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A B S T R A C T

In the last decade, the explosive growth of vision sensors and video content has driven numerous application
demands for automating human action detection in space and time. Aside from reliable precision, vast real-
world scenarios also mandate continuous and instantaneous processing of actions under limited computational
budgets. However, existing studies often rely on heavy operations such as 3D convolution and fine-grained
optical flow, therefore are hindered in practical deployment. Aiming strictly at a better mixture of detection
accuracy, speed, and complexity for online detection, we customize a cost-effective 2D-CNN-based tubelet
detection framework coined Accumulated Micro-Motion Action detector (AMMA). It sparsely extracts and
fuses visual-dynamic cues of actions spanning a longer temporal window. To lift reliance on expensive optical
flow estimation, AMMA efficiently encodes actions’ short-term dynamics as accumulated micro-motion from
RGB frames on-the-fly. On top of AMMA’s motion-aware 2D backbone, we adopt an anchor-free detector
to cooperatively model action instances as moving points in the time span. The proposed action detector
achieves highly competitive accuracy as state-of-the-arts while substantially reducing model size, computational
cost, and processing time (6 million parameters, 1 GMACs, and 100 FPS respectively), making it much more
appealing under stringent speed and computational constraints. Codes are available on https://github.com/
alphadadajuju/AMMA.
1. Introduction

In recent years, spatiotemporal action detection/localization has
been an active area of research driven by numerous application de-
mands such as unmanned surveillance, driver-assistance systems, and
interactive robot services, etc. [1]. When compared to the task of
video action recognition, detecting actions in space and time poses
more challenges, as it aims to predict the spatial positions, temporal
boundaries, and action categories of individual action instances in
the video (rather than inferring a global action label). On top of the
complex nature of the problem, action detection becomes more difficult
when it needs to fulfill online settings, i.e., continuously observing
ongoing actions (from streaming videos) and updating detection re-
sults in an efficient and real-time fashion. These criteria are crucial
in many of the above application scenarios but often overlooked by
ongoing research, which solely address high-precision detection while
disregarding computational budgets.

Modern solutions for action detection mostly rely on adopting CNN
(Convolutional Neural Network) detectors to localize action instances.
To extract the temporal cues from actions, one leading approach is to
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employ the two-stream CNN architecture pioneered by Simonyan and
Zisserman [2]. This architecture decouples spatiotemporal reasoning
into separate learning of frame-wise RGB and optical flow features,
followed by designated fusion strategies such as those proposed by Peng
and Schmid [3],Singh et al. [4]. Other approaches further model short-
term appearance variations by extending frame-wise detection to the
clip-level [5–8]. These methods input a sequence of consecutive frames
from which they directly infer action tubelets (i.e., a sequence of
bounding boxes). When integrated with the two-stream architecture,
action tubelet detectors achieve state-of-the-art performance with 2D
CNN backbones. Inspired by leading techniques for action recognition,
the latest action detectors also leverage 3D CNN to augment frame-wise
prediction with additional spatiotemporal context [7,9–12]. Equipped
with a hierarchy of 3D convolutional filters to simultaneously model
spatial and temporal variations, 3D CNN-based detectors are capable
of learning high-dimensional video representations from consecutive
RGB frames alone. Fusing optical flow cues proves to further enhance
the temporal modeling capability and detection accuracy in the above
methods [13–15].
vailable online 16 June 2023
047-3203/© 2023 Published by Elsevier Inc.

https://doi.org/10.1016/j.jvcir.2023.103879
Received 5 September 2022; Received in revised form 28 April 2023; Accepted 10
 June 2023

https://www.elsevier.com/locate/jvci
http://www.elsevier.com/locate/jvci
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
https://github.com/alphadadajuju/AMMA
mailto:yu_liu@etu.u-bourgogne.fr
mailto:fanyang@u-bourgogne.fr
mailto:dominique.ginhac@ubfc.fr
https://doi.org/10.1016/j.jvcir.2023.103879
https://doi.org/10.1016/j.jvcir.2023.103879


