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Abstract: Bearing time record (BTR) is widely used in the field of passive sonar information processing
for target detecting and tracking. One of its challenges is to obtain high-resolution beamforming
power spectral to facilitate the directions estimating of arrivals, namely DOA estimating. This paper
proposes a new algorithm framework Block Matching - Subband Extrema Energy Detection (BM-
SEED) to supplement the resolution and enhance the weak targets of BTRs. It extracts the peak
features of target trajectories within the conventional beamforming (CBF)-based BTRs by using an
improved sub-band peak energy detection (SPED) algorithm, and then enhances the weak targets
and suppresses the false-alarm targets through time-spatial autocorrelation analysis. Simulations
and sea-trial data evaluations demonstrate that the method of this paper can enhance weak targets,
eliminate the interferences of false targets and improve the resolution of BTR targets to 1 degree
under −20 dB.

Keywords: weak target enhancement; false target suppression; high resolution; broadband signal
processing; passive sonar detection

1. Introduction

DOA is one of the most challenging research focuses of array signal processing, which
has received extensive attention in recent years. The detection gain of the sonar array is
theoretically inversely proportional to the aperture size (Rayleigh limit), thus the resolution
of the target detected by the traditional beamforming technology is usually not high
enough, so as the weak targets are easily submerged in the background noise. Bartlett [1,2]
proposed the conventional beamforming (CBF) method fuses the channel signals into a
single beam by compensating them in phase, so that the signal-to-noise ratio (SNR) can
be well improved. Capon [3] proposed the MVDR beamfomer to obtain a higher array
gain and resolution, its goal is to have the beamformer’s signal of interest at the output
without distortion and with minimal output noise variation. Schmidt [4] and Roy [5]
proposed the subspace-based super-resolution algorithms MUSIC and ESPRIT, respectively.
However, these two algorithms are limited in practical applications due to their excessive
computational effort and parameter requirements.

Bearing time recording (BTR) is a commonly used passive sonar information process-
ing method to spatial spectrum estimation for acoustic target detecting and tracking, which
is the accumulation of DOA spectra along the time axis. BTR post-processing methods are
therefore developed to further enhance the quality of BTRs in order to facilitate the acoustic
detecting and tracking tasks. Bono et al. [6] proposed the subband energy detection (SED)
algorithm by combining the SPED and Subband Extrema Energy Detection (SEED). The
methods of SED families eliminate the sub-band energy other than local peaks and reduces
the influence of noise, thereby improving the bearing resolution and signal detection ability.
Ma et al. [7] introduced SPED method into underwater acoustic broadband sonar signal
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energy detection, and further proposed a beam domain detection. The experiment results
show that its performance is limited by the resolutions of the original BTRs; Zheng et al. [8]
combined SPED and image processing technology to extract the target trajectory of the
BTR, while they did not solve the problem that the weak target at the intersection of the
trajectory is covered; Jomon et al. [9] uses a combination of MVDR and SPED for detection
and tracking of fast moving targets, and proposes an efficient parallel scheme; Luo et al. [10]
used median filtering and order truncation averaging methods to estimate the background
noise, and further determine the threshold value for peak judgment in the SPED algo-
rithm, which can reduce the generation of false targets; Yang [11,12] used deconvolution
algorithm in the underwater acoustic post-processing part, the main idea is to improve
the quality of BTRs by computing its deconvolution with a point spread function (PSF);
Zhao et al. [13] also applied the deconvolution algorithm to SPED to reduce the generation
of many false targets on traditional spatial spectral estimation methods; Zhang et al. [14]
proposed expanded-SPED algorithm improve cross-azimuth detection of weak targets
under strong interference. Wang et al. [15] proposed a target localization algorithm based
on 2-D SPED, which can achieve higher localization accuracy compared with bearing-only
target localization.

