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A B S T R A C T

Given the complexity of marine environments, the detection of underwater acoustic targets frequently relies
on manual visual interpretation of the imagery displayed on monitoring screens, which limits the application
of related technologies on unmanned platforms. To replace human visual observation, understanding, and
reasoning within underwater unmanned equipment, this study explores an intelligent detection method for
Bearing Time Records based on computer vision techniques, drawing inspiration from human visual perception
in detecting targets on BTR images. Firstly, an unsupervised learning method is employed to extract the bases
representing various signal patterns from BTR images, with clear physical meanings. Subsequently, we utilize
both algorithm-driven and data-driven methods for automated base classification, and both methods achieve
a remarkable 100% accuracy rate in automatic base classification. In comparison to human visual detection,
this automated approach exhibits a false alarm rate of less than 3%.
1. Introduction

Underwater acoustic information sensing techniques are challenged
by the complex marine environment. Compared to computer algo-
rithms, biosensing systems perceive the world more comprehensively,
simply and perfectly, so classical passive underwater acoustic detect-
ing modalities are usually based on the manual decisions of humans.
Meanwhile, Autonomous Underwater Vehicles (AUVs) can capture en-
vironment information and perform action decisions autonomously,
being increasingly widely used to replace humans to complete dan-
gerous missions in extreme ocean environments with low temperatures
and high pressures, sparking disruptive and evolutionary progresses in
the fields of ocean engineering and military (Department of the navy,
2021a,b). The sophisticated platforms of this type cannot offer enough
power, hardware, communication and space resources for manual hu-
man interventions any more, forcing us to have to make changes to
improve the intelligence of underwater acoustic sensing systems.

Bearing Time Records (BTRs) visualize hydrophone array infor-
mation by mapping them as a time-space image. Well-trained and
experienced operators are used to detecting passive targets by observ-
ing it for its advantages of high sensitivity and reliability. Once a
trajectory is found in BTR, we can considered that a target locates at
the corresponding azimuth and time. Yet, automating this process is far
from easy, especially when both the high sensitivity and low false alarm
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rate are desired. The most rudimentary means to realize it is to detect
the energy peaks of the beamforming over targets azimuths. Energy
peaks are a type of very important visual pattern on BTRs (Chenhui,
2003; Zheng et al., 2005). It is easy to understand that no matter how
low a peak is, it represents a potential target on the screen. The limits
of detecting capability can be therefore considered to correspond to
the data precision used or the sensitivity of hydrophones. However,
underwater environments are often filled with a variety of complex
noises, and the beamforming method used may possess side or gating
lobe, resulting in false alarms. Even if the false alarm rate is very
low, providing AUVs with the wrong information for decision may
raise destructive risks, an artificial intelligence system that can replace
operators to make reliable posterior decisions is therefore strongly
desired.

Up to our knowledges, many efforts have been made to facilitate
BTR target detecting tasks. At present, the solution strategy of facili-
tate BTR target detecting tasks is mainly divided into two categories:
target enhancement and decision analysis. The former enhance the
BTR trajectories via certain noise filter or normalizer, such as the
two-pass mean, the split three-pass mean, the split average exclude
average, and the order truncate average normalizers (Struzinski and
Lowe, 1984). Shapiro and Green (2000) normalize the spectrogram
background of narrowband passive acoustic detection system via the
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split-window three-pass mean noise spectral estimator and improve it
by approximating its bias for the colored-Gaussian-noise case. Carbone
and Kay (2012) propose a 3D minimum variance spectral estimating
normalizer, and report that it is from 3 dB to over 5 dB more effective
than the two-pass split-window normalizer in initializing active sonar
tracks depending on the circumstances. Lei et al. (2016) generate the
BTR display by using the L1 norm regularization and the total variation
regularization to enhance the point-based feature and the region-based
feature respectively. Yang (2018b,a) improves the beamforming reso-
lution and mitigates the sidelobes by deconvolving the beam power
instead of the complex beam output. Yin et al. (2023) denoising the
BTRs by combining the SEED and the BM3D algorithms. Researches
demonstrate that these methods can enhance the target trajectories
effectively. However, from the algorithmic mechanism, it leads to the
following two issues:

(a) Part of the normalizing algorithms are essentially low-pass fil-
ter that necessarily loses high-frequency information. The weak
energy peaks representing distant or low-noise targets will most
likely be ignored.

(b) There is also part of the enhancing algorithms highlight the tra-
jectories via wavelet transforms or feature extractions. Although
they can suppress noise while retaining a certain amount of high
frequency details, the side and gating lobes are also enhanced so
that new false alarms may be caused.

The second category decision analysis method perform detecting
and tracking decisions via some tracking before detect method. For
example, Saucan et al. (2014) propose a particle filtering algorithm for
tracking the direction of arrival (DOA) of multiple echoes impinging
on a sonar array. The impulsive nature of the backscattered signals
is taken into account and a robust multivariate Laplace distribution is
developed. Xin et al. (2015) propose a method of track before detect
algorithm based on Hidden Markov Model for BTR weak trajectory
detecting and tracking. It is claimed that a gain of 3 dB is obtained (Xin
and Luo, 2016). Fan et al. guide the locating information processing of
BTRs depending on target motion analyzing results (Yin et al., 2019,
2022). The main issue of this type of approach is to necessitate auxiliary
points, which brings us back to the dilemma of energy peak extracting.

Practical applications have shown that bio-vision can better handle
the above problems. Human brains can easily complete the missing tra-
jectory information in BTRs or ignore complex interference information
based on experience and knowledge. Replicating this decision process
in machines in a bionic way is a potential solution to realize high
reliable autonomous passive underwater detecting. The main challenge
is how to describe the visual patterns of true and false target trajectories
programmatically. This paper solve it by using an unsupervised learn-
ing method. A priori information is analyzed automatically by using
unsupervised learning to establish statistical features of targets in real
time, and then they are used to guide to select out the false alarms. An
important innovation of this method is that the false-alarm suppressing
problem is handled as a binary classification problem after detecting, all
the issues in conventional approaches therefore could be circumvented.
The sea-trail data evaluation result demonstrates that this is an effective
method to improve the reliability of the automatic BTR target detecting
techniques.

The remainder of this paper is organized as follows: Section 2
introduces Mechanism of Related Works; Section 3 presents the pro-
posed false alarm suppressing method in detail; Section 4 analyzes
the evaluation experiment results; finally, Section 5 gives the final
conclusion of this work.

2. Mechanism of related works

Generally speaking, the post-processing of BTRs based on biosen-
sor systems could divided into three steps: color perception, element
perceptual grouping and decision.
2

Fig. 1. Element perceptual grouping.