Journal of Visual Communication and Image Representation 95 (2023) 103879Y. Liu et al.
Fig. 1. Overview of AMMA. Given continuous video frames, AMMA incrementally detects underlying action instances by their bounding boxes and categories. Different from
existing accuracy-dominating detectors, the design of AMMA integrates a number of highly efficient modules to achieve low-cost, real-time, and online action detection for practical
deployment.
In spite of the aforementioned advancements, we argue that trend-
ing action detection pipelines have been tailored to solely obtain su-
perior detection scores in public benchmarks. In turn, they are sub-
optimal in terms of efficiency for practical deployment. Firstly, short-
term dynamics in the form of optical flow are often exploited to model
temporal structures of actions. Under this setup, however, optical flow
inevitably needs to be prepared in advance as it is expensive and
time-consuming to acquire on-site, not only incurring wasteful data
storage, but also prohibiting online detection. Meanwhile, even though
3D CNNs can extract spatiotemporal cues directly from RGB frames,
they introduce significantly higher computational cost and training
difficulty by an order of magnitude than their 2D counterpart. Due to
the above drawbacks, existing detectors hardly meet the requirements
of vast real-world applications, which seek many other qualities beyond
just accuracy, for instance high-speed and continuous workflow. Lately,
moving the computation closer to the sensor has become even more
critical in order to manage enormous data flow (i.e., video streams).
Such migration in the sensing paradigm shifts the dependence from
powerful workstation GPUs to resource-limited embedded/edge de-
vices, further demanding drastic reduction in the computational cost
of deployed methods.

In this paper, we propose an action detection solution more perti-
nent to the stringent criteria of practical detection scenarios, termed
Accumulated Micro-Motion Action detector (AMMA, as summarized in
Fig. 1). AMMA is a real-time tubelet detector operating on lightweight
2D CNN backbones and raw video clips. It adopts the tubelet detection
scheme, acquiring actions’ spatiotemporal context by combining suc-
cessively sampled RGB visuals and complementary dynamic cues. To
2

encode short-term action dynamics in an efficient manner, we devise a
simple yet effective motion representation loosely inspired by optical
flow by accumulating learnable motion boundaries captured at each
video clip (referred to as ‘‘micro-motion’’). In AMMA’s 2D-CNN back-
bones, micro-motion is computed on-the-fly from RGB frames, whose
abstract features can then be adaptively fused with the appearance ones
at multiple convolutional scales to produce temporal-aware features.

On top of its spatiotemporal backbone, AMMA aggregates multiple
temporal-aware features from successive clips at its detector head, per-
mitting longer-range action modeling. Precisely, it adopts an anchor-
free detector head popularized by Zhou et al. [16], which is compu-
tationally more efficient than mainstream detectors such as SSD [17]
and YOLO [18] who rely on pre-defined anchor boxes densely dis-
tributed across the entire scene. Inspired by the recent work of Li et al.
[8], AMMA’s detector head consists of three cooperative branches for
coarsely recognizing and localizing action instances’ centers, modeling
their movement over time, and regressing their sizes. Furthermore,
due to the smoothness nature of continuous actions, our detector can
efficiently infer temporally coarse action tubelets across an extended
temporal window while interpolating intra-frame detection. When han-
dling online video streams in real-time, AMMA incrementally detects
coarse tubelets and links them over time to yield long-range action
tubes for spatiotemporal action localization.

To the best of our knowledge, AMMA is one of the few works
primarily focusing on highly efficient action detection solutions for
realistic deployment on low-end devices. The main contributions of our
work can be summarized as follows:
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• We propose a compact micro-motion representation to encode
short-term action dynamics. Compensating for the low efficiency
of traditional optical flow methods, our motion representation can
be generated on-the-fly from video streams in real-time.

• We devise a lightweight action tubelet detector integrating 2D
CNN backbones, micro-motion generation & fusion, and coop-
erative detection branches. It adopts a coarse-to-fine detection
paradigm to efficiently infer actions in online settings.

• We tailor the proposed detection pipeline with three ultra-light-
weight CNN backbones and validate their superior mixture of per-
formances in precision, speed, and complexity on spatiotemporal
action benchmarks.

. Related work

Different from action recognition or temporal action detection, spa-
iotemporal action detection not only requires localizing when actions
ccur along the time span, but also spatial localization down to the
rame level. Hence, leading methods in the field typically leverage
aried temporal modeling techniques on top of CNN-based object de-
ectors. In this section, we briefly review recent progresses in object
etection and spatiotemporal action detection.

