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A B S T R A C T

This study aims to improve automated target detection in Bearing Time Records (BTRs) images, addressing key
challenges such as low signal-to-noise ratios and false alarms. Motivated by the need for more reliable detection
methods in marine environments, we propose three key techniques: (1) Global–Local Peak initialization to
optimize cluster center setup, (2) an adaptive method using SSE derivatives for precise determination of cluster
count, and (3) a fuzzy rule based on correlation coefficient histograms to reduce false alarms. The proposed
approach demonstrates 100% accuracy in simulations and has proven highly effective in sea trials, significantly
enhancing the reliability of target detection in marine settings.
1. Introduction

Underwater acoustic signals are more extensively utilized and more
advanced than electromagnetic and light waves for information trans-
mission, owing to their properties of low attenuation and long-range
propagation. Passive underwater acoustic target detection analyzes
noise from targets captured by passive acoustic sensor systems. Bearing
Time Records (BTRs) are essential visualization tools in sonar and
radar systems for underwater target detection and tracking, as shown
in Fig. 1. BTRs are created by plotting the power of beamforming
signals using algorithms like Conventional Beamforming (CBF) or Mini-
mum Variance Distortionless Response (MVDR) over a two-dimensional
plane of time and bearing angle. In a BTR, the horizontal axis represents
the bearing angle, while the vertical axis represents time. High-intensity
regions correspond to strong signal returns from specific directions
at particular times, indicating the presence and movement of targets.
Traditionally, sonar operators with extensive experience have manually
analyzed and detected targets in the post-processing stage of underwa-
ter acoustic signals. However, with the rapid development of unmanned
devices, there is a pressing need to develop a reliable, intelligent
target detection system for unmanned platforms to replace traditional
manual judgments. To address this need, existing target detection
algorithms based on BTRs have been developed, categorized into fixed
threshold methods, enhancement algorithms, motion analysis, and un-
supervised learning techniques. Fixed threshold methods struggle with
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adaptive settings in complex marine environments, while enhance-
ment algorithms, like direction estimation and background equaliza-
tion, add computational burden. Motion analysis methods, such as
Hidden Markov Models and Kalman filtering, require manual setup,
limiting automation. Deep learning approaches, like segmentation net-
works, show promise but face real-time performance challenges. These
existing methods, though valuable, have clear limitations that hinder
their full potential in autonomous underwater target detection.

Given these challenges, our research focuses on advancing com-
puter vision-based passive acoustic processing technologies to over-
come the limitations of existing methods. With advancements in intel-
ligent equipment and unmanned devices, computer vision-based tech-
nologies for underwater acoustic information processing have become
increasingly significant. Employing image processing, pattern recogni-
tion, and deep learning, these technologies automate the analysis of
acoustic information and target recognition, thus replacing traditional
manual methods. The evolution of this technology not only boosts the
automation and efficiency of processing acoustic information but also
can be integrated into intelligent underwater devices to enhance their
autonomy and perceptual abilities. Our research is dedicated to ad-
vancing computer vision-based passive acoustic information processing
technologies to address the complexities of the marine environment and
meet the increasing demands of maritime tasks. It aims to provide more
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data mining, AI training, and similar technologies. 
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Fig. 1. Underwater acoustic target detection based on BTRs.
Table 1
Summary of methods used in underwater target detection.

Method category Main concept Limitations Main references

Threshold
methods

Utilizes threshold to extract peaks
for potential targets.

Setting thresholds for different
marine environments remains
challenging.

Li et al. (2012)

Enhancement
algorithms

Focuses on post-processing
methods.

May enhance side lobes or lose
weak target information.

Zhang et al.
(2020), Carbone
and Kay (2012),
Zhu et al.
(2021), Yang
(2017) and Yin
et al. (2023)

Motion analysis
algorithms

Establishes motion models for
dynamic state analysis of targets;
Employs methods like HMM and
Kalman filtering to track targets
before detection.

Requires manual intervention for
the choice of initial point.

Yin et al.
(2019), Zhang
et al. (2024), Li
et al. (2019),
Kaba and
Temeltas
(2022), Kim
et al. (2017),
Xin et al. (2015,
2017) and
Northardt and
Nardone (2018)

Supervised
learning methods

Utilizes deep learning networks
for extracting and tracking
targets.

Requires large datasets for
training; lacks a clear physical
mechanism.

Shin et al.
(2023)

Unsupervised
learning methods

Constructs bases using
unsupervised learning techniques.

Validated to achieve high
accuracy but may require more
accurate tuning.

Yin et al.
(2024)
efficient and reliable technical support for maritime operations and
drive their progression towards greater intelligence and automation.

The remainder of this paper is organized as follows: Section 2
provides a comprehensive review of related work; Section 3 presents
the proposed false alarm suppressing method in detail; Sections 4 and
5 analyze the simulation and experiment results, respectively; finally,
Section 6 concludes this work.

2. Related work

The existing target detection algorithms based on BTRs can be
divided into five categories, as summarized in Table 1. The first cat-
egory includes fixed threshold methods, which struggle with adaptive
2 
threshold settings due to the complexity of marine environments. The
second category features enhancement algorithms, including advanced
direction estimation and background equalization techniques. The for-
mer aims to increase target detection accuracy, though it may add
computational burden and have limited applicability in practical sea
experiments. The latter improves detection performance through post-
processing but may also enhance side lobes or obscure weak target
information. The third category includes motion analysis algorithms
that develop motion models for analysis or employ Hidden Markov
Models (HMM) and Kalman filtering for pre-detection tracking. These
methods often require manual setup, which hinders full automation.
The fourth category utilizes unsupervised learning, specifically seg-
mentation networks, for detection. However, these methods lack a
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clear physical mechanism and struggle with real-time performance
in complex marine environments. Lastly, we previously introduced
an unsupervised learning approach for beam pattern extraction that
effectively reduces false alarms.

Conventional passive sonar target detection methods primarily use
energy detection techniques, which set a fixed threshold based on peaks
extraction in BTRs to identify potential targets. However, due to the
omplexity of underwater environments, this method often causes false
larms and false negatives. In response, Li et al. (2012) developed
n algorithm that employs adaptive thresholds. Despite this progress,
ccurately distinguishing between noise and true targets to set adap-
ive thresholds for various marine conditions remains a significant
hallenge.