Image processing methods have been used in passive sonar post-processing for several
years. Li et al. [16] proposed using a image equilibrium method to smooth the background
and improve the trajectory of the process map, but the improved trajectory would pos-
sess lower resolutions. Yin et al. [17] proposed a PCA algorithm to reduce noise on the
noise-contaminated BTR. The noise reduction effect is good and the connection is also
compensated at the break point of the trajectory due to the vertical singularity. In the field of
pure natural image noise reduction, M. Aharon et al. [18] proposed the KSVD image noise
reduction algorithm. As the natural images can be expressed sparsely whereas the noise
cannot, the quality of the image can be easily improved with the help of some dictionary
or primitive library. Antoni et al. [19] proposed a NLM algorithm for noise reduction by
using the windowing method to superimposes the self-matched image blocks to enhance
the interested information. K. Dabov et al. [20] proposed a noise reduction method based
on 3D block matching, which provides a cleaner separation of noise and signal in a higher
dimension with significant noise reduction effects. However, many algorithms (e.g., BM3D,
KSVD) need to estimate the noise level of an image in order to obtain an a priori noise
variance value to guide the subsequent more accurate noise reduction process. Currently,
the commonly used image noise estimation algorithms are generally divided into three cat-
egories: (a). Smooth filter-based estimation [21,22], within which a noisy image is processed
by various filtering methods, and the filtered image is treated as a clean image and the
original noisy image is subtracted to obtain the difference, and then the noise is estimated.
However, this smoothing filtering approach will blur the details and adversely damage the
accuracy of the noise estimate in photos with many details and complicated high-frequency
information. (b). The blocking-based approach [23,24], which divides the picture into
image blocks based on predetermined criteria and chooses the smoother image blocks with
lower variance for noise estimate. (c). Transform domain-based approaches [25,26], in
which the original picture is converted into the frequency domain or wavelet domain for
noise estimation, with high frequency diagonal subband noise estimation based on the
wavelet domain being extensively employed.

In this paper, the BM-SEED algorithm is proposed for weak target enhancement
and high bearing resolution. We choose CBF as the pre-process DOA algorithm, which
is robust and has been widely used in underwater detection. Next, SEED algorithm is
applied to enhance the target trajectories. In order to suppress the background noise
caused by the peaking operation of multiple frequency points, we further use empirical
mode decomposition (EMD) to extract the main frequency components of the signal.
Considering that the false target is mainly composed of various random noise points,
we finally introduce the BM3D algorithm for post-processing noise reduction and false
target suppression. BM3D includes 3D transformation, Wiener filtering and collaborative
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filtering steps. It filters the whole reference block instead of the reference center pixel
point, which makes the computational rate of the whole algorithm improved and the
noise reduction performance more obvious. Since it is a non-fully adaptive algorithm that
requires a priori noise estimation to set the filtering threshold, and the noise estimation
method mentioned above does not work well directly on the BTR after the improved SEED.
Then, we propose a new noise estimation algorithm to estimate the noise values introduced
by the improved SEED.

The main contributions of this paper includes:

(a) The SEED algorithm is improved and incorporated into the proposed BTR post-
processing framework, in order to address the problem that weak targets are easily
obscured by strong sidelobe.

(b) The BM3D algorithm is introduced to suppress background noise and false targets
caused by SEED algorithm.

(c) This paper proposes a BTR noise estimation method to provide the priori noise
information for the noise reduction part, in order to improve the adaptivity of the
proposed BTR enhancement method.

The reminder of this paper organized as follows: Section 2 elaborates the proposed
BM-SEED algorithm; Section 3 evaluates the proposed method via simulations and sea trial
data; Section 4 discusses the findings of this work and a conclusion is given.

2. Proposed Method

In this section, we propose the BM-SEED algorithm to enhance weak targets and reduce
the influence of background noise. As shown in Figure 1, the recommended algorithm
involves three parts: (a) the peak features of the BTR via the improved SEED algorithm
eliminate energy differences between strong and weak target trajectories; (b) the peak
feature map is filtered adaptively via a user-defined hard threshold to eliminate random
noise; (c) the peak feature maps are further filtered via empirical Wiener filter based on
the matching-block.

Figure 1. Frame of proposed method.

2.1. Peak Feature Extraction

As shown in Figure 1a, this paper selects and improves the SEED algorithm to extract
the peak feature of the original BTRs, which can enhance the energy of weak targets, and the
improved SEED method can be described as follows:

z(θ) = y(θ) + n(θ) (1)
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where θ is the scanning bearing, z(θ) is one snapshot of the extracted peak feature map, y(θ)
is one snapshot of the clean BTR map, and n(θ) is the independent identically distributed
random noise and interference. We assume that n(θ) follows a statistical distribution with
mean E(θ) and variance D(θ), respectively. The mean of y(θ) is E(θ) and the variance is 0,
so z(θ) follows some statistical distribution P(E(θ) + E(θ), D(θ)).