.1. CNN-based object detection

Existing object detectors mostly deduce objects’ categories and lo-
ations from pre-defined proposals of bounding boxes (i.e., ‘‘anchor’’
oxes) densely placed over the input image. Under the anchor-based
ramework, two detection pipelines are widely explored. R-CNN and
ollow-up research [19–21] adopt a two-stage approach. In the first
tage, class-agnostic region-of-interest (RoIs) are regressed from a set of
nchors via the Region Proposal Network (RPN). Next, features pooled
rom each RoI are further categorized, and that RoI’s spatial extent is
efined to form the final bounding box. Such a two-stage workflow
mposes a bottleneck upon real-time inference speed. To accelerate
etection, single-stage detectors such as YOLO by Redmon and Farhadi
18] and SSD by Liu et al. [17] remove the intermediate region proposal
tep. In a single forward-pass, they directly perform bounding box
egression and classification on anchors across every grid of the image
eature. With this pipeline, one-stage detectors can operate in real-time
hile retaining competitive accuracy as the two-stage variants.

Integrating anchor boxes has become the mainstream design choice
n modern detectors. Nevertheless, utilizing anchors introduces ex-
essively more design parameters associated with anchor sizes, as-
ect ratios, and number of pre-defined boxes, etc. These hyperpa-
ameters largely impact the final detection performance and require
euristic tuning for different datasets. Further, anchors incur compli-
ated intersection-over-union (IoU) computation when matched with
roundtruth boxes. In contrast, some newly proposed detectors demon-
trate comparable accuracy by directly regressing objects’ shapes and
ocations without pre-defined anchors (such as the works by Zhou et al.
16],Law and Deng [22],Liu et al. [23],Tian et al. [24],Xie et al. [25]).
or instance, Zhou et al. [16]’s CenterNet represents an object by its
ounding box’s center, converting the detection task to a keypoint es-
imation problem. After acquiring image features, the network predicts
bjects’ center points in the form of a multi-channel heatmap. Peaks
ithin the heatmap are regarded as the center locations of detected
bjects, and each channel is associated with a class. Objects’ bounding
oxes can then be regressed from image features whose locations
atch those of the deduced centers. In a similar spirit, Law and Deng

22]’s CornerNet detects objects as pairs of keypoints by predicting two
eparate heatmaps, each encoding the top-left and bottom-right corners
f objects’ bounding boxes. Detected corners are considered belonging
o the same objects and then grouped together based on their similarity
3

mbedding.
2.2. Spatiotemporal action detection

Many efforts have been made to extend image-based object de-
tectors to video action detection. One popular approach to embed
temporal information for action reasoning is to adapt the two-stream
CNN architecture pioneered by Simonyan and Zisserman [2]. In this
architecture, appearance and motion features are independently ex-
tracted from RGB and optical flow inputs using two feed-forward
networks. Fusing the results from both modalities first demonstrates
beneficial for action recognition accuracy, inspiring many subsequent
works in related fields [26–28]. Under the hood, Sevilla-Lara et al.
[29] found that fusing optical flow with RGB modalities not only
provides additional temporal information, but also helps to capture
appearance-invariant structures (i.e., moving targets’ ‘‘boundaries’’).
This facilitates model generalization against vast inter-class appear-
ance variations across action videos. Building upon the two-stream
framework, Peng and Schmid [3],Saha et al. [30] employ two parallel
R-CNNs (i.e., for RGB and optical flow) and combine action proposals
from both RPNs to augment detection. Frame-wise results of the en-
tire video is then linked over time into action tubes by solving two
energy maximization problems, ensuring optimal temporal coherence
and smoothness. Alternatively, Singh et al. [4] employ two SSD, a
reduced optical flow estimator, and an incremental linking algorithm to
enable online action detection in real-time. Under a similar setup, [31]
integrates an optical flow sub-network within the detection framework
which allows joint optimization of optical flow generation tailored to
the task of action detection.

To further encode the intra-frame temporal relationships between
action regions spanning continuous video frames, Kalogeiton et al.
[5],Yang et al. [7] take a short clip of consecutive RGB frames as input,
regressing 3D anchor cuboids to obtain tubelet detection. Saha et al.
[32] also formulate a similar clip-based learning scheme utilizing two
successive frames (but not necessarily consecutive), enabling learning
from action sequences without dense per-frame annotation. Inspired by
recent advancements in various 3D CNN architectures which can model
highly abstracted video representations with proper pretraining [33],
3D CNN has been widely exploited in the latest studies of action
detection [10–15,34]. More recently, the adoption of self-attention and
transformer architecture by Vaswani et al. [35] for modeling actions
over long sequences also receives rising attention [12,36].