In underwater target detection, image enhancement technology
s crucial for improving detection performance. This technology is

primarily divided into two categories: improved azimuth estimation
algorithms and background equalization techniques. Improved azimuth
estimation algorithms aim to enhance target localization accuracy by
mproving algorithm precision (Zhang et al., 2020). Although these
ethods theoretically improve accuracy, they also increase compu-

ational demands and may affect system robustness. While improved
zimuth estimation algorithms offer higher precision, their increased
omputational load makes them less ideal for time-sensitive appli-
ations. In contrast, background equalization techniques, as a post-
rocessing method, are better suited for practical applications. His-
orically, these techniques were mainly used in frequency domain
nalysis, such as improving the image quality of low-frequency analysis
nd detecting noise spectrum envelope modulation. Early algorithms
uch as the Two-Pass Mean (TPM), Split Three-Pass Mean (S3PM),
rder Truncated Average (OTA), and Split Averaging Exclusion Av-
rage (SAXA) have demonstrated distinct advantages in various ap-
lications (Struzinski and Lowe, 1984). The spectral background of

narrowband passive acoustic detection systems was normalized us-
ing a windowed three-pass mean noise spectrum estimator to reduce
bias under colored Gaussian noise conditions (Shapiro and Green,
2000). The 3D Minimum Variance Spectrum Estimation Normalizer
further improved these effects (Carbone and Kay, 2012). Recently,
background equalization techniques have continuously evolved. The
introduction of L1 norm regularization and total variation regular-
ization methods enhanced point-based and area-based features (Lei
et al., 2016). The effectiveness of these algorithms is influenced by
ariables such as window size and thresholds. To address this is-
ue, the Inverse Beam Characteristic Scanning (IBCS) algorithm was
eveloped, optimizing parameter settings to enhance detection by pro-
essing intervals between local peaks and valleys (Zhu et al., 2021).

Additionally, deconvolution beamforming technology further improved
eamforming resolution (Yang, 2017), while the sub-band peak energy
etection (SPED) algorithm applied to BTR denoising achieved signif-
cant results (Yin et al., 2023). A novel approach employing 𝛼-stable

distribution modeling has been developed to supplant the traditional
Gaussian model for processing Discrete Fourier Transform (DFT) coef-
ficients of ship radiation noise, replacing the variance parameter with
the scale parameter 𝛾, thereby effectively enhancing BTR performance
and increasing Peak Signal-to-Noise Ratio (PSNR) by 3.1 dB (Yu et al.,
2023). Despite these advancements, challenges persist. Some normal-
zation algorithms function as low-pass filters and may neglect weak

energy peaks, potentially resulting in the loss of high-frequency infor-
mation. Moreover, while some enhancement algorithms suppress noise
and preserve high-frequency details, they may inadvertently amplify
side lobes, leading to new false alarms.

Target motion analysis, a third method for detecting targets by
etermining their dynamic state information, can be broadly clas-

sified into two primary categories: establishing motion models and
rack-before-detect strategies. Both categories present complex chal-
enges of nonlinear parameter estimation, which are critical to ef-

Nardone
ectively understanding and predicting target movements ( p

3 
et al., 1984). Traditional systems, known as Bearing-Only Target Mo-
ion Analysis (BOTMA), have often struggled with consistency and
ffectiveness due to their inherent unobservability issues (Ince et al.,

2009). Early BOTMA algorithms relied heavily on prior information
to formulate deterministic solutions, limiting their broader applica-
bility (Pham, 1993). Classical methods, such as Linear Least Squares
(LLS) and Pseudo Linear Estimation (PLE), faced difficulties due to
ystem nonlinearity (Ho and Chan, 2006). While Nguyen’s method is
omputationally efficient and relatively straightforward to implement,

its reliance on multiple iterations can hinder convergence and introduce
estimation biases (Nguyen and Doğançay, 2017). To address the inher-
ent biases of PLE, researchers have developed more refined algorithms
that incorporate corrected auxiliary variables (Zhang and Xu, 2010).

ith the evolving demands of real-time processing, recursive methods
have emerged as alternatives to traditional batch processing in target
motion analysis. These methods aim to address the limitations of itera-
tive processes, which are sensitive to initial conditions and search steps.

owever, in practical applications, especially in scenarios involving
uasi-stationary platforms and single vector hydrophones, these meth-
ds still face challenges such as bias and divergence. These scenarios
re underexplored, and obtaining accurate motion analysis results from
ow-quality BTRs remains difficult. Recent efforts have focused on
efining these techniques. For example, Fan (Yin et al., 2019) guided

BTR positioning information processing based on target motion analysis
results, and Zhang et al. (2024) proposed a motion analysis method for
low-quality BTRs that enhances the pseudo-linear estimation algorithm
by extracting peak and dispersion data, setting custom constraints, and
establishing adaptive parameters (Zhang et al., 2024). This method
has been validated for its effectiveness in improving motion analysis.
In conclusion, despite progress in target motion analysis, significant
hallenges persist in practical applications, particularly when dealing
ith low-quality data and in quasi-stationary scenarios. Future research

is needed to optimize these algorithms, enhancing their adaptability
and accuracy under different conditions.

In underwater target detection, track-before-detect strategies rep-
resent a key approach in decision analysis methods. These strategies
extensively employ HMM and Kalman filtering to effectively monitor
argets. Aidala was a pioneer in utilizing Kalman filtering for target

state estimation (Aidala, 1979). Following his work, the adoption of
nonlinear filtering methods, such as the Extended Kalman Filter (EKF),
has increased. These methods are prized for their recursive algorithms,
which significantly reduce computational demands (Lin et al., 2002;
Li et al., 2019; Kaba and Temeltas, 2022; Kim et al., 2017), making
them highly effective in complex underwater environments. HMM are
well-suited for describing trajectory state transitions and have found
widespread application in underwater signal processing. Xin et al.
(2015) introduced a track-before-detect algorithm based on HMM de-
signed for detecting and tracking weak BTR trajectories, achieving a
claimed 3 dB gain in detection performance. Another study by Xin et al.
(2017) developed an HMM algorithm optimized for scenarios involving
multiple targets and indeterminate target quantities. Although these
motion analysis-based target detection methods perform well theoreti-
cally, there are some issues in practical applications. The main problem
is that these methods fail to adequately handle the association of
measurement tracks in complex situations, leading to frequent operator
interventions to find auxiliary points. Northardt and Nardone (2018)
proposed a track-before-detect algorithm that does not require manual
intervention and can continuously track target crossings, mergers, and
splits, avoiding track loss. However, the likelihood function designed by
this algorithm is not suitable for complex sea trials because it sacrifices
the tracking capability for weak signals to enhance the robustness of
tracking strong but intermittent signals.