For the purpose of denoising, we adaptively analyze the input signal and incorporate
EMD to extract the signal reflecting the lowest frequency component. The noise estimation
algorithm described in Algorithm 1 is applied in Figure 1a to provide prior information
for subsequent denoising implementation. The difference map are chunked into N ∗ N
blocks, then average their covariance matrices [27]. Next, the covariance matrix, whose size
is N2 × N2, is decomposed by SVD and the singular values are sorted in descending order.
Finally, the noise level is estimated as

A = U × S×VT (2)

where A is a matrix of order m ∗ n of rank r, U and V are singular vectors of A, and S is the
singular value of A, which is a diagonal matrix. Among them, U is m×m square matrix,
UT ∗U = Imm, U is m×m square matrix, VT ∗V = Inn.

In empirical estimation, the BTRs are considered to be made up entirely of noise, so
the mean of the larger singular values represents the noise value level. The experimental
results show that the first singular value is much larger than the others, but since it contains
a weak target energy enhancement that was deliberately introduced earlier, so the average
of the first two singularities is used as the noise sigma level.

σ2 =
1
2

Σ2
i=1s2

n(i) (3)

where σ is noise level estimate, s(i) is the i-th singular value.
Since the level of the first singular is much larger than the latter one, it takes into

account the main energy values in the differential BTR and avoids attenuating the energy
enhancement of the weak BTR targets.

Algorithm 1: Noise Estimation.
Input:Difference matrix of raw BTR and SEED processing results
a. Take block operation, the block size is N ∗ N and the step size is 1;
b. Sum all the blocks and calculate the final mean block;
c. Calculate the covariance matrix for all blocks, the size is N2 ∗ N2;
d. Find the singular value of the covariance matrix, the size is N2 ∗ N2;
e. Arrange the singular values in descending order, and find the mean τ of the first
two singular values;

return Noise estimated value σ =
√

τ.

2.2. Hard Threshold filtering

As shown in Figures 1b and 2, we use hard threshold filtering to reduce background
noise and false targets. The peak feature map of the input BTR is filtered adaptively, which
is constructed via block matching. More precisely, each pixel’s neighborhood is utilized
as a reference block. In order to reduce the computational complexity, it starts with the
first N1× N1 block of the BTR and uses a raster scan, which pans a few columns (rows)
at a time (denoted for example by Nstep < N1), until the whole BTR or region of interest
(ROI) is covered. As we must ensure that all pixels participate in collaborative filtering at
least once, all blocks are selected as reference blocks once, and the overlapping of reference
blocks is also a manifestation of overcompleteness.
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Figure 2. Frame of hard threshold filter.

According to the self-coherence of the BTR target trajectory, we design a search window
for each reference block as shown in Figure 2a, and extends along the time axis. In this way,
for the latest N1 snapshots data, the previously accumulated detection information can be
used to enhance the relevant target trajectory via a matching procedure. For a noiseless
BTR y, the matching error or block distance didel between the reference block YxR and the
block Yx is noted as

didel(YxR, Yx) =
‖YxR −Yx‖2

2

(Nht
1 )2

(4)

where ‖ · ‖2
2 is the square of the Euclidean norm, and Nht

1 is width/height of YxR. If the
two blocks do not overlap, i.e., each pixel is independent, then [20] points out that the
mathematical expectation and variance of the matching error of the two blocks at the
corresponding positions on the noisy BTR z(x) are

E[dnoisy(ZxR, Zx)] = didel(YxR, Yx) + 2σ2, (5)

D[dnoisy(ZxR, Zx)] =
8σ4

(Nht
1 )2

+
8σ2didel(YxR, Yx)

(Nht
1 )2

. (6)

where σ is the estimated noise variance. When the noise variance is large or the blocks are
relatively small, the matching error between the blocks is large as shown in Equation (6), so
it is not accurate to look for similar blocks directly on the noisy BTR z, and two blocks with
a large difference on the noiseless BTR y may be similar on the noisy image z due to the
large variance, resulting in an incorrect match. To solve this problem, the two blocks on the
noisy image z are first subjected to a two-dimensional Discrete Cosine Transform (DCT)
as shown in Figure 2b, and then those coefficients whose magnitude is less than a certain
threshold are set to zero, so that the matching error of the two blocks can be expressed as
the mean square error of these coefficients [20], that is

d(ZxR, Zx) =
‖Υ′(Γht

2D(ZxR))− Υ′(Γht
2D(Zx))‖2

2

(Nht
1 )2

(7)

where Υ′ represents the hard thresholding operation and the corresponding threshold
represents λ2Dσ, typically 2 to 3 standard deviations (empirical values for image processing).
Γht

2D computes the corresponding two-dimensional DCT. The high-frequency random noise
will be retained after the orthogonal transform, while the noiseless BTR generally only has
larger values at a few low-frequency locations due to its sparsity in the transform domain.
Hence, we can remove most of the noise energy by setting the hard threshold after the 2D
orthogonal transform.