2.1. BTR color perception

There are three types of biosensors in the human visual system than
can perceive light weights of different wavelengths, namely trichro-
macy. The main role in visual BTR observation is played by the cones
on the retina, which are categorized into three types depending on the
sensed wavelength range: S (short) with maximum sensitivity at around
430 nm, M (medium) at around 560 nm, and L (long) at around 610 nm.
The spectral response 𝑞𝑖 of the 𝑖th sensor can be modeled by integration
over a certain range of wavelengths (Milan et al., 2015)

𝑞𝑖 = ∫

𝜆2

𝜆1
𝐼(𝜆)𝑅𝑖(𝜆)𝑆(𝜆) 𝑑𝜆, (1)

where 𝑅𝑖(𝜆) is the spectral sensitivity of the sensor, 𝐼(𝜆) is the
spectral density of the illumination, and 𝑆(𝜆) describe how the surface
patch reflects each wavelength of the illuminating light. The electro-
magnetic wavelength section visible to humans is from approximately
380 nm to 740 nm, we therefore can visualize the underwater acoustic
information by representing the beamforming power via a color space
such as RGB (Red, Green and Blue) and HSV (Hue, Saturation and
Value).

2.2. Element perceptual grouping

Perceptual grouping is a computer vision principal to aggregate
elements provided by low-level operations, which are small blobs to
bigger chunks having some meaning (Palmer, 1999). Observing BTRs
in small-scale neighborhoods yield basic image elements for high-level
understanding. The human ability to group items according to various
properties is illustrated in Fig. 1. The roots of this theory are in
Gestalt psychology first proposed by Wertheimer in 1912 (King and
Wertheimer, 2005). Correct element grouping would constitute new
functional units with properties not derivable by summation of its parts,
namely patterns take precedence over elements and have properties
that are not inherent in the elements themselves.

Underwater acoustic targets appear as typical stripe features on
the BTR, which is the functional unit constituted by similar successive
striped elements with directions varying continually. Perceived element
properties help us to connect them together so yield new properties in
a larger scale range such as parallelism, symmetry and continuity as
illustrated in Fig. 2.

The functional units and their properties provide us necessary basis
for making decisions. Short stripes probably are caused by random
underwater noises so could be considered as false alarms. Two parallel
long stripes are most likely primary and side lobes, so the weaker one
could be ignored. A weak trajectory can be tracked robustly even if it
is faintly visible, because the brains would automatically generate and
fill in the missing parts.

Building upon color perception and element perceptual grouping,
the brain makes judgments to determine whether what is observed is
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Fig. 2. BTR trajectory element grouping.

a genuine target or a false alarm. These decisions are based on past
experiences, the current environmental context, and the brain’s holistic
understanding of the image.

2.3. Functional unit constitutions of BTR targets

The keys of the proposed false alarm suppressing method is to build
proper functional units with the properties that can distinguish true
and false alarms. BTR target patterns possess obvious stripe properties,
which are described simply by the width 𝑤, the length 𝑙 and the
direction 𝛽 in a double-dimension space. In the case of this paper,
the spatial coordinates of the image correspond to the azimuths and
time, respectively, so we can easily build up their relationships with the
underlying physical variables. 𝑤 is essentially the primary-lobe width
of direction arrival estimations, 𝑙 is the length of observation time, and
𝛽 is the azimuth variation direction of targets.

According to the classical beamforming theory, trajectories in BTR
image can be modeled mathematically. Let us take a uniform linear
array (ULA) as an example, its beamforming signal 𝑠(𝑡) is

𝑠(𝑡) =
𝑁
∑

𝑖=1
𝑠𝑖(𝑡)

=
𝑁
∑

𝑖=1
𝐴 cos[2𝜋𝑓𝑡 + (𝑖 − 1)𝜙]

= 𝐴 cos[2𝜋𝑓𝑡 + 𝑁 − 1
2

𝜙]
sin 𝑁

2 𝜙

sin 1
2𝜙

,

(2)

with

𝜙 = 2𝜋 𝑑
𝜆
sin 𝜃, (3)

where 𝑠𝑖(𝑡) is the signal received by the 𝑖th array unit, 𝐴 is the signal
amplitude, 𝑓 is the signal frequency, 𝑡 is the time, 𝑁 is the array unit
number, 𝑑 is the array unit interval, 𝜆 is the signal wavelength and 𝜃
is the independent variable of azimuth.

The directivity function 𝐷(𝜃) of Conventional Beamforming (CBF)
is therefore given by

𝐷𝐶𝐵𝐹 (𝜃) = 𝐴|
sin (𝑁𝜋 𝑑

𝜆 sin 𝜃)

𝑁 sin (𝜋 𝑑
𝜆 sin 𝜃)

| (4)

(4) describes the directivity of ULAs oriented to 𝜃0 = 0◦. If other look-
directions are desired, a delay of 𝜏𝑖(𝜃0) = 2𝜋(𝑖1) 𝑑𝜆 sin(𝜃0) will occur for
the 𝑖th array unit, and the directivity function of CBF becomes:

𝐷𝐶𝐵𝐹 (𝜃) = 𝐴0
|

|

|

sin[𝑁𝜋 𝑑
𝜆 (sin 𝜃 − sin 𝜃0)]

𝑁 sin[𝜋 𝑑
𝜆 (sin 𝜃 − sin 𝜃0)]

|

|

|

(5)

The directivity function 𝐷(𝜃) of the MVDR (Minimum Variance Dis-
tortionless Response) beamformer algorithm depends on the covariance
matrix of the received signals. The weight vector 𝐖𝑀𝑉𝐷𝑅(𝜃0) and the
array manifold vector 𝐚(𝜃) for ULAs are defined as follows:

𝐰𝑀𝑉𝐷𝑅(𝜃0) =
𝐑−1𝐚(𝜃0)

𝐚𝐻 (𝜃0)𝐑−1𝐚(𝜃0)
(6)

𝑗2𝜋 𝑑 sin 𝜃 𝑗2𝜋2 𝑑 sin 𝜃 𝑗2𝜋(𝑁−1) 𝑑 sin 𝜃 𝑇 (7)
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𝐚(𝜃) = [1, 𝑒 𝜆 , 𝑒 𝜆 ,… , 𝑒 𝜆 ]
where R is the covariance matrix of the received signals, and 𝐚(𝜃) is the
array manifold vector for the desired signal direction 𝜃. The directivity
function 𝐷𝑀𝑉𝐷𝑅(𝜃) of MVDR beamformer algorithm is therefore given
as:

𝐷𝑀𝑉𝐷𝑅(𝜃) =
|

|

|

𝐰𝐻
𝑀𝑉𝐷𝑅𝐚(𝜃)

|

|

|

(8)

𝐚(𝜃, 𝜏) = [1, 𝑒𝑗2𝜋
𝑑
𝜆 (sin 𝜃−sin 𝜃0+𝜏𝑑),… , 𝑒𝑗2𝜋(𝑁−1) 𝑑𝜆 (sin 𝜃−sin 𝜃0+𝜏𝑑)]𝑇 (9)

The definition of directivity functions demonstrate that its square is
the power of beamforming at 𝑡, which is BTR’s pixel value, so we can
model the functional units of ULAs for single-target scenarios as:

𝐹𝐶𝐵𝐹 (𝜗, 𝜏) = |𝐷𝐶𝐵𝐹 (𝜗, 𝜏)|
2

= |

|

|

𝐴0
sin[𝑁𝜋 𝑑

𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏))]

𝑁 sin[𝜋 𝑑
𝜆 (sin(𝜃 − 𝜗) − sin 𝜃0(𝑡 − 𝜏))]

|

|

|

2
.