As the fourth method, Shin et al. (2023) developed a deep learning-
based segmentation network (DLV3+MSC) specifically for extracting
argets from noisy and discontinuous BTR images. This network em-
loys supervised learning, training on noisy BTR images alongside their
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Fig. 2. Technical method.
labeled counterparts to predict continuous target trajectories. It also
introduces innovative loss functions, which have significantly enhanced
recall rates and F3-score to 92.28% and 73.28%, respectively. Despite
these advancements, this machine learning approach faces challenges,
including the absence of a clear physical mechanism, dependency on
extensive datasets, and limited adaptability in complex underwater
environments. Moreover, it lacks the capability to operate in real-time.

In the evolution of the k-means clustering algorithm, various ini-
tialization methods have been proposed to improve the performance
and stability of the results. MacQueen initially suggested random
selection of initial cluster centers (MacQueen et al., 1967), an ap-
proach that often resulted in unstable outcomes due to its inherent
randomness. Subsequently, Gonzalez introduced the MaxMin Distance
method (Gonzalez, 1985), which strategically optimizes the initial point
selection by maximizing the minimum distance between cluster centers,
enhancing both clustering quality and algorithm robustness. In the
early 21st century, Ding et al. combined Principal Component Analysis
(PCA) with k-means clustering (Ding and He, 2004), introducing an
initialization strategy that not only preserved major data features
but also reduced dimensionality, thus refining the clustering process.
Further developments led Arthur and Vassilvitskii to propose the k-
means++ method (Arthur and Vassilvitskii, 2006), which significantly
improved clustering quality by employing a probabilistic method to
select initial centers. Kaufman and Rousseeuw later developed the KKZ
method (Kaufman and Rousseeuw, 2009), which selected initial centers
by identifying points that maximize distance from each other, intending
to cover the data space more effectively. However, these traditional
methods exhibited limitations when applied to our specific tasks.

The method we previously proposed is an unsupervised learning ap-
proach for beam pattern extraction, aimed at suppressing false alarms.
This method constructs bases (these refer to the visual patterns of the
main lobe, side lobes, or random noise, extracted through unsupervised
learning, which hold clear physical significance.) for the main lobe,
side lobes, and noise using unsupervised learning to suppress false
alarms, providing a clear physical mechanism. This article is based
on the above content and proposes an improved method. Based on
our previous unsupervised learning approach, future research could
benefit from the latest advancements in clustering algorithms. For
4 
instance, Singh and Huang (2024a) proposed the Ambiguous Kernel
Distance Clustering (AKDC) algorithm, which, based on ambiguous set
theory, effectively handles ambiguous pixel information and has shown
promising performance in complex data analysis. This provides useful
insights for data processing in underwater acoustic target detection
based on BTRs. Additionally, Singh and Huang (2024b) introduced
the Ambiguous Edge Detection Method (AEDM), which, also based
on ambiguous set theory, effectively identifies target boundaries in
noisy images. Furthermore, Singh and Bose (2021) developed a method
combining K-means clustering with the Fast Forward Quantum Opti-
mization Algorithm (FFQOA), which has achieved significant results in
high-dimensional data processing. These clustering-based approaches
offer new directions for optimizing future underwater acoustic target
detection systems based on BTRs.

3. Method

In our last study (Yin et al., 2024), we employed unsupervised learn-
ing methods for base construction and used data-driven and algorithm-
driven methods for base automatic classification. Although theoreti-
cally, automatic classification of bases can achieve 100% accuracy, we
observed an approximate 3% false alarm rate in practical applications,
compared to human eye recognition. We found that this 3% false
alarm rate mainly originates from the unsupervised learning process in
the base construction phase. During this phase, unsupervised learning
identifies meaningful structures from a large amount of unlabeled data,
which aids in the automatic classification of bases. However, since this
method does not utilize prior label information, it occasionally strug-
gles to distinguish between very similar categories in certain scenarios,
resulting in false alarms.

(1) The first issue is the uncertainty in the number of clusters 𝑘. In
theory, the optimal number of clusters should include the main lobe,
left sidelobe, right sidelobe, and various categories of random noise,
which are typically numerous and mutually orthogonal. As shown in
the section on base construction using K-means in Fig. 2, Cluster 1
corresponds to the visual pattern of the main lobe, while Clusters
19 and 21 correspond to the visual patterns of the right and left
sidelobes, respectively. All other clusters represent the visual patterns
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Fig. 3. Fewer 𝑘 numbers, more false alarms; more 𝑘 numbers, higher risk of false negative.
of random noise. The number of distinguishable noise categories varies
across different scenarios. As shown in Fig. 3, when 𝑘 = 5, Cluster
4 corresponds to the visual pattern of the main lobe, and the target
detection result contains a large number of false alarms. When 𝑘 =
20, Clusters 5, 6 and 19 all correspond to the visual pattern of the
main lobe. Increasing the number of clusters(𝑘) increases the risk of
false negatives. Therefore, setting a fixed number of clusters does not
meet the task requirements, as it may result in random noise being
incorrectly classified into the main lobe cluster. It is important to clarify
that increasing 𝑘 does not inherently guarantee improved results. A
larger 𝑘 can lead to overfitting, where the main lobe pattern may
be divided into multiple sub-clusters. The objective is to identify the
optimal value of 𝑘, as different values of 𝑘 generate distinct clustering
outcomes, and the goal is to select the most appropriate 𝑘 for the given
task. There is a pressing need to develop an algorithm that can adap-
tively determine the number of clusters to enhance the accuracy and
efficiency of underwater acoustic target detection. Such an algorithm
would enable more precise differentiation and classification of complex
patterns, thereby optimizing clustering outcomes and reducing false
alarm rates.

(2) The second issue is the misclassification of random noise as
the main lobe pattern. In practical applications, we observe that even
with a sufficiently large number of clusters, random noise is still
occasionally misclassified as part of the main lobe pattern, which
significantly increases the false alarm rate. This issue arises because
of the inherent uncertainty and complexity of random noise, which
often makes it indistinguishable from the main lobe pattern. Current
algorithms may lack sufficient discriminatory power when dealing with
these random noises, leading to their incorrect classification into the
main lobe pattern. To address this, it is crucial to explore an effective
method that accurately distinguishes these random noises from the
main lobe pattern, thereby reducing the false alarm rate and improving
classification accuracy.