Furthermore, since we have already calculated the 2D transform coefficients of all
similar blocks as shown in Figure 2c, if the collaborative transform uses a separable 3D
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orthogonal transform, the results of these 2D transforms can be reused, and we only need
to perform a 1D transformation of the third dimension to further reduce its complexity.
In terms of block matching, we only maintain those blocks whose error is less than a
specific threshold after computing the matching error, and then obtain the corresponding
coordinate set

Sht
xR = x ∈ X : d(ZxR, Zx) ≤ τht

match (8)

where Sht
xR represents the coordinate set of similar blocks for corresponding reference

block, x represents a single pixel, X represents the ROI on BTR, d(ZxR, Zx) is the distance
between reference block ZxR and block Zx in corresponding vertical window, τht

match is an
empirically determined maximum error threshold for identifying the similarity of two
blocks. Obviously, the present reference block itself will be evaluated as a comparable block
as its matching error is 0, indicating that there is at least one element in the coordinate set.
Then we stack all comparable blocks to create a 3D array ZSht

xR
with the shape Nht

1 × Nht
1 ×

|Sht
xR| as shown in Figure 2d, where |Sht

xR| represents the number of items in the set. The
components in the third dimension are sorted in ascending order based on the matching
error. Then, we can execute 3D collaborative transformation and filtering after acquiring
the 3D array corresponding to the reference block, which can be formally described as

Ŷht
Sht

xR
= Γht−1

3D (Υ(Γht
3D(ZSht

xR
))) (9)

where Γht
3D represents the corresponding 3D orthogonal transformation. Generally speak-

ing, we will use a separable transformation to decrease the complexity of the computation
since the results of the preceding two-dimensional transform are already available for
reuses when computing the block matching error. Therefore, Γht

3D can be expressed as
a combination of Γht

2D in the first two dimensions and Γht
1D in the third dimension. The

transform in the first two dimensions is chosen to be of the Fourier transform type such as
DCT, which can better capture the periodic information in the BTR block, and the third-
dimensional transformation uses the wavelet transform type such as Haar wavelet, which
better captures the local similarity between blocks by scaling. Υ represents another hard
threshold operation, and the corresponding threshold is λ3Dσ, usually takes 2 to 3 standard
deviations empirically. Ŷht

Sht
xR

contains |Sht
xR| blocks Ŷht,xR

x , representing the result of collab-

orative filtering by Equation (9), corresponding to a reference block with coordinates xR.
As different reference blocks may contain similar blocks, a block will also correspond to
multiple collaborative filtering results. Therefore, it is necessary to distinguish by using
its corresponding reference block coordinates, and these different filtering results will be
integrated in the later operations to obtain the basic estimate for each pixel.

Since the different reference blocks may also contain similar blocks that overlapped, it
is necessary to integrate these collaborative filtering results from different combinations to
obtain the basic estimate of each pixel after obtaining the collaborative filtering results of
each reference block and its corresponding 3D group.

As a result, we allocate the weights based on the number of non-zero coefficients.
Assuming that all pixels in the 3D combination are independent and that the number of
coefficients left after the hard threshold operation as shown in Figure 2e is NxR

hard, we obtain

ωht
xR =


1

σ2 NxR
hard

if NxR
hard ≥ 1

1 otherwise
(10)

In actuality, similar blocks inside a 3D combination may frequently overlap, implying
that all pixels are not fully independent of one other, but for convenience, we shall calculate
the weights using Equation (10). In order to reduce boundary effects, the Kaiser window is
used for each block to provide a larger weight to the central pixel.

Finally, we generate its base estimate by superimposing the weights of all the reference
blocks to which a pixel belongs and the corresponding similar blocks as shown in Figure 2f,g,
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i.e., each reference block and its similar blocks will be added to the initial location of the
reference block in a weighted way [20] as follows:

ŷbasic(x) =
∑xR∈X ∑xm∈Sht

xR
ωht

xRŶht,xR
xm (x)

∑xR∈X ∑xm∈Sht
xR

ωht
xRχxm(x)

, ∀x ∈ X (11)

where we assume that each block has been filled with zeros to the same size as the original
BTR, and determine whether a pixel x is on block xm by χxm : X → {0, 1} (for normalization
of the weights summation).

