when the training and testing environ-
ments are exchanged, the performance degradation of the model is
evident, as shown in Fig. 14b. We observe a marked decline of 0.27
when we train the model with NOF1 and test it with KAU1&2.

According to Table 4, KAU1&2 is a more complicated channel
environment than NOF1. Thus, training in the more challenging
channels enables the model to achieve higher robustness and bet-
ter performance, which is specifically crucial for the proposed
model with a better generalization capability. This is the reason
why the proposed method achieves better BER performance with
channel mismatch from KAU1&2 to NOF1, as shown in Fig. 14a.
However, when we adapt the model trained in NOF1 to KAU1&2,
the performance of the model declines significantly. This is because
the information learned by the model in a channel with a relatively
simple channel structure (NOF1) cannot be well adapted to a high-
complexity environment (KAU1&2), thus resulting in a certain per-
formance gap. In addition, few-shot learning can be a powerful tool
to handle data-starved situations or UWA communication environ-
ment mismatches in practical applications. Related research will
be conducted in the future.
5. Conclusions

In this study, we proposed a DL-based OFDM receiver for UWA
communications, in which a CNN model was innovatively applied
9

to extract latent features from the received OFDM signals and an
MLP was cascaded to demodulate the recovered sequence. The pro-
posed model was trained offline, considering UWA OFDM commu-
nication as a black-box problem. After sufficient training, the
model was applied as an end-to-end UWA-OFDM receiver. The
experimental results based on the measured-at-sea WATERMARK
dataset demonstrate that the proposed model outperforms tradi-
tional UWA-OFDM with LS channel estimation and an FC-DNN-
based UWA-OFDM framework. Furthermore, our approach can
save almost 30% of the storage resources compared to the FC-
DNN model. In particular, the proposed model yields a BER gain
of over 0.17 under harsh UWA environments with strong multi-
path spread and rapid time-varying characteristics. Moreover, the
benefits of skip connections in the proposed model were evaluated,
the results of which show that our novel structure can not only
accelerate the training process but also has approximately a 0.20
BER gain under challenging UWA channels. Finally, a robustness
analysis under UWA channel mismatch circumstances was pre-
sented, whose results reveal the impact of channel mismatches
on the proposed model and can significantly guide practical UWA
communication applications.
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