(3) The third issue is ensuring alignment between the azimuthal
coordinates used in BTRs and those in Conventional Beamforming
(CBF) directional function. When employing uniform linear arrays for
CBF, the beamforming directivity functions are typically expressed in
terms of sinusoidal angles. However, in practical applications such
as the BTRs, the horizontal axis is commonly represented in angle
values (in degrees). This difference leads to inconsistencies in the
representation and response characteristics of azimuthal data. A critical
aspect of addressing this issue is the development of a coordinate
5 
transformation method that reliably aligns the azimuthal information
from beamforming directivity functions with that presented in BTRs.

By addressing the issues proposed above, we expect to enhance
the performance of underwater acoustic target detection, reduce false
alarms, and improve classification accuracy. The overall framework of
our proposed method is shown in Fig. 2. First, we extract peaks from the
original BTRs. Then, bases are constructed, followed by the creation of
bases using the Global–Local Peak (GLP) initialization method and an
improved clustering approach. Next, we apply automated base visual
pattern selection, leading to target detection results after suppressing
false alarms. Finally, we employ curve fitting of the high-correlation
histogram to suppress false alarms based on fuzzy thresholds.

3.1. Global–local peak initialization method

For potential targets extracted from the BTRs, define appropriate
sizes to construct elements 𝑈 (𝜃𝑗 , 𝑡). Use unsupervised methods to build
a base, the unsupervised learning method used here is clustering. Initial
cluster centers need to be set and optimized first, followed by iterative
clustering and dynamic adjustment of the number of clusters based
on a quantification strategy. The performance of clustering algorithms
depends on the selection of initial cluster centers. If the initial cluster
centers are poorly chosen, the clustering results may become trapped
in local optima, failing to reflect the global characteristics of the data.
To overcome this issue, we proposed the GLP initialization method
to improve the clustering algorithms by optimizing the initialization
process of cluster centers. This approach not only enhances the stability
of the algorithms but also improves their ability to capture the global
structure of the data, leading to more accurate clustering results.

The proposed method first calculates the global similarity 𝐺𝑖 for
each data point, followed by determining the local optimal similarity
𝐿𝑖. Based on these two metrics, we compute a comprehensive score 𝑆𝑖
for each data point and select the top 𝑘 points with the highest scores
as the initial cluster centers. The specific steps are as follows:

(1) Initialization of Cluster Number, 𝑘:
Begin by selecting the initial number of clusters, 𝑘. This number can

be determined through prior data analysis or heuristic methods.
(2) Calculation of Global Similarity, 𝐺𝑖:
For each 𝑒𝑖 in the dataset, calculate the global similarity to the

dataset. This is defined as the average correlation coefficient with all
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other elements, calculated as follows:

𝐺𝑖 =
1

𝑛 − 1
𝑛
∑

𝑗=1
𝑗≠𝑖

𝑅𝑖𝑗 (1)

where 𝑅𝑖𝑗 is the correlation coefficient between elements 𝑒𝑖 and 𝑒𝑗 , and
is the total number of elements. The coefficient 𝑅𝑖𝑗 is given by:

𝑅𝑖𝑗 =

∑𝑃
𝑝=1 𝑒𝑖𝑝𝑒𝑗 𝑝

√

(

∑𝑃
𝑝=1 𝑒

2
𝑖𝑝

)

⋅
(

∑𝑃
𝑝=1 𝑒

2
𝑗 𝑝
)

(2)

where 𝑒𝑖𝑝 and 𝑒𝑗 𝑝 are the values of elements 𝑒𝑖 and 𝑒𝑗 at peak 𝑝, and 𝑃
s the number of peaks.

(3) Calculation of Local Optimal Similarity, 𝐿𝑖:
Identify the local optimal similarity for each element 𝑒𝑖 by finding

the maximum correlation coefficient among elements that have a global
similarity greater than 𝐺𝑖. The local optimal similarity is defined as:

𝐿𝑖 = max
𝑗∶𝐺𝑗>𝐺𝑖

𝑅𝑖𝑗 (3)

(4) Selection of Initial Cluster Centers:
Calculate a comprehensive score 𝑆𝑖 for each element by multiplying

he global similarity 𝐺𝑖 and the local optimal similarity 𝐿𝑖. The formula
for the score is:

𝑆𝑖 = 𝐺𝑖 × 𝐿𝑖 (4)

Rank the elements in descending order based on their scores 𝑆𝑖.
elect the top 𝑘 elements with the highest scores as the initial cluster
enters:

𝐶 (0) = {𝑐(0)1 , 𝑐(0)2 ,… , 𝑐(0)𝑘 } (5)

3.2. Multi-derivative-based optimal cluster number determination strategy

Theoretically, the number of clusters in beam pattern analysis
hould correspond to the main lobe 𝑉main, left sidelobe 𝑉left, right
idelobe 𝑉right, and various modes of random noise 𝑉noise. Random noise
an typically be divided into multiple categories, which are orthogonal
o each other. The exact number of these noise categories may depend
n the scenario. The main lobe visual pattern 𝑉main is defined as the
rue target base visual pattern 𝑉true, while the other visual patterns are
ategorized as false target base 𝑉false (false alarms).

We propose a strategy called the Multi-Derivative-Based Optimal
luster Number Determination Strategy for the automatic determina-
ion of the optimal number of clusters, which involves a combined

analysis of first, second, and third-order derivatives. By thoroughly
evaluating these derivatives, the strategy precisely identifies critical
points for adjusting the number of clusters, thereby optimizing the
clustering process to ensure high precision and reliability.

As detailed in Algorithm 1, the clustering iteration process involves
several key steps: element assignment based on correlation coeffi-
cients, updating cluster centers, checking for convergence, and finally,
outputting the results.