2.3. Empirical Wiener Shrinkage

In this subsection, we employ the empirical Wiener shrinkage technique as shown in
Figures 1c and 3 for higher detection gains, which is based on the principle of estimate the
power spectrum of the transform coefficients on the basic estimated BTR in order to shrink
the transform coefficients of the original noisy BTR.

Figure 3. Frame of Wiener empirical shrinkage.

As shown in Figure 3(a1,a2), enough similar blocks for each reference block are found
out in a vertical window

Swie
xR = {x ∈ X :

‖Ŷbasic
xR − Ŷbasic

x ‖2
2

(Nwie
1 )2

≤ τwie
match} (12)

where Swie
xR represents the coordinate set of similar blocks for corresponding reference

block, x represents a single pixel, X represents the ROI on BTR, Ŷbasic
xR represents reference

block on basic estimated BTR obtained in the last step, ‖Ŷbasic
xR − Ŷbasic

x ‖2
2 represents the

block distance between Ŷbasic
x and reference block Ŷbasic

xR − Ŷ, (Nwie
1 )2 represents block size,

and τwie
match represents an empirically determined maximum error threshold.

Now two 3D combinations are generated, namely Ŷbasic
Swie

xR
and ZSwie

xR
. This is a 3D

combination of similar blocks on the basic estimated BTR as shown in Figure 3b, and the
latter is the original noisy BTR block in the same position as shown in Figure 3c. The Wiener
filter is a linear filter that minimizes the mean square error between the filtered output
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of the noisy signal and the original noise-free signal. Its discussion is generally in the
frequency domain, a commonly used definition is

H(u, v) =
H∗d (u, v)

|Hd(u, v)|2 + Pn(u,v)
Ps(u,v)

(13)

where H(u, v) represents the frequency response function of the Wiener filter and H∗d (u, v)
is the frequency response function of the degenerate system. Pn(u, v) and Ps(u, v) represent
the power spectrum of the noise and the original signal, respectively.

Specifically, we use Ty to denote the transform coefficient of the noiseless BTR and Tz
the transform coefficient of the corresponding noisy BTR, then it has

Tz(x) = Ty(x) + η(x), η(x) ∼ P(E(η(x)), σ2) (14)

The mathematical expectation of the power spectrum of the noisy and noisy BTR can
be found as

E(η2(x)) = D(η(x)) + E2(η(x)) = E2(η(x)) + σ2, (15)

E(T2
z (x)) = E((Ty(x) + η(x))2) = T2

y (x)+

2Ty(x)E(η(x)) + E2(η(x)) + σ2.
(16)

Since we have repeatedly mentioned that the basic estimated BTR can be used as an
empirical estimate of the original noiseless BTR, the spectrum Ty of the noiseless BTR can be
replaced by the spectrum of the basic estimated BTR. Substituting the empirical estimates
of the basic estimated BTR and the power spectrum of the noise into Equation (13) yields

H(x) =
1

1 + Pn(x)
Ps(x)

=
Ps(x)

Ps(x) + Pn(x)
=

T2
ŷbasic(x)

T2
ŷbasic(x) + σ2 (17)

where T2
ŷbasic(x) is the basic estimate BTR, σ2 is the power spectrum of the noise. Then an

intuitive filtering method can be defined as a classical Wiener filter expression

T′Z(x) =
T2

ŷbasic(x)

T2
ŷbasic(x) + σ2

TZ(x) (18)

where TZ(x) is the transform coefficient of the corresponding noisy BTR, T′Z(x) is the
transform coefficient after empirical Wiener filter. After the hard threshold filtering in
the previous step, the noise reduction BTR no longer has so much impulsive noise, i.e.,
the Wiener filter is more suitable for the second step of noise reduction, which is less
effective if it directly deals with too much impulsive noise.