(10)

𝐹𝑀𝑉𝐷𝑅(𝜗, 𝜏) = |𝐷𝑀𝑉𝐷𝑅(𝜗, 𝜏)|
2

=
|

|

|

|

|

|

( 𝐑−1𝐚(𝜃0(𝑡 − 𝜏))
𝐚𝐻 (𝜃0(𝑡 − 𝜏))𝐑−1𝐚(𝜃0(𝑡 − 𝜏))

)𝐻

×
[

1, … , 𝑒𝑗2𝜋(𝑁−1) 𝑑𝜆 sin(𝜃−𝜗)
]𝑇

|

|

|

|

2

(11)

(10) and (11) considers the functional unit as a region of interest (ROI)
of BTRs at ⟨𝜃, 𝑡⟩.

Similarly, the functional units of other array shapes that has regular
directivity functions, such as circular and arc arrays, can be obtained.
According to the above beamforming equations, a connection is estab-
lished between the BTR image and the beamforming, allowing us to
relate the underlying physical variables to the BTR image.

3. Method

The overall framework of the proposed method is shown in Fig. 3.
We conduct peak extraction on the original BTR image. Subsequently,
elements are constructed, followed by the construction of bases. Finally,
we applied automated base template selection, resulting in target detec-
tion outcomes after false alarm suppressing. In this paper, an ‘‘element’’
refers to a collection of pixels observed in the actual BTR image, while
a ‘‘base’’ serves as an abstraction of these elements, aiming to represent
their fundamental characteristics. Specifically, within the context of the
beamforming algorithms mentioned in (10) and (11), a ‘‘base’’ can be
regarded as a ‘‘functional unit’’.

3.1. Base extraction using unsupervised learning

3.1.1. Open peak extraction
Color resolution plays a crucial role in image processing and com-

puter vision. However, human color perception has inherent limita-
tions. Historically, our conventional approach to peak extraction often
involved the use of fixed thresholds, which lacks adaptability. To
overcome the constraints imposed by human color resolution, it is
imperative to use open peak extraction method that fully utilize the
power of computers in order to surpass the limitations of human color
resolution.

The subject of this paper is to suppress the false alarms of BTRs
with high sensitivity. Our idea is to realize it via distinguishing after de-
tecting. Briefly, energy peaks are first extracted with loose constraints:

𝑝(𝜃𝑖) =
{

𝑡𝑟𝑢𝑒, 𝐵(𝜃𝑖−1) < 𝐵(𝜃𝑖) < 𝐵(𝜃𝑖+1),
𝑓𝑎𝑙𝑠𝑒, otherwise, (12)

where 𝑝(𝜃𝑖) is the logical detecting result at the observation direction
𝜃𝑖, whose value is 𝑡𝑟𝑢𝑒 if an energy peak exists, otherwise 𝑓𝑎𝑙𝑠𝑒. 𝐵(𝜃𝑖)
is the beamforming power at 𝜃𝑖. Next, false alarms are selected out via
some strategy which mimics human vision systems.
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Fig. 3. Technical method.
Fig. 4. Element size and beamforming algorithms.
When performing open peak extraction, it is necessary to set a
crucial parameter to define the width of the main lobe in beamforming
algorithms, which is referred to as the ‘‘minimum peak separation’’,
which dictates the minimum horizontal distance between peaks in each
row of the image data. In essence, it ensures that each detected peak
is separated by at least the predetermined ‘‘minimum peak separation’’
number of pixels from its nearest neighbor. From the perspective of
beamforming, this can be regarded as the width of the main lobe, indi-
cating the minimum resolution that the primary energy concentration
region should maintain.

For the CBF method, 𝑊𝑚𝑎𝑖𝑛 is defined as twice the position of the
first zero-crossing point of the directivity function 𝐷(𝜃):

𝑊𝑚𝑎𝑖𝑛 = 2 arcsin
( 𝜆
𝑁𝑑

)

(13)

((13)) describes the primary lobe width 𝑊𝑚𝑎𝑖𝑛.
For the MVDR beamforming algorithm, which relies on the signal-

to-noise ratio (SNR), a fuzzy recognition approach can be employed to
define fuzzy sets for the primary lobe width 𝑊𝑚𝑎𝑖𝑛.

3.1.2. Element construction
After extracting peaks using open peak extraction methods, each of

these peaks represents valuable physical information. The challenge lies
in how to effectively construct visual units from these peaks. Visual
units serve as essential tools for establishing associations between peaks
within images and their underlying physical meaning, which are called
as ‘‘elements’’. To do this, it is essential to select the length of the
element to minimize the interference of random noise. Random noise
typically appears as isolated, discontinuous points of low intensity
rather than continuous segments of a signal. Therefore, it is common to
4

select a length based on empirical values to avoid mistaking isolated,
discontinuous noise points for actual targets.

As shown in Fig. 4, the target trajectory representation exhibits
continuous portions with high intensity, while the sidelobe represen-
tation is typically characterized by lower but continuous intensity
portions on either side of the primary lobe. The difference in sig-
nal intensity between the target trajectory element and the sidelobe
element is reflected in the peak differences. To minimize sidelobe
interference, the selection of the element width should be equal to twice
the primary-to-sidelobe distance.

For the CBF method, to calculate the primary-to-sidelobe distance,
we can find the position of the maximum value of the first sidelobe,
it is necessary to differentiate 𝐷(𝜃) with respect to 𝜃, neglecting the
absolute value and the constant factor 𝐴.
𝑑
𝑑𝜃

(

sin(𝑁𝜋𝑑∕𝜆 sin(𝜃))
𝑁 sin(𝜋𝑑∕𝜆 sin(𝜃))

)

=

𝜋𝑑

(

𝑁 cos
(

𝜋𝑁𝑑 sin(𝜃)
𝜆

)

−
sin

(

𝜋𝑁𝑑 sin(𝜃)
𝜆

)

tan
(

𝜋𝑑 sin(𝜃)
𝜆

)

)

cos(𝜃)

𝑁𝜆 sin
(

𝜋𝑑 sin(𝜃)
𝜆

)

(14)

(14) describes the derivative equation of the directivity function for the
CBF algorithm.

The position of the first sidelobe’s maximum value is the first
positive root of this equation, which needs specific parameters and
numerical methods to solve. Let us denote the position of the maximum
value of the first sidelobe obtained through numerical methods as 𝐷𝑠𝑖𝑑𝑒,
which is called as the primary-to-sidelobe distance.

The MVDR beamforming algorithm relies on the SNR, a fuzzy recog-
nition approach can be employed to define fuzzy sets for 𝐷 . Through
𝑠𝑖𝑑𝑒
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the application of fuzzy logic rules and defuzzification methods, the
optimal element width can be determined. This method guarantees that
the selected element width accurately adapts to the characteristics of
both the primary lobe and sidelobe.