The proposed method dynamically adjusts the number of clusters
ased on the trend of the SSE as a function of the number of clusters
. The steps are as follows:

(1) Calculation of SSE and its Derivatives:
Each time the cluster centers are updated, calculate the SSE for
the current number of clusters 𝑘 and its derivative. For each
number of clusters 𝑘, run the clustering algorithm and calculate
the SSE for that 𝑘 value:

SSE(𝑘), SSE′(𝑘), SSE′′(𝑘), SSE′′′(𝑘) (6)

These derivatives help judge the trend of SSE with changes in
the number of clusters. Among them:
6 
Algorithm 1 Detailed Clustering Iteration Process
1: Input: Set of elements {𝑒1, 𝑒2,… , 𝑒𝑛}, number of clusters 𝑘
2: Output: Cluster labels for each element, cluster centers 𝐶 (𝑡)

3: procedure Element Assignment
4: for 𝑖 = 1 to 𝑛 do
5: for 𝑗 = 1 to 𝑘 do
6: Compute 𝑟(𝑒𝑖, 𝑐(𝑡)𝑗 ):

𝑟(𝑒𝑖, 𝑐(𝑡)𝑗 ) =
∑𝑃

𝑝=1 𝑒
(𝑝)
𝑖 𝑐(𝑡,𝑝)𝑗

√

∑𝑃
𝑝=1(𝑒

(𝑝)
𝑖 )2 ⋅

∑𝑃
𝑝=1(𝑐

(𝑡,𝑝)
𝑗 )2

7: end for
8: Assign 𝑒𝑖 to the cluster with the highest correlation:

𝑦(𝑡)𝑖 = ar g max
𝑗

𝑟(𝑒𝑖, 𝑐(𝑡)𝑗 )

9: end for
0: end procedure
1: procedure Update Cluster Centers
2: for 𝑗 = 1 to 𝑘 do
3: Calculate new center for cluster 𝑗:

𝑐(𝑡+1)𝑗 = 1
|𝑆𝑗 |

∑

𝑖∈𝑆𝑗

𝑒𝑖

14: where 𝑆𝑗 = {𝑖 ∣ 𝑦(𝑡)𝑖 = 𝑗} and |𝑆𝑗 | is the count of elements in
𝑆𝑗

15: end for
16: end procedure
17: procedure Convergence Check
18: if max𝑗 ‖𝑐

(𝑡+1)
𝑗 − 𝑐(𝑡)𝑗 ‖ < 𝜀 then

9: Convergence achieved
0: else
1: Return to Element Assignment
2: end if
3: end procedure
4: Output: Cluster labels 𝑦(𝑡)𝑖 , final cluster centers 𝐶 (𝑡)

• SSE′(𝑘) shows the rate of change of SSE with respect to 𝑘.
• SSE′′(𝑘) shows the acceleration of the change in SSE.
• SSE′′′(𝑘) shows the rate of change of the acceleration of

SSE.

(2) Determining the Optimal Number of Clusters 𝑘:
Select the 𝑘 that satisfies the following conditions as the number
of clusters:

• SSE′(𝑘) < 0
• SSE′′(𝑘) < 0
• SSE′′′(𝑘) > 0 and is the largest among these 𝑘 values.

The theoretical base for this strategy is that a negative first
derivative (SSE′(𝑘) < 0) indicates that as the number of clusters
𝑘 increases, the SSE decreases. This implies that increasing the
number of clusters can better fit the data. A negative second
derivative (SSE′′(𝑘) < 0) indicates that the rate of decrease of
SSE is accelerating, meaning that the improvement in cluster-
ing performance is increasing as 𝑘 increases. A positive third
derivative that is at its maximum (SSE′′′(𝑘) > 0) indicates that
at this value of 𝑘, the rate of decrease of SSE starts to slow
down, and this slowing down reaches a relative maximum point.
This suggests that although increasing the number of clusters
still reduces SSE, the effectiveness of this reduction begins to
diminish significantly. Beyond this point, increasing the number
of clusters may not provide significant benefits and may even
degrade the model’s performance due to over-clustering.
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Fig. 4. Shift Invariance of CBF Directional Function.
The GLP initialization method and Multi-derivative-based optimal
cluster number determination strategy are essential for improving clus-
tering performance in underwater acoustic target detection. Poor ini-
tialization can lead to local optima, hindering target-noise differenti-
ation, while an incorrect choice of 𝑘 can cause false alarms or false
negative. Therefore, using robust initialization techniques like GLP and
adaptive methods to determine 𝑘 is crucial for enhancing clustering
accuracy and optimizing detection performance.

3.3. High-correlation false alarm suppression based on Fuzzy thresholds

Due to the inherent uncertainty and complexity of random noise,
current algorithms may lack sufficient distinction when dealing with
these noises, leading to their incorrect classification as the main lobe
pattern, thereby generating false alarms. Since the core function of
the algorithm is a correlation function, we propose a method called
High-Correlation False Alarm Suppression Based on Fuzzy Thresholds.
Algorithm steps for suppressing false alarms based on the correlation
coefficient and fuzzy thresholds are as follows:

(1) Frequency histogram construction and curve fitting.
Plot all calculated correlation coefficients into a frequency his-

togram to observe their distribution, which is essential for subsequent
curve fitting, if 𝐵 is the class interval, then 𝑏𝑘 represents the center
value of the 𝑘th histogram bin. The range of each bin usually spans
from 𝑏𝑘 − 𝐵∕2 to 𝑏𝑘 + 𝐵∕2. The frequency 𝐻(𝑏𝑘) of each bin can be
represented as:

𝐻(𝑏𝑘) = #{𝑟 ∣ 𝑏𝑘 − 𝐵∕2 ≤ 𝑟 < 𝑏𝑘 + 𝐵∕2} (7)

where 𝐵 is the class interval and 𝑏𝑘 is the center value of the 𝑘th
histogram bin.

Using the center point 𝑐𝑖 and frequency 𝑛𝑖 of each histogram bin,
calculate the spline curve 𝑆(𝑐) such that it approximates the frequencies
𝑛𝑖 at each bin center 𝑐𝑖. This involves applying a spline curve fitting
method to match the spline curve 𝑆(𝑐) to the histogram.

(2) Derivative Calculation and fuzzy threshold.
In this task, there is often a significant difference between the

correlation coefficients of true targets and false alarms. On the fitted
frequency histogram, there is a clear demarcation point in the distri-
bution of correlation coefficients for targets and false alarms, often
corresponding to the maximum value of the second derivative. By
identifying this demarcation point, false alarms can be effectively dis-
tinguished from true targets. Compute the first and second derivatives
7 
of the curve 𝑆(𝑐) to identify the key point in the distribution:

𝑆′(𝑐) = 𝑑 𝑆
𝑑 𝑐 (8)

𝑆′′(𝑐) = 𝑑2𝑆
𝑑 𝑐2 (9)

Find the maximum value of 𝑆′′(𝑐), denoted as max(𝑆′′(𝑐)), and set
the threshold 𝜏 to max(𝑆′′(𝑐)). Retain all detection results where 𝑟𝑖 > 𝜏
and suppress the others as false alarms.

This method is crucial for distinguishing random noise from the
main lobe pattern. By applying fuzzy thresholds, it reduces false alarms,
improving classification accuracy and the reliability of the detection
system.