Extracting relevant spatiotemporal cues from actions is a chal-
lenging problem that often relies on convoluted strategies at high
computational cost (e.g., 3D CNN or optical flow generation). Alterna-
tively, several research seek more efficient architectures or workflows
to cope with action detection toward practical configurations. Instead
of employing parallel CNNs, [6] leverage an innovative two-stream
fusion scheme, only extracting shallow optical flow context and using
it to directly modulate low-level RGB features for efficiency gains. As
computing optical flow itself imposes bottleneck upon online and real-
time inference, Zhang et al. [37] propose gathering motion boundaries
by finding the temporal offsets between shallow-CNN features, lifting
reliance on traditional optical flow. To avoid the heuristic anchor
design adopted by most tubelet detector, Li et al. [8] extends CenterNet
by treating each actor as a point, and further models actions over
time via the trajectory of moving points. Considering that dense per-
frame detection is redundant for efficient action inference, Li et al. [15]
further introduces a progressive paradigm, which initially estimates
coarse spatiotemporal action tubes spanning the entire video and then
selectively refines these tubes at sampled timestamps. Even though
the above works do not specifically address spatiotemporal action
detection in online settings, they share our incentives of approaching
action reasoning jointly from the point-of-view of high accuracy and

efficiency.
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Fig. 2. Overview of AMMA. AMMA’s backbone takes a video clip of 𝑡 frames as input at a time (𝑡 = 4 in this study), encodes short-term action dynamics as accumulated
micro-motion, and outputs a motion-aware feature tensor by merging appearance (from 𝐹𝑡) and complementary motion information via lateral fusion. Beyond a single clip, AMMA
enables long-range spatiotemporal modeling by aggregating multiple clip-level features at its detector head consisting of three cooperative branches. After merging results of the
detector branches, the predicted tubelets are coarse in time. From the coarse tubelets, dense frame-wise detection can be interpolated between any two clips in a later stage. In
this figure (and throughout the manuscript), 𝐾 denotes the number of clips, 𝐻 and 𝑊 denote the height and width of the RGB/motion frame, 𝑅 denotes the spatial downsampling
ratio, 𝐷 denotes the number of channels, and 𝐶 denotes the number of action categories. CAT is short for concatenation.
3. Methodology

3.1. Overview

Our proposed detection framework, termed Accumulated Micro-
Motion Action detector (AMMA), is an end-to-end 2D-CNN-based
tubelet detector. As summarized in Fig. 2, AMMA takes multiple short
video clips as input and produces temporally coarse action tubelets
spanning the input sequence. Each video clip comprises 𝑡 consecutive
frames. From each video clip, appearance information is extracted from
the latest frame (𝐹𝑡) by the 2D CNN backbone. Alongside appearance
feature extraction, each clip is fed to our micro-motion sub-network
which generates and accumulates short-term dynamics of actions. From
the micro-motion, temporal cues are further extracted and fused with
the appearance features from 𝐹𝑡 via multiple lateral connections to
encode short-term spatiotemporal context for the clip.

To model longer spatiotemporal structures across multiple video
clips, AMMA aggregates their respective temporal-aware features by
stacking them in the channel dimension at its detector head. In essence,
the aggregated features are fed to three branches to recognize and
spatially localize action instances’ centers, model the trajectories of
action centers over time, and regress their spatial extent (e.g., height
and width). Cooperative modeling of the three branches produces
action tubelets that are temporally coarse, where detection takes place
only at 𝐹𝑡 of each clip. Action tubelets can be incrementally detected
and linked over time following the designated matching strategy, form-
ing long-range action tubes for spatiotemporal localization. Finally,
dense frame-wise detection is acquired by intra-frame interpolation be-
tween any two detection. The following sections describe each working
module of AMMA in detail.