The width of element 𝛥𝜃 is then defined as:
𝛥𝜃 = 2𝐷𝑠𝑖𝑑𝑒

3.1.3. Base construction
In typical cases, the primary lobe of targets is usually described in

BTR images as a series of continuous and relatively distinct patterns.
Conversely, sidelobes tend to emerge on both sides of the primary
lobe, presenting as continuous yet slightly lower-intensity features. On
the other hand, noise may shown as dispersed or faint, discontinuous
patterns. To accurately extract and classify these different types of
signal patterns in BTR images, we plan to employ a clustering approach,
which falls under the domain of unsupervised learning and involves
grouping data points into similar clusters to identify various signal pat-
terns. K-means is a widely employed and robust unsupervised learning
method. It commonly utilizes the Euclidean distance as a kernel func-
tion to measure the dissimilarity among samples. In the context of the
current situation, we intend to use the Pearson correlation coefficient
to measure the similarity among various patterns within the primary
lobe, sidelobes, and random noise in BTR images, which better captures
the morphological similarities between different patterns, rather than
solely focusing on their absolute positional information (Zhao et al.,
2011).

To begin with, we employ primitive dimensions to extract funda-
mental elements from the identified peaks in the BTR images. This
process leads to the formation of a primitive set, represented as 𝐸 =
𝑒1, 𝑒2,… , 𝑒𝑚.

(1) Initialization
We randomly select 𝑛 elements from the element set 𝐸 = 𝑒1, 𝑒2,… , 𝑒𝑚

as the initial cluster centers, where 𝑛 represents the predefined number
of clusters.

𝐶 (0) = {𝑐(0)1 , 𝑐(0)2 ,… , 𝑐(0)𝑛 } (15)

where 𝑐(0)𝑛 is the cluster center.
(2) Element assignment
For each element 𝑒𝑖 in the element set, calculate its Pearson corre-

lation coefficient 𝑟(𝑒𝑖, 𝑐
(𝑡)
𝑗 ) with each cluster center 𝑐(𝑡)𝑗 . Assign element

𝑒𝑖 to the cluster center with the highest correlation coefficient.

𝑟(𝑒𝑖, 𝑐
(𝑡)
𝑗 ) =

∑𝑁
𝑘=1(𝑒

(𝑘)
𝑖 − 𝑒𝑖)(𝑐

(𝑡,𝑘)
𝑗 − 𝑐(𝑡,𝑘)𝑗 )

√

∑𝑁
𝑘=1(𝑒

(𝑘)
𝑖 − 𝑒𝑖)2

∑𝑁
𝑘=1(𝑐

(𝑡,𝑘)
𝑗 − 𝑐(𝑡)𝑗 )2

(16)

(16) describes the computation of the Pearson correlation coefficient.
Where 𝑒(𝑘)𝑖 represents the 𝑘-th feature value of element sample 𝑒𝑖, 𝑐

(𝑡,𝑘)
𝑗

is the 𝑘-th feature value of cluster center 𝑐(𝑡)𝑗 , 𝑒𝑖 is the mean of element
sample 𝑒𝑖, and 𝑐(𝑡)𝑗 is the mean of cluster center 𝑐(𝑡)𝑗 . This correlation co-
efficient measures the similarity between element samples and cluster
centers, enabling element samples to be assigned to the cluster center
with the highest correlation coefficient.

𝑦(𝑡)𝑖 = argmax
𝑗

𝑟(𝑒𝑖, 𝑐
(𝑡)
𝑗 ) (17)

where 𝑦(𝑡)𝑖 is sample label.
(3) Update cluster centers
For each cluster 𝑗, its new center is computed as the average of all

data points assigned to it.

𝑐(𝑡+1)𝑗 = 1
∣ 𝑆𝑗 ∣

∑

𝑖∶𝑦(𝑡)𝑖 =𝑗

𝑑𝑖 (18)

where 𝑆𝑗 represents the set of element samples assigned to cluster 𝑗,
and |

|

|

𝑆𝑗
|

|

|

is the number of elements assigned to cluster 𝑗.
(4) Convergence check
5

Fig. 5. Four base templates.

Algorithm convergence is evaluated by examining changes in cluster
centers across successive iterations.

∀𝑗 ∶ ‖𝑐(𝑡+1)𝑗 − 𝑐(𝑡)𝑗 ‖ < 𝜀 (19)

(19) describes the convergence criteria of this algorithm, where 𝑐(𝑡)𝑗
and 𝑐(𝑡+1)𝑗 denote the pattern centers after the 𝑡th and (𝑡+1)-th iterations,
respectively, 𝜀 represents a local minimum value. If the new cluster
centers are the same as or change very little compared to the previous
ones, the algorithm converges; otherwise, return to step 2.

(5) Output results
After completing the clustering process, we acquire cluster labels

𝑦(𝑡)𝑖 for each individual sample element, as well as the ultimate cluster
centroids 𝐶(𝑡). These cluster centroids can be employed to characterize
the attributes of the cluster.

In theory, cluster centers should include four distinct classes: the
true target (the primary lobe), the left side lobe, the right side lobe,
and random noise. Due to the diverse characteristics of random noise,
it is also possible to consider further dividing it into more classes, with
the simplest situation involving four classes. As shown in Fig. 5, each
of these four base classes reflects different types of target clustering
characteristics, namely the right side lobe, random noise, the left side
lobe, and the primary lobe. Each base shows distinct visual features that
correspond to their underlying beamforming theory. Table 1 provides
a detailed explanation of the visual characteristics of each base with
their beamforming theory.

3.2. Base classification

Upon the completion of visual unit construction, each type of visual
unit corresponds to a distinct real-world physical concept. This raises a
question: How to automatically select the specific visual units required
for a given task? To achieve the goal of automated base selection, two
methods are proposed in this paper: one driven by algorithms, and the
other driven by data, employing neural networks to learn base features.
After getting the four bases, the next step is to select the base which
best matches the primary lobe of the target. This automated selection
not only improve efficiency but also guarantees that the selected visual
units are contextually relevant to the physical aspects of the task. As
a result, it facilitates a more precise interpretation and analysis of the
information contained within the image. One essential assumption that
needs to be emphasized is that among the four classes of base templates,
only one class of base template represents the true target, while the
other three types of base templates represent false alarms.
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Table 1
Visual descriptions of four base templates.

Visual characteristics Beamforming mechanism

Right Sidelobe Prominent bright yellow area on the left edge of images.
Darker blue tones along the central line and right edge.

Bright yellow line represents the primary lobe of the beam,
with sidelobes to the right.

Random Noise Predominantly blue color in images. Lack of directional signal enhancement.

Left Sidelobe Prominent bright yellow area on the right edge of images.
Darker blue tones along the central line and right edge.

Bright yellow line represents the primary lobe of the beam,
with sidelobes to the right.

Primary Lobe Bright yellow central line with significantly reduced energy
on both sides.

Bright yellow line near the central axis signifies the primary
lobe of the beam.
t
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3.2.1. Algorithm-driven base automatic classification
Usually, the base of the primary lobe of the target shows higher

intensity in the central region and lower intensity on both sides, a
base automatic selection method is therefore proposed. It relies on the
measurement of similarity between the centerline and the sides. More
precisely, this similarity is calculated by analyzing the central line and
the average values on both sides of the base, thereby automatically
selecting the most representative base.