3.4. Shift invariance in CBF using Sine of angle coordinates

To ensure shift invariance with the directional function of CBF,
convert the horizontal axis of the BTRs from linear angular values
to corresponding sine values. The essence of this transformation lies
in preserving the shift invariance of the beam’s directional response.
Alongside this coordinate transformation, we have performed mathe-
matical proofs to validate the efficacy of this approach. Shift invariance
is a fundamental property in signal processing, indicating that a shift
in the input signal results in a proportional shift in the output sig-
nal. This section provides a formal proof of shift invariance for the
CBF directional function associated with a uniform linear array. The
proof demonstrates that shifting the time variable 𝑡 by 𝜏 results in a
corresponding shift in the output 𝐹𝐶 𝐵 𝐹 (𝜗, 𝜏).

Consider the CBF directional function for a uniform linear array
defined as:

𝐷(𝜃) = 𝐴0

|

|

|

|

|

|

|

sin
(

𝑁 𝜋 𝑑
𝜆 (sin 𝜃 − sin 𝜃0)

)

𝑁 sin
(

𝜋 𝑑
𝜆 (sin 𝜃 − sin 𝜃0)

)

|

|

|

|

|

|

|

(10)

where 𝐴0 is a scaling factor, 𝑁 is the number of array units, 𝑑 is the
units spacing, 𝜆 is the wavelength, 𝜃 is the angle of incidence, and 𝜃0
is the steering angle.

The BTR pixel value, denoted as 𝐹𝐶 𝐵 𝐹 (𝜗, 𝑡), at a given direction 𝜗
and time 𝑡 is expressed by:
𝐹𝐶 𝐵 𝐹 (𝜗, 𝜏) = |𝐷𝐶 𝐵 𝐹 (𝜗, 𝜏)|2

= |

|

|

𝐴0
sin[𝑁 𝜋 𝑑

𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏))]
𝑑

|

|

|

2
.

(11)
𝑁 sin[𝜋 𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏))]
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Fig. 5. BTRs at an SNR of 0 dB.
To prove shift invariance, assume the time variable 𝑡 is shifted by
𝛥𝜏. The corresponding output becomes:
𝐹𝐶 𝐵 𝐹 (𝜗, 𝜏 + 𝛥𝜏) = |

|

𝐷𝐶 𝐵 𝐹 (𝜗, 𝜏 + 𝛥𝜏)|
|

2

=
|

|

|

|

|

|

|

𝐴0

sin
(

𝑁 𝜋 𝑑
𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − (𝜏 + 𝛥𝜏)))

)

𝑁 sin
(

𝜋 𝑑
𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − (𝜏 + 𝛥𝜏)))

)

|

|

|

|

|

|

|

2
(12)

Through the properties of the sine function and the linearity of the shift
operation, it can be shown that:

sin
(

𝑁 𝜋 𝑑
𝜆
(sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − (𝜏 + 𝛥𝜏)))

)

= sin
(

𝑁 𝜋 𝑑
𝜆
(sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏 − 𝛥𝜏))

)
(13)

Confirming the shift invariance:
𝐹𝐶 𝐵 𝐹 (𝜗, 𝜏 + 𝛥𝜏)

=
|

|

|

|

|

𝐴0

sin
(

𝑁 𝜋 𝑑
𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏 − 𝛥𝜏))

)

(

𝑑
)

|

|

|

|

|

2
(14)
|

|

𝑁 sin 𝜋 𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏 − 𝛥𝜏)) |

|

8 
As shown in Fig. 4, when the horizontal axis is represented by
angles, the main lobes of the beamforming patterns at 0 degrees and
40 degrees cannot align. However, when using the sine of the angle as
the horizontal axis, the main lobes can align due to shift invariance.
Therefore, in the sine coordinate system, the beam response exhibits
ideal shift-invariant properties, meaning that the shape and position of
the beam remain consistent relative to changes in the input angle.

Based on the shift invariance property, we propose converting the
horizontal axis of the BTRs from linear angular values to their corre-
sponding sine values, which is crucial to ensure the system maintains
shift invariance, as utilizing sin(𝜃) rather than 𝜃 aligns with the direc-
tional characteristics of the CBF function. By adopting this approach,
the shift-invariant property of the beam response is preserved, thereby
enhancing the accuracy and consistency of directional estimates.

4. Simulations

Ship radiated noise is comprised of three principal components:
mechanical noise, propeller noise, and hydrodynamic noise. Hydro-
dynamic noise remains constant over time and exhibits a continuous
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Fig. 6. Visualization of the GLP initialization method, SNR = 0 dB.
spectrum. Mechanical noise, generated by the operation of fans, air con-
ditioners, and pumps, is typically characterized by line spectra. Owing
to the periodic mechanical movements and gear operations, ship engine
mechanical noise features both a broadband continuous spectrum and
line spectra. Propeller noise, a major source of ship radiated noise, not
only includes a low-frequency line spectrum but also predominantly
displays a continuous spectrum, spanning frequencies from 5 Hz to
100 kHz. Cheng et al. (2018) proposed that the simulation signal for
representing ship radiated noise is modeled using the Eq. (15):

𝑥(𝑡) =
(

1 +
𝐾
∑

𝑘=1
𝑚𝑘 cos(𝑘𝛺 𝑡)

)

⋅
𝑁𝐻
∑

𝑛=𝑁𝐿

𝐴𝑛 cos(2𝜋 𝑛𝑓0𝑡 + 𝜑𝑛) (15)

where:

• 𝑡 is the time variable,
• 𝐾 represents the number of harmonics included in the modula-

tion, with 𝐾 = 4,
• 𝑚𝑘 are the modulation indices for each harmonic, satisfying 0 <
𝑚𝑘 < 1, and are set equally for 𝑘 = 2, 3, 4,

• 𝛺 is the fundamental modulation frequency, set at 5 Hz,
• 𝐴𝑛 denotes the amplitude of the 𝑛th carrier frequency,
• 𝜑𝑛 represents the initial phase of the 𝑛th carrier,
• 𝑓0, the base frequency of the carriers, is defined as 𝑓0 =

1
𝑇 ,

• 𝑁𝐿 and 𝑁𝐻 define the lower and upper bounds of the carrier fre-
quency index, calculated as 𝑁𝐿 = ⌈100∕𝑓0⌉ and 𝑁𝐻 = ⌊200∕𝑓0⌋
respectively,