3.2. AMMA-backbone

Clip-level appearance information. We define an input video clip
𝑉𝑐𝑝 to contain 𝑡 consecutive RGB frames, where 𝑉𝑐𝑝 = [𝐹1, 𝐹2,… , 𝐹𝑡].
The dimension of each frame is 𝐻 ×𝑊 × 3. Since neighboring frames
4

share highly resembling visual cues, we only extract appearance infor-
mation from 𝐹𝑡 via a 2D CNN. Formally, we adopt a reduced variant
of the encoder–decoder architecture used by Zhou et al. [16] as the 2D
backbone. Originally, three deconvolution layers have been added at
the end of ResNet’s [38] final convolution layer as the decoder. This
serves to adaptively project highly abstracted features onto a spatially
larger feature map to facilitate dense detection of small/overlapped
objects. Different from object detection, it can be reasonably assumed
that the likelihood of actors emerging densely in a scene is low. With
this insight, AMMA’s backbone decoder is implemented with only one
deconvolution layer followed by bilinear upsampling. The resulted ap-
pearance feature is a tensor with dimension 𝐻

𝑅 × 𝑊
𝑅 ×𝐷, where 𝑅 and

𝐷 correspond to the downsampling ratio and channel dimension of the
feature, respectively. In practice, 𝑅 and 𝐷 are 8 and 256, respectively.

Accumulated micro-motion as clip-level action dynamics. A
short sequence of 𝑡 frames still potentially embeds crucial dynamic
information which 𝐹𝑡 alone does not carry. Such a motion cue, often
encoded in optical flow, consistently grants two-stream CNN networks
better discriminating capacity to recognize actions. Alternative to opti-
cal flow which is commonly prepared in advance due to its high com-
putational cost, we devise a simpler, adaptive motion representation
which highlights the small displacements of motion boundaries.

We uncover motion information of a clip by simply accumulating
the appearance variation between 𝐹𝑡 and its precedent frames in the
shallow-CNN feature space. Specifically, shallow-CNN features tend to
reflect local patterns (e.g., edges or textures) with low receptive fields.
The difference map between two such low-level features within close
temporal proximity inherently encapsulates the temporal evolution of
various general patterns. This simulates the ‘‘motion boundaries’’ de-
scribed by Sevilla-Lara et al. [29] as introduced in Section 2.2. We refer
to our implicit motion representation as accumulated micro-motion.

Formally, we define the shallow convolutional block, 𝐶𝑜𝑛𝑣5×5, as
eight 5 × 5 convolutions with strides of 1 and paddings of 3. The
input to the convolutional block is any clip 𝑉𝑐𝑝 where all its frames are
first downsampled by two via a max pooling layer. The downsampling
operation comes from our observation that the difference map between
two shallow features within close temporal proximity retains values
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near 0 in most areas, i.e., it only contains high responses in motion
salient regions. As the difference map exhibits high sparsity, it is more
efficient to process it in a low-resolution space without much loss of
information. Concretely, the above steps are described as follows:

[𝑓1, 𝑓2,… , 𝑓𝑡] = 𝐶𝑜𝑛𝑣5×5(𝑀𝑎𝑥𝑃𝑜𝑜𝑙([𝐹1, 𝐹2,… , 𝐹𝑡])) (1)

𝑀𝑀𝑑
𝑖 (𝑥, 𝑦) = 𝑓 𝑑

𝑡 (𝑥, 𝑦) − 𝑓 𝑑
𝑖 (𝑥, 𝑦), 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝑡 − 1, (2)

where in Eq. (1), 𝑓1, 𝑓2,… , 𝑓𝑡 represent shallow-CNN features of frames
in 𝑉𝑐𝑝, each with a dimension of 𝐻

2 × 𝑊
2 × 8. In Eq. (2), 𝑓 𝑑 (𝑥, 𝑦) denotes

the intensity of a feature at its 𝑑th channel and pixel location (𝑥, 𝑦).
As expressed in this equation, each micro-motion 𝑀𝑀𝑖 corresponds
to the feature-level difference between the respective frame 𝐹𝑖 and
𝐹𝑡. Note that our design of shallow layers is intentional, as deep-CNN
features with large receptive fields have been overly abstracted and lost
essential spatial information associated with the boundaries of moving
targets.

To efficiently encode motion variation across different feature spaces
and time steps, all 𝑀𝑀𝑑 are first accumulated into one channel to
manifest the motion magnitude, as shown in Eq. (3):

𝐴𝑀𝑀𝑖(𝑥, 𝑦) =

√

√

√

√

8
∑

𝑑=1
(𝑀𝑀𝑑

𝑖 (𝑥, 𝑦))
2 , 𝑓𝑜𝑟 𝑖 = 1 ∶ 𝑡 − 1. (3)