Since the Wiener filter is a linear filter with the optimal mean square error, the result of
Equation (18) is mathematically expected to minimise the mean square error of the output
BTR with respect to the original noise-free signal. After obtaining the basic estimated BTR
and the two 3D combinations Ybasic

Swie
xR

and ZSwie
xR

at the same position on the original noisy

BTR respectively, we can obtain

Ywie
Swie

xR
= Γwie−1

3D (WSwie
xR
× Γwie−1

3D (ZSwie
xR
)) (19)

where WSwie
xR

=
|Γwie

3D (Ybasic
Swie

xR
)|2

|Γwie
3D (Ybasic

Swie
xR

)|2+σ2 , | · | represents the modulus of a complex number, WSwie
xR

is

the coefficient matrix after Wiener filtering. Wiener shrinkage can not only suppress part of
the noise energy, but also preserve the detailed information of the BTR itself. Therefore,
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compared to the hard threshold filtering of Step 2, Step 3 can reduce noise in all frequency
bands without losing the high frequency.

Assuming that all pixels in the 3D combination are independent, the residual noise
is proportional to the second-order norm of the shrinkage coefficient matrix, so similar to
Equation (10), the weight that defines the combination as [20] is

ωwie
xR = σ−2‖WSwie

xR
‖−2

2 (20)

where WSwie
xR

is the coefficient matrix after Wiener filtering.
Likewise, we can add a Kaiser window to give more weight to the pixels in the center

of the block as shown in Figure 3g,h, thereby reducing edge effects. Then, similar to
Equation (11), the final estimated BTR obtained in Step 3 can be expressed as

ŷ f inal(x) =
∑xR∈X ∑xm∈Swie

xR
ωwie

xR Ŷwie,xR
xm (x)

∑xR∈X ∑xm∈Swie
xR

ωwie
xR χxm(x)

, ∀x ∈ X (21)

where we assume that each block has been filled with zeros to the same size as the original
BTR, and determine whether a pixel x is on block xm by χxm : X → {0, 1}.

Although Steps 3 and 2 both directly denoise the original noisy BTR, Step 3 additionally
employs the basic estimated BTR acquired in Step 2. Furthermore, it can precisely locate
related blocks, and on the other hand, it can be utilized as an empirical estimate of the
original noise-free BTR to conduct Wiener filtering with optimum mean square error.

3. Simulations

In this section, we experimentally validated the technique in multi-target jamming
and low SNR situations in the following simulations, respectively. The frequency range of
the simulated ship radiation noise signal is 100 Hz∼1000 Hz, and the sampling frequency
is 4000 Hz. The receiving array is a 64-units horizontal linear sonar array, with a spacing of
0.75 m between the array unit. The measuring signal angle ranges from 0 to 180 degrees,
with a precision of 0.5 degrees.

3.1. Jamming-Targets

This subsection evaluates the detection capability of the proposed method within a
jamming-targets environment. As shown in Figure 4a, we have simulated a total of 30
snapshots of array-received data, there is a slow moving strong target at 90 degree, and the
angle has nearly no change within 30 snapshots. Then we set the Signal-to-Interference
ratio (SIR) of a weak target to −20 dB, the background SNR to 0 dB, and move rapidly from
an angle of 60 degree to 120 degree. The weak target trajectory can hardly be detected via
naked eyes.

We choose the deconvolution algorithm as the baseline of the experiment. The core of
the deconvolution algorithm is that the DOA spectra are obtained by convolving the real
energy distribution of the target in space with the PSF function, while the PSF function can
be calculated from the known array information, and then the real target energy distribution
can be calculated by the inverse operation. Figure 4b depicts the experimental findings,
the mainlobe of the strong target has been significantly narrowed, and the target trajectory’s
resolution has been improved. However, the energy of the weak target trajectory has not
been improved, and it is still difficult to see clearly compared to Figure 4a, and it even has
a weakening effect on weak targets.
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(a) (b)

(c) (d)

Figure 4. Experiment Results under −20 dB SIR. (a) CBF result under −20 dB SIR; (b) Deconv result
under −20 dB SIR; (c) BM-SEED result under −20 dB SIR; (d) Results-Comparison under −20 dB SIR.

The processing outcome of the approach provided in this work is shown in Figure 4c
and Table 1. The mainlobe width is more than 2 degrees lower than that of the deconvolu-
tion algorithm, and the fast-moving weak target trajectory is also much improved.

Table 1. Beamwidth (degree) under different SIR .

SIR (dB) CBF Deconvolution BM-SEED

−20 6.8 degree 3.2 degree 1 degree
−25 7.1 degree 3.5 degree 1.1 degree

In order to compare the differences between the proposed method and other algo-
rithms in more detail, we extract the middle moment snapshots of the above three results
(which can avoid the influence of the first and last moments on the waveform stability). Fig-
ure 4d shows the comparison result that the proposed approach’s mainlobe width is almost
1.0 degree, the CBF and deconvolution’s mainlobe width are almost 6.8 and 3.2 degree,
respectively, and the weak target is enhanced as well. This demonstrates that the proposed
approach in this study not only dramatically narrows the width of the mainlobe, but also
has a favorable effect on enhancement of weak targets.