• The sampling frequency is set to 2 kHz,
• The total duration 𝑇 of the signal is 599 s.
In this study, we systematically verified the performance of newly

proposed methods under various Signal-to-Noise Ratio (SNR) condi-
tions (ranging from 0 dB to −10 dB). The experimental design included
a signal frequency range of 100–200 Hz and a sampling rate of 2000 Hz.
The receiving equipment consisted of a uniform linear array with 256
units, with an inter-unit spacing of 1.5 m. The target signal’s angular
measurement range was from 0 to 180 degrees, with the accuracy of
0.5 degrees. In the simulation, four targets initiated movement from
30◦, 60◦, 120◦, and 90◦, moving to 60◦, 22◦, 150◦, and 90◦ respectively,
over a duration of 599 s. We employed CBF to process the received
signals, initially performing open peak extraction on the broadband
signals, selecting 200 Hz as the representative frequency for calcula-
tion. According to beamforming theory, the minimum peak distance at
this time (corresponding to the main lobe width) should be 3 elements,
approximately 1.5◦; and the elemental width (corresponding to twice
9 
the main-side lobe distance) should be 9 elements, or 4.5◦. Due to the
property of the sine function that multiple input values correspond to
one output value, we observed that converting the original 0 to 180◦

angular range using the sine transform could result in multiple x-values
corresponding to the same y-value. To ensure the conversion’s unique-
ness, we adjusted the angular range to −90 to 90◦. This adjustment
ensured the unique correspondence property of the angular conversion,
benefiting the accuracy and efficiency of subsequent data processing.

Experiments were conducted in an environment with a SNR of 0 dB,
and the results are shown in the first subplot of Fig. 5. Here, the
horizontal axis represents the sine of angles, covering a total of 180
angles corresponding to 360 pixel values, and the vertical axis indicates
time, measured in snapshots or seconds. Utilizing the proposed GLP
method to initialize the cluster centers, with the visualization of the top
30 highest scoring cluster centers shown in Fig. 6. These experiments
indicate that the maximum value of the third derivative of SSE is 8. At
this point, SSE′(𝑘) < 0, SSE′′(𝑘) < 0, and SSE′′′(𝑘) > 0. Therefore, the
adaptively determined number of clusters is set to 8, the fourth class
visual pattern accurately represents the beam’s main lobe pattern. After
selecting this fourth class, the results indicate a false alarm rate of zero.

The overall clustering algorithm process described in this paper
involves initializing cluster centers using various methods and then per-
forming clustering to automatically determine the number of clusters.
The resulting patterns are representative of the main lobe, left and right
side lobe, and random noise. In Section 3 of this paper, we introduce
a novel GLP initialization algorithm, which selects initial clustering
centers based on both global similarity and local peak similarity of data
points. This method aims to identify the ‘‘initial centers’’ of data distri-
butions, thereby enhancing the stability and accuracy of the clustering
results. As shown in Fig. 7, our comparative analysis on simulation BTR
are as follows:

(1) Random initialization: Cluster 6 represents the main lobe pat-
tern. However, after selecting cluster 6, false alarms still exist in the
target detection results.

(2) Max-Min Distance initialization method: Clusters 6 and 7 repre-
sent the main lobe patterns. However, dividing the main lobe pattern
into two classes leads to false negative.

(3) KKZ initialization method: Cluster 6 represents the main lobe
pattern. After selecting cluster 6, false alarms still exist in the target
detection results.

(4) K-means++ initialization method: Cluster 1 represents the main
lobe pattern. However, after selecting cluster 1, false alarms still exist
in the target detection results.
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Fig. 7. Comparison of six initialization methods.
(5) PCA initialization method: Clusters 1, 2, and 18 represent the
main lobe patterns. Dividing the main lobe pattern into three classes
leads to false negative.

(6) GLP initialization method: Cluster 4 represents the main blade
pattern. After selecting cluster 4, neither false alarms nor false negative
occur.

Using the same BTRs and keeping all parameters consistent except
for the initialization methods, we compared the results of different
initialization techniques. Our proposed GLP initialization method does
not produce false alarms and also avoids dividing the main lobe pattern
into multiple classes, which leads to false negative.
10 
Experiments were also conducted at an SNR of −10 dB, using
the proposed GLP method to initialize the cluster centers, with the
visualization of the top 30 highest scoring cluster centers shown in
Fig. 8. According to the adaptive threshold method for determining the
number of clusters, the maximum value of the third derivative of the
SSE is 25, where SSE′(𝑘) < 0, SSE′′(𝑘) < 0, and SSE′′′(𝑘) > 0, as shown
in Fig. 9, where the first class of clustering represented the beam main
lobe pattern. However, false alarms still remain, as shown in the third
subfigure of Fig. 10, where red circles represent 2288 correct detections
and green circles represent 544 false alarms, resulting in a false alarm
rate of 19.2% and detection rate of 80.8%. This indicates that under low
SNR conditions, some random noise might be incorrectly classified as
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Fig. 8. Visualization of the GLP initialization method, SNR = −10 db.
Fig. 9. The number of 𝑘 at an SNR of −10 dB.
part of the main lobe pattern. To more accurately distinguish these ran-
dom noises from the main lobe pattern, we employed a high-correlation
false alarm suppression method based on fuzzy thresholds. This method
involved calculating the correlation coefficients of all elements on the
main lobe pattern with the main lobe pattern itself and fitting a proba-
bility distribution histogram to these correlation coefficients. As shown
in Fig. 11, the correlation coefficients ranged from 0.14964 to 0.99231,
with the correlation coefficients of actual targets typically above 0.8,
while those of false alarms were below 0.7. Based on high-correlation
based on fuzzy thresholds, where 𝜏 = 0.8250, elements with correlation
coefficients above this fuzzy threshold were retained, while those below
the threshold were discarded. After applying the High-Correlation False
Alarm Suppression method, as shown in the fourth subfigure of 10,
with yellow circles indicating 2288 correct detections, the accuracy was
11 
improved to 100%, and the false alarm rate was reduced to 0%. To
calculate the false negative rate, we used 599 snapshots of data. Since
the last element is not detected, the theoretical total number of peaks
should be 590 × 4 − 1 = 2359. Of these, 2288 were true positives, and
71 were false negatives, resulting in a recall rate of 97%.