Unlike optical flow fields which typically encode horizontal and ver-
tical motion vectors, each AMM cue is an appearance-invariant saliency
map reflecting small displacement of motion boundaries. To further
incorporate temporal structures of the clip, we concatenate all 𝑡 − 1
𝐴𝑀𝑀𝑖 in the channel dimension, followed by a bilinear upsampling
operation so that the final clip-level micro-motion matches the spatial
dimension of the original frames (as we first downsampled the frames
via max pooling in Eq. (1)). In practice, clip length 𝑡 is defined as 4 in
this study; the accumulated micro-motion of a clip thus has the same
dimension as an RGB frame (i.e., 𝐻 ×𝑊 × 3). This design allows us to
further extract temporal features from the accumulated micro-motion
while seamlessly leveraging a pre-trained CNN model (which typically
takes a color image with three channels as input).

Multi-scale spatiotemporal fusion. In AMMA’s backbone, multi-
scale lateral fusion is utilized to incorporate micro-motion features into
the appearance ones. We construct a separate 2D CNN similar to the
one used by the RGB stream, and feed the accumulated micro-motion
to this new network. Essentially in the above setup, each CNN backbone
dedicates to extracting clip-level spatial or temporal information. Lat-
eral connections are established between designated layers of the two
CNNs, where weighted summation is carried out to fuse their respective
features. Specifically, we devise uni-lateral fusion connections; only the
spatial CNN is aware of the complementary motion context when a clip
is inputted.

In AMMA, the weights to sum spatial and temporal information are
learnable scalars (ranging from 0 to 1) that add up to 1. In addition, the
number of lateral connections dictates the extent of fusion between ac-
tions’ visual and dynamic cues, which will be studied more thoroughly
in Section 4.2. Since fusion is conducted by summation at the spatial
CNN, the dimension of the short-term motion-aware features remains
𝐻
𝑅 × 𝑊

𝑅 ×𝐷.

3.3. AMMA-detector head

Once consecutive clip-level features are extracted from their re-
spective clips, AMMA’s detector head aggregates them for richer spa-
tiotemporal context and action tubelet inference. The detector head is
composed of three branches: Center branch, Trajectory branch, and Box
branch. The function of each branch is summarized in Fig. 3.

Center branch. Given a sequence of 𝐾 clip-level features, Center
branch aggregates these features and locates action instances by their
5

centers at the end of the sequence. In other words, it finds centers of c
actions taking place at the final frame of the 𝐾th clip (i.e., 𝐹𝐾
𝑡 ). To

aggregate clip-wise context, all 𝐾 features are first stacked together
in the channel dimension to form video feature representation 𝑓𝑠𝑡𝑎𝑐𝑘
∈ R

𝐻
𝑅 ×𝑊

𝑅 ×𝐾𝐷. Afterwards, 𝑓𝑠𝑡𝑎𝑐𝑘 is fed to a standard 3 × 3 and 1 × 1
convolutional layer interleaved with ReLU non-linearity, outputting
action heatmap �̂� ∈ R

𝐻
𝑅 ×𝑊

𝑅 ×𝐶 for 𝐹𝐾
𝑡 , where 𝐶 corresponds to the

number of action classes. Each grid of �̂�𝑥,𝑦,𝑐 reflects the probability of
detecting action instance of class 𝑐 at location (𝑥, 𝑦) of the heatmap.

To train Center branch, the groundtruth heatmap 𝐿 ∈ R
𝐻
𝑅 ×𝑊

𝑅 ×𝐶

associated with a K-clip sequence is first derived from the groundtruth
center location (𝑥𝑐𝑖 , 𝑦𝑐𝑖 ) of 𝐹𝐾

𝑡 , where 𝑐𝑖 corresponds to the true class
of action instance 𝑖. We set heatmap 𝐿𝑥,𝑦,𝑐 = 0 for all classes except for
the true class. When 𝑐 = 𝑐𝑖, a Gaussian kernel is applied to generate
soft heatmap 𝐿𝑥,𝑦,𝑐𝑖 = 𝑒𝑥𝑝(−

(𝑥−𝑥𝑐𝑖 )
2+(𝑦−𝑦𝑐𝑖 )

2

2𝜎2 ), where the salient region
surrounds (𝑥𝑐𝑖 , 𝑦𝑐𝑖 ), and its dimension is determined by 𝜎2 derived from
the groundtruth instance’s size. The training objective for Center branch
follows the same focal loss used by [16] as shown below:

𝑙𝐶𝑒𝑛𝑡𝑒𝑟 = −1
𝑛
∑

𝑥,𝑦,𝑐

{

(1 − �̂�𝑥𝑦𝑐 )𝛼𝑙𝑜𝑔(�̂�𝑥𝑦𝑐 ), if 𝐿𝑥𝑦𝑐 = 1
(1 − 𝐿𝑥𝑦𝑐 )𝛽 (�̂�𝑥𝑦𝑐 )𝛼𝑙𝑜𝑔(1 − �̂�𝑥𝑦𝑐 ), otherwise,

(4)

here 𝑛 is the number of groundtruth instances; 𝛼 and 𝛽 are hyperpa-
ameters of the focal loss.