(1) Define the centerline and the two sides of the base template:

𝑙 = 1
𝑚

𝑚
∑

𝑖=1
𝑙(𝑖)

�̄� = 1
𝑚( 𝑛2 − 1)

𝑚
∑

𝑖=1

𝑛
2−1
∑

𝑗=1
𝐿(𝑖, 𝑗)

�̄� = 1
𝑚( 𝑛2 )

𝑚
∑

𝑖=1

n
∑

𝑗= 𝑛
2+1

𝑅(𝑖, 𝑗)

(20)

where 𝑙, �̄�, and �̄� denote the average values for the template’s
centerline, left region, and right region.

(2) Measure the similarity between the centerline and its two sides:

𝑠(𝑖) =∣ 𝑙 − �̄� + �̄�
2

∣ (21)

(3) Identify the highest similarity measure and select the base which
corresponds to it:

𝑆𝑚𝑎𝑥 = max
𝑖

𝑠(𝑖) (22)

.2.2. Data-driven base automatic classification
This paper implements three distinct neural network models for

ase classification: Artificial Neural Network (ANN), Deep Neural Net-
ork (DNN), and Convolutional Neural Network (CNN). Following

his, we will perform a comparative evaluation of their respective
erformance.

(a) ANN
The Artificial Neural Network is a computational framework that
emulates the functions of biological neural networks, primar-
ily comprising an input layer, a hidden layer, and an output
layer. Each of these layers consists of interconnected neurons,
or processing units, that convey and process information through
weighted connections. The input layer receives external data, the
hidden layer is responsible for data processing, and the output
layer provides the predictive results of the model. The training
process of an ANN involves optimization algorithms (such as gra-
dient descent) and backpropagation mechanisms, aimed at adjust-
ing the network’s weight parameters to minimize discrepancies in
output.

(b) DNN
The Deep Neural Network, evolving from the architectural foun-
dation of ANN, incorporate multiple hidden layers, thereby estab-
lishing a more profound network structure. This enhanced depth
enables DNN to recognize and learn more complex data features.
6

Specifically, DNN increase their learning and understanding ca-
pabilities of inherent data patterns and connections by adding
more layers and neurons. This deep learning model excels in
processing high-dimensional data and performing complex tasks,
though they need greater computational resources and extensive
training data.

(c) CNN
The Convolutional Neural Network is a deep learning model
specifically designed for processing data with a grid structure, like
images. The core characteristic of CNN is the use of convolutional
layers, which apply a set of filters to the input data to effectively
capture local features. The architecture of CNN typically includes
multiple convolutional layers, activation functions, pooling layers
(for reducing feature dimensions), and fully connected layers.
This design allows CNN to efficiently extract complex spatial fea-
tures from input data, while improving computational efficiency
through weight sharing and feature downsampling.

The Cross Entropy Loss and Rectified Linear Unit (ReLU) are used as
he loss function and activation function of the networks in this work,
espectively.

(a) Weighted cross entropy loss
Cross Entropy Loss is a common cost function for binary classifi-
cation problems. It measures the performance of a classification
model whose output is a probability value 𝑝 between 0 and 1. For
a binary classification (where 𝑦 ∈ {0, 1}),

𝐿(𝑦, 𝑝) = −𝑦 log(𝑝) − (1 − 𝑦) log(1 − 𝑝) (23)

(23) demonstrates that the lower the loss, the better the model’s
prediction accuracy.

(b) Rectified Linear Unit (ReLU)
The ReLU function is a piecewise linear function that will output
the input directly if it is positive, otherwise, it will output zero,
which introduces non-linearity into the output of a neuron.

𝑓 (𝑥) = max(0, 𝑥) (24)

In the architectures of ANN, DNN, and CNN, the ReLU is employed
s the activation function in hidden layers to infuse essential non-
inearity. In the output layer, activation functions are typically not used
ecause they output logits for the cross-entropy loss function, which
pplies the softmax function for binary classification tasks.

. Simulations

In this section, we experimentally validated the technique in SNR
ituations in the following simulations, respectively. The frequency of
ignal is 500 Hz, and the sampling frequency is 2000 Hz. The receiving
rray is a 128-units horizontal linear sonar array, with a spacing of
.5 m between the array unit. The measuring signal angle ranges from
to 180 degrees, with a precision of 0.5 degrees.

We evaluate the performance of the proposed method within differ-
nt SNR environments. The noise used in this experiment is Gaussian
hite noise. The target moves at a constant speed from 80 degrees to 80
egrees, and MVDR is used for beamforming. First, a set of experiments
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Fig. 6. SNR = −5 dB.
Fig. 7. SNR = −10 dB.
is required to SNR = −5 dB. According to fuzzy recognition approach,
we set the primary lobe width 𝑊𝑚𝑎𝑖𝑛 to 7 units, equivalent to 3.5◦; and
the element width 𝛥𝜃 to 31 units, equivalent to 15.5◦. The four bases
obtained are the Random Noise, Right Sidelobe, Primary Lobe, and Left
Sidelobe, respectively. The final target detection results are shown in
Fig. 6. By manually annotating false alarms through visual observation,
7

we found 15 green circles out of a total of 1191 circles, resulting in a
false alarm rate of 1.2438%, while the accuracy of target detection is
98.7562%.

Second, a set of experiments is required to SNR = −10 dB. According
to fuzzy recognition approach, we set the primary lobe width 𝑊𝑚𝑎𝑖𝑛
to 5 units, equivalent to 2.5◦; and the element width 𝛥𝜃 to 31 units,
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Fig. 8. SNR = −20 dB.
equivalent to 15.5◦. The four bases obtained are the Right Sidelobe,
Primary Lobe, Left Sidelobe and Random Noise, respectively. The final
target detection results are shown in Fig. 7. By manually annotating
false alarms through visual observation, we found 34 green circles out
of a total of 1144 circles, resulting in a false alarm rate of 2.97%, while
the accuracy of target detection is 97.03%.

Finally, a set of experiments is required to SNR = −20 dB. According
to fuzzy recognition approach, we set the primary lobe width 𝑊𝑚𝑎𝑖𝑛
to 3 units, equivalent to 1.5◦; and the element width 𝛥𝜃 to 21 units,
equivalent to 10.5◦. The four bases obtained are the Left Sidelobe, Ran-
dom Noise, Primary Lobe, and Right Sidelobe, respectively. The final
target detection results are shown in Fig. 8. By manually annotating
false alarms through visual observation, we found 81 green circles out
of a total of 1184 circles, resulting in a false alarm rate of 6.841%,
while the accuracy of target detection is 93.159%.