5. Sea-trial experiments

5.1. Dataset description

Experiments of this section evaluate the method by using sea-trial
data collected in the South China Sea during the summer of 2021.
The sonar array utilized in the experiment is a towed horizontal line
array with 256 elements, all data were processed using the CBF method
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Fig. 10. BTRs at an SNR of −10 dB (Red circles represent true targets, green circles represent false alarms, and yellow circles represent true targets after false alarm suppression.).
Fig. 11. Frequency histogram of correlation coefficients and fitting curve at an SNR of −10 dB.
for array signal processing. Experiments were conducted separately
in shallow and deep sea areas, a detailed description of the original
dataset are presented in Table 2. For the ‘‘Shallow Marine’’ dataset,
12 
depths range from a minimum of 71.15 m to a maximum of 91.74 m,
while the ‘‘Deep Marine’’ dataset, depths vary from 3750.48 m to
3827.72 m.
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Fig. 12. BTRs in shallow marine.
Table 2
Parameters of datasets.

Shallow marine Deep marine

Duration 9728 9984
Snapshot interval 1 s 1 s
Snapshot period 0 s 0 s
Number of array units 256 256
Units spacing 1.5 m 1.5 m
Frequency 100–250 Hz 100–250 Hz
Beamforming algorithm CBF CBF
Water depth 71.15–91.74 m 3750.48–3827.72 m

5.2. Performance evaluations

For the study of shallow marine environments, the original BTR is
visualized in the first subplot of Fig. 12, where the horizontal axis rep-
resents the sine of angles, covering a total of 180 angles corresponding
to 360 pixel values, and the vertical axis indicates time, measured in
seconds. According to the adaptive threshold method for determining
the number of clusters, the maximum value of the third derivative of
SSE is 3. At this point, SSE′(𝑘) < 0, SSE′′(𝑘) < 0, and SSE′′′(𝑘) > 0,
as shown in Fig. 13. The first class of clustering represented the beam’s
main lobe pattern. Despite only displaying the visual pattern of the first
cluster, a significant number of false alarms continued to be observed.
To address this, we employ a high-correlation false alarm suppression
13 
method based on fuzzy thresholds. This method involves calculating the
correlation coefficients between all elements on the main lobe pattern
and itself, and fitting these coefficients to a probability distribution
histogram, as shown in Fig. 14. The correlation coefficients ranged
from 0.01363 to 0.99872. Typically, coefficients for true targets were
consistently above 0.8, suggesting strong correlation, while those iden-
tified for false alarms generally fell below 0.7, indicating weaker or
erroneous associations. Employing a high-correlation method based on
fuzzy thresholds, the maximum value of the second derivative was
calculated, yielding 𝜏 = 0.8550. Elements corresponding to correlation
coefficients above this threshold were retained, while those below were
discarded, leading to a significant reduction in the rate of false alarms.
The final target detection results demonstrated a substantial decrease
in the rate of false alarms, as shown in the fourth subplot of Fig. 12.

For the study of deep marine environments, these samples are
visualized in the first subplot of Fig. 15. According to the adaptive
threshold method for determining the number of clusters, the maximum
value of the third derivative of the Sum of SSE is 4. At this point,
SSE′(𝑘) < 0, SSE′′(𝑘) < 0, and SSE′′′(𝑘) > 0, as shown in Fig. 16. The last
cluster represents the main lobe beam pattern. Despite only displaying
the visual pattern of the last cluster, a significant number of false alarms
continued to be observed. To address this issue, a high-correlation false
alarm suppression method based on fuzzy thresholds was employed.
This method involves calculating the correlation coefficients between
all elements on the main lobe pattern and itself and fitting these



H. Yin et al.

Fig. 13. The number of 𝑘 in shallow marine.

Fig. 14. Frequency histogram of correlation coefficients and its fitting curve in shallow marine.
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Fig. 15. BTRs in deep marine.
coefficients to a probability distribution histogram, as shown in Fig. 17.
The correlation coefficients ranged from 0.05729 to 0.99798. Typically,
coefficients for true targets were above 0.75, whereas those for false
alarms were below 0.65. Employing a high-correlation method based
on fuzzy thresholds, the maximum value of the second derivative was
calculated, yielding 𝜏 = 0.7950. Elements corresponding to correlation
coefficients above this threshold were retained, while those below were
discarded, leading to a significant reduction in the rate of false alarms.
The final target detection results demonstrated a substantial decrease
in the rate of false alarms, as shown in the fourth subplot of Fig. 17.

6. Conclusion

This paper improves upon previous research on automated target
detection methods for BTR images. We introduce a clustering center ini-
tialization method suitable for this task, the GLP initialization method.
This method adaptively determines the number of clusters through
quantitative analysis of the first, second, and third derivatives of the
SSE. To address the issue of minor false alarms being misclassified
as the main lobe pattern under low SNR conditions, we propose a
determination rule based on the derivatives of the fitting curve for the
frequency histogram of correlation coefficients using fuzzy thresholds.
This approach achieved a 100% accuracy rate on simulated datasets
and also demonstrated excellent results with sea trial datasets. The
research not only optimizes the initialization process of clustering
15 
centers, ensuring high accuracy and robustness in complex marine
environments but also effectively reduces the rate of false alarms in low
SNR conditions by introducing a decision-making mechanism based on
fuzzy thresholds. These innovations enhance the overall performance
of the system, making it more potent for practical marine detection
tasks. The proposed method is primarily suitable for targets such as
ships that continuously radiate noise. However, it is not applicable
to targets like acoustic bombs that emit noise transiently. In weak
target detection under low SNR conditions, this method can effectively
suppress sidelobes and random noise, enabling earlier detection of
targets and longer-term tracking of them. Regarding future work, we
plan to further identify different targets based on our existing foun-
dation. In actual sea trial data, one major challenge we anticipate is
the discontinuity of targets displayed in BTR images. Typically, due to
environmental noise, target movement, or sensor limitations, acoustic
signals from underwater objects may not be continuously recorded.
This discontinuity in signals can obscure the true shape and trajectory
of targets, thus increasing the complexity of detection and tracking
processes. To address this challenge, we plan to develop more advanced
algorithms to more effectively handle data discontinuities and more
accurately infer the positions and movements of discontinuous signals.
This will involve enhancements to our existing models, incorporating
advanced temporal and spatial analysis techniques to predict positions
in scenarios where observational data are incomplete or intermittent.

This strategy not only targets the existing challenges in data processing
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Fig. 16. The number of 𝑘 in deep marine.
Fig. 17. Frequency histogram of correlation coefficients and its fitting curve in deep marine.
but also provides a methodological foundation for handling target
detection in more complex marine environments.
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