Finally, we further reduce SIR down to −25 dB, the experimental findings are given
in Figure 5a–c, where it can be observed that the mainlobe width of target is still almost
decreased to 1.1 degree, and weak targets have a certain improvement impact. To further
understand the algorithm’s performance, we took the middle snapshot data, as shown in
Figure 5d. The mainlobe width of the target is obviously narrowed, but the enhancement
of the weak target near 79 degrees is not obvious enough. It can also be seen in the BTR
Figure 5c that the trajectory improvement is not as good as the previous set of experiments.
That is, the enhancement effect has reached the limit of algorithm performance.
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(a) (b)

(c) (d)

Figure 5. Experiment Results under −25 dB SIR. (a) CBF result under −25 dB SIR; (b) Deconv result
under −25 dB SIR; (c) BM-SEED result under −25 dB SIR; (d) Results-Comparison under −25 dB SIR.

3.2. Low-SNR Environments

This subsection evaluates the performance of the proposed method within different
SNR environments. The noise used in this experiment is in-band Gaussian white noise
that has been time-domain filtered to 100–1000 Hz to eliminate superfluous noise outside
the frequency region. First, a set of experiments is required to add noise to SNR = −20 dB.
The target moves at a constant speed from 30 degrees to 40 degrees, and CBF is used
for beamforming. The obtained BTR is shown in Figure 6a, it can be seen that the target
trajectory formed by traditional CBF is very wide, and the background noise has a certain
interference effect on the target trajectory. Then we use the deconvolution and proposed
method to process the BTR in the post-processing stage, respectively.

The experiment results are shown in Figure 6b and Figure 6c, respectively. Figure 6d
shows the single snapshot comparison. With energy magnitude normalization, it can
be seen that the background noise magnitude of CBF is around 0.7, the deconvolution
algorithm results in around 0.4, while the background noise of the proposed method has
reached 0.2, which is less than the others. Moreover, the proposed method’s noise floor is
smoother, which will be better for target tracking.

The performance of the algorithm is further investigated at SNR = −25 dB. The experi-
mental results are shown in Figure 7a–c. The single snapshot is depicted in the Figure 7d,
and the comparison demonstrates that the CBF’s background noise level is almost 0.8,
the deconvolution’s result is around 0.6, and the proposed method’s noise floor is greatly
decreased to almost 0.35, demonstrating that the proposed method still performs well
under such situation. Then reduce the signal-to-noise ratio to−26 dB as shown in Figure 8a,
the processed BTR as shown in Figure 8b, the background noise is still greatly reduced,
but the trajectory changes at the beginning and end of the target trajectory. Then the target
trajectory processed by CBF, deconvolution, and the proposed method is used for tracking
processing. The mean square error (MSE) of the tracking results is shown in Figure 9,
and the track accuracy obtained are 2.147, 1.602, and 0.996 degrees. That is, the tracking
accuracy of the proposed method can still be kept within 1 degree under the signal-to-noise
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ratio of −26 dB, and lower SNR will induce drift of the target trajectory in post-processing
due to noise damage to the original trajectory.

(a) (b)

(c) (d)

Figure 6. Experiment Results under−20 dB SNR. (a) CBF result under−20 dB SNR; (b) Deconv result
under−20 dB SNR; (c) BM-SEED result under−20 dB SNR; (d) Results-Comparasion under−20 dB SNR.

(a) (b)

(c) (d)

Figure 7. Experiment Results under−25 dB SNR. (a) CBF result under−25 dB SNR; (b) Deconv result
under−25 dB SNR; (c) BM-SEED result under−25 dB SNR; (d) Results-Comparasion under−25 dB SNR.
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(a) (b)

Figure 8. Experiment Results under −26 dB SNR. (a) CBF result under −26 dB SNR; (b) BM-SEED
result under −26 dB SNR.

Figure 9. Accuracy of tracking results.

4. Sea-Trial Experiments

The experiments of this section evaluate the BM-SEED method by using sea-trial data,
and the data are collected in the South China Sea, in the summer of 2021. The sonar array
utilized in the experiment is a towed horizontal line array with 256 elements, the unit
distance is 1.5 meters and the frequency band of the detection signal is 250–400 Hz.