The experimental results indicate that even under extremely low
SNR conditions, the proposed technique achieves high accuracy in
target detection by employing a fuzzy recognition approach and appro-
priately setting the primary lobe width 𝑊𝑚𝑎𝑖𝑛 and the element width
𝛥𝜃. Particularly noteworthy is the achievement of target detection
accuracies of 98.7562%, 97.03%, and 93.159% at SNRs of −5 dB,
−10 dB, and −20 dB respectively, when compared to human visual
capabilities. Upon careful analysis, we believe that the false alarm rate
primarily originates from the unsupervised learning process during the
base construction process. These results demonstrate the robustness and
effectiveness of the technique in complex noisy environments. Espe-
cially under extreme conditions, such as an SNR of −20 dB, relatively
high accuracy is maintained, suggesting the potential applicability
of this technique in real-world complex scenarios, offering a reliable
solution for automated target detection tasks.

5. Sea-trial experiments

5.1. Dataset description

The experiments of this section evaluate the method by using sea-
trial data, and the data are collected in the South China Sea, in the
8

Table 2
Parameters of Dataset A and B.

Dataset A Dataset B

Duration 27 394 12 543
Snapshot Interval 1s 1s
Snapshot Period 0s 0s
Number of Array Elements 256 256
Element Spacing 1.5 m 1.5 m
Frequency Below 1000 Hz Below 1000 Hz
Beamforming Algorithm MVDR MVDR
Water Depth 4360.2 m 2139.7 m

summer of 2021. The sonar array utilized in the experiment is a towed
horizontal line array with 256 elements, with a unit distance of 1.5 m,
and the detection signal’s frequency band is below 1000 Hz, all data
were processed using the MVDR method for array signal processing.
To evaluate the false alarm rate of this method in the same and
different sea areas, the original samples were divided into two parts.
The first dataset, referred to as ‘‘Dataset A’’, originated from Sea Area
A, containing 27,394 snapshots; the second dataset, ‘‘Dataset B’’, came
from Sea Area B, with 12,543 snapshots. A detailed description of the
original sample datasets is presented in Table 2 and the sound speed
profiles for areas A and B are shown in Fig. 9.

For this study, we selected snapshots 6200 to 7200 from Dataset
A as the evaluation samples. Moreover, to accurately assess the per-
formance of the neural network method in automatically classifying
elements, it was necessary to construct and manually label each set
of elements within the dataset. To fulfill this requirement, we chose
Dataset A and created 1824 groups of labeled sample sets, each element
of size is [1, 310]. The specific construction method will be discussed
in detail in the section on element classification. To provide a more
comprehensive evaluation of the neural network method, it was es-
sential not to limit the test to the labeled Dataset A only. Therefore,
we conducted an additional experimental assessment in different sea
areas, but at the same frequency. We selected snapshots 6600 to 8600
from Dataset B as the evaluation samples. The evaluation samples from
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Fig. 9. Sound speed profile of area A and B.
Fig. 10. Original BTR in Dataset A and B.
Datasets A and B are visualized in Fig. 10, the horizontal axis represents
the angle, covering a total of 180 angles which correspond to 360 pixel
values and the vertical axis indicates time, measured in snapshots or
seconds.

5.2. Baseline for comparison: fixed threshold peak extraction

In the traditional field of image processing, the task of target
detection typically involves two key steps: the application of filter-
ing algorithms for image preprocessing, and the execution of fixed-
threshold peak detection to identify targets within the image. The
filtering algorithms used during the preprocessing phase, including but
not limited to Gaussian filtering, median filtering, and mean filtering,
aim to remove noise components from the image while retaining as
much structural information as possible crucial for subsequent target
detection steps. As a foundational technique for target identification,
fixed-threshold peak detection serves as a straightforward and effec-
tive baseline method. This method involves setting a predetermined
threshold and then evaluating the intensity values of each pixel in the
image. If a pixel’s value exceeds this threshold, it is considered part
of a target. Mathematically, for each pixel 𝐼(𝑥, 𝑦) in the image 𝐼 , the
detection result 𝐷(𝑥, 𝑦) can be represented as:

𝐷(𝑥, 𝑦) =

{

1 if 𝐼(𝑥, 𝑦) > 𝑇
0 otherwise

(25)

Where 𝑇 represents the preset threshold, although this strategy is con-
ceptually straightforward, its significant limitation primarily manifests
9

in the selection of a fixed threshold, which often relies on subjective
experience rather than on rigorous mathematical derivation, thereby
lacking adaptability.

In the process of applying filtering algorithms for image prepro-
cessing, selecting the appropriate filter size becomes a critical factor
affecting the image quality. This study analyzed BTR image data from
snapshots number 6200 to 7200 in dataset A, with the original image
shown in Fig. 10. As shown in Fig. 11, Gaussian filtering, median
filtering, and mean filtering with sizes of 5 × 5 and 10 × 10 were
applied to the original image. The results shows that larger filter size,
covering a wider neighborhood, thus achieving more smoothing effects.
However, this may also lead to blurring of the edges and fine details
in the image. Gaussian filtering, with its weights decreasing from the
center to the periphery according to a Gaussian distribution, effectively
reduces image noise while relatively preserving the edges and structural
information. Median filtering maintains clear edge details in the image,
while mean filtering, although performing well in reducing random
noise, may blur sharp edges and fine details when larger filter sizes
are chosen.

In the field of target detection, the selection of filter size and peak
detection parameters is critically important for the performance of
the detection algorithm. Through the visualization results shown in
Figs. 12 and 13, this study analyzed the effects of target detection on
BTR images after applying Gaussian, median, and mean filters of size
10 × 10. In Fig. 12, with the minimum peak height (minHeight) set
to 0, the detection algorithm was highly sensitive, resulting in a large
number of false alarms across all minimum peak distance (minDistance)

parameter settings. Conversely, Fig. 13 demonstrates that increasing
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Fig. 11. Original BTR in A area after Gaussian filtering, Median filtering, and Mean filtering (with filter sizes of 5 × 5 and 10 × 10).
Fig. 12. Detection results in A area (with filter size = 10 × 10, minHeight = 0, minDistance = 0, 5, 10).
the minimum peak height to 0.1 improved the algorithm’s discrimi-
nation ability, especially when the minimum peak distance was set to
10, effectively reducing the number of false alarms. Although Gaussian
filtering partially suppressed false alarms, it fails to effectively reduce
10
the sidelobe region on the left side of the target trajectories, and two
potential targets were missed in the main lobe region in the center
of the images. The analysis of Fig. 12 and Fig. 13 highlights that the
outcome of target detection is significantly limited by the parameters
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Fig. 13. Detection results in A area (with filter size = 10 × 10, minHeight = 0.1, minDistance = 0, 5, 10).
set for peak detection, describing the inherent challenge of using fixed
threshold detection methods: the difficulty of achieving both high
sensitivity and low false alarm rates simultaneously.

5.3. Target detection with computer vision techniques

Traditional peak detection methods inherently face limitations in
their physical mechanisms, which fails to resolve the inherent contra-
diction between high sensitivity and low false alarm rates. Additionally,
the approach of using a fixed threshold is flawed, as determining
an appropriate threshold is challenging and prone to variability with
environmental changes. Even when an ostensibly suitable threshold is
established, it might not effectively suppress false alarms originating
from sidelobes, potentially leading to missed detection of real targets.

5.3.1. Base construction
To comprehensively evaluate the impact of different parameter

settings on experimental results, we set numerous parameters for the
width of main lobe 𝑊𝑚𝑎𝑖𝑛 in open peak extraction and the width of
element 𝛥𝜃 in element construction. Specifically, we set 𝑊𝑚𝑎𝑖𝑛 to 0,
5, and 10 units, equivalent to 0◦, 2.5◦, and 5◦ in terms of angles;
simultaneously, we evaluated two parameter settings for the width of
element 𝛥𝜃, 21 and 31 units, corresponding to angles of 10.5◦ and
15.5◦, respectively. As shown in Fig. 14, it is evident that the best target
detection performance is achieved when the width of main lobe 𝑊𝑚𝑎𝑖𝑛
is set to 2.5◦ and the width of element 𝛥𝜃 is set to 15.5◦. Based on
the comparison of experimental results under the various parameter
settings, we have set 𝑊𝑚𝑎𝑖𝑛 to 5 units, equivalent to 2.5◦, and selected
𝛥𝜃 is 31 units, corresponding to 15.5◦. The original BTR image and
the open peak detection result image are shown in Fig. 15. Following
this evaluation, to prevent the misidentification of random noise as true
targets, an empirical length of 10 units is commonly selected for the
11
element, representing 10 s. Furthermore, an element width, 𝛥𝜃, of 31
units is determined, representing an azimuthal field of view of 15.5
degrees.

Concerning the number of cluster centers, theoretically, there should
be four classes, the primary lobe of the target, left sidelobe, right side-
lobe, and random noise. Due to the diverse characteristics of random
noise, the number of cluster centers can also be further subdivided into
more categories. In this experiment, we consider the number of cluster
centers into 4, 5, and 6 classes, providing specific visual representations
of each base element in the BTR images.

When the number of cluster centers is set to 4, we can construct
four bases, with the physical meaning from left to right being random
noise, right sidelobe, left sidelobe, and primary lobe. The representation
of these bases on the BTR image is shown in Fig. 16.

When the number of cluster centers is set to 5, we can construct five
bases, with the physical meaning from left to right being left sidelobe,
primary lobe, right sidelobe, class 1 random noise and class 2 random
noise. The representation of these bases on the BTR image is shown in
Fig. 17.

When the number of cluster centers is set to be 6, we can construct 6
bases, with the physical meaning from left to right being right sidelobe,
left sidelobe, class 1 random noise, class 1 primary lobe, class 2 random
noise, and class 2 primary lobe. The representation of these bases on
the BTR image is shown in Fig. 18. However, it is worth noting that
when there are 6 cluster centers, the primary lobe is divided into two
classes. As a result, the typical choice for the number of cluster centers
is usually 4 or 5, depending on the specific situation.

5.3.2. Base automatic classification
We conduct the experiments using two types of methods. Firstly,

based on the algorithm-driven method, we calculate the similarities
between the centerline of the base and the average values of the two
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Fig. 14. Target Detection Results with Various Parameter Settings (𝑊𝑚𝑎𝑖𝑛 at 0◦, 2.5◦, and 5◦; 𝛥𝜃 at 10.5◦ and 15.5◦).
Fig. 15. Original BTR and peak BTR in A area.
side regions. Secondly, with the data-driven approach, we employed
ANN, DNN, and CNN to automatically select bases for the clustering
centers of the elements. Subsequently, we compared the convergence
rates of these three types of neural networks. Additionally, we applied
a labeled dataset to BTR images from both the same and different
sea areas, all with the same frequency, to observe accuracy. It is
worth noting that in our experiments, only four bases were generated
each time, with one representing a real target, while the other three
represented false alarms. To automatically classify bases using neural
network methods, it is necessary to construct datasets in advance
and manually label each set of bases. In the process of constructing
manually labeled experiments, we selected Dataset A, which comprises
a set of 27,394 snapshots of BTR images. To organize the dataset, it was
divided into subsets, each containing 600 consecutive snapshots with a
step size of 60 snapshots. Within each data subset, four base templates
were generated. Specifically, we manually labeled the base template
corresponding to the primary lobe as ‘‘1’’, while marking the other
three classes as ‘‘0’’. Simultaneously, the generated sample set needed
to match the size of subsequent experimental tasks. According to the
principles mentioned in the blur estimation, the primary lobe width was
12
set to 5 units, and the element size when constructing the elements was
set to [10, 31], we will explain in more detail about how parameters are
chosen in next section. This process resulted in the creation of a total
of 1,824 sets of labeled sample sets with a size of [1, 310].

Given the limited sample size of 1824 data sets, we employ a five-
fold cross-validation approach in our experiments. In each training
round, the dataset is divided into five subsets, with four of them used
for training and one reserved for validation. This methodology en-
sured that the model possessed robust generalization capabilities across
distinct data subsets. Throughout the training process, we recorded
both training and validation losses to monitor the model’s learning
progress and guard against overfitting. Additionally, we documented
the model’s accuracy on the validation set, serving as a crucial perfor-
mance metric. Acknowledging the data imbalance issue in our dataset,
which comprises a total of 1824 data samples, with only 456 samples
labeled as true base templates, while the remaining 1368 samples are
labeled as false alarm base templates, we select to apply a weighted loss
function. This function assigns higher weights to the class with fewer
samples, providing a more effective solution to the dataset imbalance.
The weights are typically calculated based on the number of samples
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Fig. 16. Four-base representation.

Fig. 17. Five-base representation.

Fig. 18. Six-base representation.
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Table 3
Neural network architectures: ANN, DNN, and CNN.

Network Layer Layer Type Parameters Activation Function Notes

ANN (Artificial Neural Network)

ANN Input – 1 × 310 – Input layer
ANN Hidden Layer 1 Fully Connected Input: 310, Output: 256 ReLU –
ANN Output Layer Fully Connected Input: 256, Output: 2 – No activation (logits output)

DNN (Deep Neural Network)

DNN Input – 1 × 310 – Input layer
DNN Hidden Layer 1 Fully Connected Input: 310, Output: 512 ReLU –
DNN Hidden Layer 2 Fully Connected Input: 512, Output: 256 ReLU –
DNN Hidden Layer 3 Fully Connected Input: 256, Output: 128 ReLU –
DNN Dropout Dropout Dropout Rate: Variable – Applied before output layer
DNN Output Layer Fully Connected Input: 128, Output: 2 – No activation (logits output)

CNN (Convolutional Neural Network)

CNN Input – 10 × 31 – Input layer
CNN Conv Layer 1 Convolution In Channels: 10, Out Channels: 16, Kernel Size: 5 ReLU Padding: 2
CNN Conv Layer 2 Convolution In Channels: 16, Out Channels: 32, Kernel Size: 5 ReLU Padding: 2
CNN Conv Layer 3 Convolution In Channels: 32, Out Channels: 64, Kernel Size: 5 ReLU Padding: 2
CNN Flatten – – – Flatten for fully connected
CNN Hidden Layer Fully Connected Input: 64 × 31, Output: 128 ReLU –
CNN Dropout Dropout Dropout Rate: Variable – Applied before output layer
CNN Output Layer Fully Connected Input: 128, Output: 2 – No activation (logits output)
Fig. 19. Average loss of ANN, DNN, CNN.
in each class.