As shown in Figure 10a, there are two strong targets at 60 degree and 100 degree
respectively, and there are weak target tracks near 75 degree. We use the traditional
SEED algorithm to obtain the processing result as shown in Figure 10b and the trajectory
resolution is improved, but the weak target enhancement is not good, and many interference
false weak targets appear in the background. Then we use the improved SEED algorithm
as shown in Figure 11a, the weak target is enhanced but the false target is enhanced as well,
and the resolution is also improved as shown in Figure 11b after using the deconvolution
method, but the weak target energy is suppressed. Finally, we use the method proposed
in this paper, the overall resolution is greatly improved, and an obvious target track
appears near 75 degree and 115 degree as shown in Figure 11c, which is not seen in the
deconvolution BTR at all. These experiment results show the good performance for weak
target enhancement by using the proposed method. Then as shown in Figure 11d, some
targets with weak energy are enhanced greatly by the proposed algorithm compared with
the other two algorithms.



J. Mar. Sci. Eng. 2023, 11, 357 14 of 17

(a) (b)

Figure 10. Sea-trial experiments. (a) Original MVDR1; (b) SEED.

(a) (b)

(c) (d)

Figure 11. Sea-trial experiments 2. (a) improved SEED; (b) Deconv MVDR1; (c) BM-SEED MVDR1;
(d) Snapshot Comparasion.

Then we choose other experiment data as shown in Figure 12a to verify the proposed
method, the original BTR of this experiment is based on the MVDR algorithm. The
resolution of Figure 12b can be improved after deconvolution, but at 80 degrees, several
weak target tracks at 30 min are weakened. As shown in Figure 12c, the resolution is not
only improved, but also the trajectories strength of several weak targets at the same position
are improved. Finally, as shown in Figure 12d, the BM-SEED algorithm can apparently
enhance the weak targets in DOA spectrum.

The proposed algorithm reduces the trajectory energy difference between the weak
targets and the strong interference targets, resulting in an improved weak targets after
normalization. Some of the pseudo-targets experience energy enhancement during the
peak feature extraction, but due to the randomness of the presence of pseudo-targets, it is
difficult to form regular and effective trajectories on the BTR, which will be considered as
impact noise and smoothed out by the proposed algorithm, i.e., the proposed algorithm can
simultaneously reduce the background noise and the presence of pseudo-targets at the same
time. The aforesaid experimental effect is more visible in single-tap trials. The findings
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reveal that the BM-SEED algorithm performs well in four aspects: noise suppression, high
resolution, weak target enhancement, and low SNR detection capabilities.

(a) (b)

(c) (d)

Figure 12. Sea-trial experiments 2. (a) Original MVDR2; (b) Deconv MVDR2; (c) BM-SEED MVDR2;
(b) Snapshot Comparasion.

5. Conclusions

This paper proposes a BM-SEED algorithm for the post-processing of underwater
acoustic detections, which includes peak feature extraction, hard threshold filtering and
empirical Wiener shrinkage.

The proposed BM-SEED algorithm not only has a very outstanding ability in improv-
ing the resolution, but also has excellent performance in enhancing the trajectory of weak
targets. In addition, we further consider the performance of the algorithm under low SNRs,
and experiments show that it still works well under low SNR. Finally, we use the actual sea
trial data to verify the algorithm. It can be observed that the proposed algorithm is still
significantly better than the deconvolution algorithm in terms of resolution improvement
and weak target enhancement, which is consistent with the simulation results. However,
in the case of more complex noise background such as deep-sea hydroacoustic environment,
the method is difficult to completely remove the influence of noise, and may introduce
false signals, bringing detection errors to the sonar system. Therefore, in the actual sea trial
data, the method is more applicable to the BTR obtained from shallow sea environment.
Moreover, in the follow-up algorithm research, we will further use GPU parallel computing
to improve the real-time running performance of the algorithm.
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Abbreviations
The following abbreviations are used in this manuscript:

BTR Bearing time record
BM-SEED Block Matching - Subband Extrema Energy Detection
CBF Conventional beamforming
SPED Sub-band peak energy detection
DOA Directions estimating of arrivals
SNR Signal-to-noise ratio
SED Subband energy detection
SEED Subband Extrema Energy Detection
PSF Point spread function
EMD Empirical mode decomposition
ROI Region of interest
DCT Discrete Cosine Transform
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