𝑤𝑐 =
𝑁
𝑁𝑐

(26)

where, 𝑁 is the total number of samples, 𝑁𝑐 is the number of samples
of class 𝑐.

The parameters for each layer of ANN, DNN, and CNN are specified
in Tables 3. When the learning rate is set to 0.001, ANN, DNN, and CNN
converge after 300, 30, and 15 iterations, respectively. Furthermore, all
three networks achieve 100% accuracy under these conditions. When
the learning rate is set to the same value, lr=0.001, the loss functions
for these three network structures are illustrated in Fig. 19, it can
be observed that CNN exhibits the fastest convergence speed and the
highest efficiency.

The experiments have shown that using the base automatic classifi-
cation method (both algorithm-driven method and data-driven method)
can achieve a 100% accuracy at the same frequency, both in the same
sea area and across different sea area.

5.3.3. Performance evaluations
The experimental data used in this study were collected from two

distinct marine areas. These datasets have been accordingly segmented
into two scenarios, facilitating the evaluation of the novel method’s
performance. In the first scenario, the marine area of interest corre-
sponds to the labeled dataset. We focused on the same marine area
and extracted a subset of snapshots numbered from 6200 to 7200
from a BTR image consisting of 27,394 snapshots. After applying open-
peak extraction, we obtained the peak BTR image. Subsequently, we
constructed the base and utilized automatic selection to derive the BTR
image results for target detection. However, these results contained
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visible false alarms, which prompted us to conduct manual false alarm
screening based on human visual inspection. Following the manual
screening process, we marked the visible false alarms in green, resulting
in annotated results. Among the marked circles, 107 were green, while
5461 were red, leading to a false alarm rate of 1.9593% and a target
detection accuracy of 98.0407%, these images are illustrated in Fig. 20.

In the second scenario, which involved a different marine area B
but the same frequency, we selected a subset of snapshots numbered
from 6600 to 8600 from a BTR image consisting of 12,543 snapshots.
As with the previous case, we performed open-peak extraction to obtain
the peak BTR image. After base construction and automatic selection,
we derived the BTR image results for target detection. However, similar
to the previous scenario, these results included visible false alarms. To
address this issue, we conducted manual false alarm screening based
on human visual inspection. Subsequently, we marked the visible false
alarms in green, resulting in annotated results. Among the marked
circles, 199 were green, while 7196 were red, leading to a false alarm
rate of 2.7654% and a target detection accuracy of 97.2346%, these
images are illustrated in Fig. 21.

5.4. Real-time performance

After conducting a thorough analysis of the 1000 snapshots con-
tained within Dataset A (equivalent to 1000 s of data), this study com-
pared the temporal efficiency of image processing technology against
several neural network architectures (ANN, DNN, CNN) in performing
target detection tasks. We set each interval at 60 s, with a step size
of 1 s. Using image processing technology for automated primitive
classification to achieve the goal of target detection, the total time
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Fig. 20. BTR in the same marine area A.

Fig. 21. BTR in the different marine area B.
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Table 4
Processing time comparison for 1000 shots.

Method First attempt Second attempt Third attempt Average time

Image 44.327 46.682 43.296 44.77
ANN 136.9824 138.3642 134.3866 136.58
DNN 134.5512 131.8871 132.2696 132.9
CNN 162.2788 165.3527 163.9876 163.87

Fig. 22. Processing Time Comparison for 1000 Snapshots.

required to process 1 snapshot was merely 0.04477 s. In contrast,
for the same task, the processing times for the ANN, DNN, and CNN
architectures were 0.13658 s, 0.1329 s, and 0.16387 s, respectively.
Each of the experiments was repeated three times to ensure data
accuracy and calculate the average values. The related data has been
summarized in Table 4, and visualized in the bar chart shown in Fig. 22.
Clearly, the image processing method not only meets the requirements
for real-time detection but also processes each instance in far less than
a second, providing sufficient time margin to ensure the continuity and
stability of real-time responses, even when considering the addition of
some extra preliminary signal processing steps.

6. Conclusion

This paper researches an automated target detection method for
BTR images. We propose a computer vision approach inspired by hu-
man vision for target detection. Initially, we introduce an unsupervised
learning method to extract bases with well-defined physical meanings.
Subsequently, we present two different automated base selection ap-
proaches: one driven on data and the other driven by algorithms. In
the evaluations using South China Sea trial data, both of these auto-
mated selection methods achieved a 100% accuracy rate. Furthermore,
we compare the automatically detected target results with manually
observed target detection results on BTR images. The results show that
the target detection method with computer vision techniques exhibits a
false alarm rate of less than 3% compared to human visual observation,
which shows the potential of this method in enhancing the automation
efficiency of target detection in underwater unmanned devices.

6.1. Error analysis

In this study, we employed unsupervised learning methods for base
construction and used data-driven and algorithm-driven methods for
base automatic classification. Although theoretically, automatic classi-
fication of base can achieve 100% accuracy, in practical application,
compared to human eye recognition, we observed an approximate 3%
false alarm rate. After careful analysis, we believe that this 3% false
alarm rate mainly originates from the unsupervised learning process
in the base construction phase. During the base construction process,
16
unsupervised learning can identify meaningful structures from a large
amount of unlabeled data, thereby facilitating the automatic classifica-
tion of bases. However, since this method does not rely on prior label
information, it may not be able to fully distinguish between very similar
categories in certain situations, leading to false alarms.

6.2. Existing problems

One persistent challenge is the performance variability of the MVDR
method across different SNR conditions. While the MVDR method
demonstrates strong performance in varying SNR conditions, we have
observed that its effectiveness is closely tied to specific SNR con-
ditions. Consequently, optimizing the MVDR method’s effectiveness
necessitates fine-tuning the BTR images it generates for different SNR
environments. Additionally, during the process of element construction,
we encountered difficulties related to size matching. Although the fuzzy
recognition method has partially mitigated this issue, when dealing
with marine data of diverse sizes, the fixed-size neural network dataset
may prove inadequate in addressing this particular challenge.

6.3. Future work

We plan to employ multiple methods to reduce the false alarm
rate. Firstly, considering alternative clustering methods may be cru-
cial in improving model performance. By adjusting the parameters
and iteration counts of clustering algorithms, we aim to capture data
characteristics more accurately, thus effectively reducing false alarms.
Additionally, we will explore how to make the MVDR method more
adaptable to different SNR conditions, enhancing its robustness under
varying conditions. Regarding neural networks and image processing
methods, they have demonstrated outstanding applicability in auto-
matic base selection, maintaining a 100% accuracy rate. To address
the size issue, we are considering the development of adaptive network
architectures capable of handling inputs of different sizes or the use of
data standardization techniques to align inputs with fixed-size network
requirements. These efforts are expected to significantly enhance the
flexibility and accuracy of network processing for data of varying sizes,
laying a solid foundation for future applications.
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