At the inference stage, the resulted heatmap is further filtered
ndependently for each class to only keep local peaks that are greater
han their 8-connected neighbors. Finally, the top 𝑁 peaks across all
lasses are considered candidate action centers. In this study, we follow
he work of Zhou et al. [16] and set 𝛼, 𝛽, and 𝑁 to 2, 4, and 100
espectively.
Trajectory branch complements Center branch by modeling action

nstances’ center movement between frames 𝐹 1
𝑡 , 𝐹

2
𝑡 ,… , 𝐹𝐾−1

𝑡 and 𝐹𝐾
𝑡 .

imilar to Center branch, Trajectory branch first aggregates 𝐾 clip-
evel features by concatenation across the channel dimension, followed
y a standard 3 × 3 and 1 × 1 convolution interleaved with ReLU.
he output of the branch is movement map �̂�𝐹𝐾

𝑡 ∈ R
𝐻
𝑅 ×𝑊

𝑅 ×2𝐾 , where
2𝐾 denotes the center offsets (in 𝑋 and 𝑌 directions) sequentially for

1
𝑡 , 𝐹

2
𝑡 ,… , 𝐹𝐾

𝑡 with respect to action centers at 𝐹𝐾
𝑡 .

For training, groundtruth action centers at 𝐹 1
𝑡 , 𝐹

2
𝑡 ,… , 𝐹𝐾

𝑡 are first
omputed the same way as for Center branch. Then, the groundtruth
ovement (𝑚𝐹𝐾

𝑡 ) of any action instance with respect to 𝐹𝐾
𝑡 is simply

he offset between its center at 𝐹𝐾
𝑡 and those at other frames. Finally,

ovement map �̂�
𝐹𝐾
𝑡

𝑖 is optimized based on L1 loss as follows:

𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 =
1
𝑛

𝑛
∑

𝑖=1
|�̂�

𝐹𝐾
𝑡

𝑖 − 𝑚
𝐹𝐾
𝑡

𝑖 |, (5)

where 𝑖 indicates the 𝑖th out of 𝑛 action instances.
During inference, Center Branch obtains action centers at the end

of the input sequence as references, while Trajectory branch adjusts all
action centers at the end of each clip according to the predicted offsets
with respect to the reference centers. Note that the predicted center
offset at 𝐹𝐾

𝑡 from itself is expected to be zero; as a result, we do not
adjust action centers at 𝐹𝐾

𝑡 .
Box branch. Box branch serves to regress the spatial extent of

action instances at [𝐹 1
𝑡 , 𝐹

2
𝑡 ,… , 𝐹𝐾

𝑡 ], whose locations have been previ-
ously deduced by Center and Trajectory branch. Unlike these first two
branches, incorporating temporal information from multiple frames
contributes less to frame-wise class-agnostic bounding box regression.
Hence, our Box branch regresses actions’ width and height for each
clip independently. It comprises a 3 × 3 and 1 × 1 convolutional
layer in sequence (interleaved with ReLU) as the other branches, and
generates spatial prediction map �̂� ∈ R

𝐻
𝑅 ×𝑊

𝑅 ×2, where 2 corresponds
o the height and width prediction. As Box branch is shared by all 𝐾
lip-level features, it outputs 𝐾 spatial maps, each one being associated



Journal of Visual Communication and Image Representation 95 (2023) 103879Y. Liu et al.
Fig. 3. Overview of AMMA’s detector head. Given an input sequence of 𝐾 clips (𝐾 = 4 in this figure), Center branch (TOP) detects action centers at 𝐹𝐾
𝑡 . Trajectory branch

(MIDDLE) infers center offsets with respect to Center branch’s prediction, and adjusts action centers for 𝐹 1
𝑡 , 𝐹

2
𝑡 ,… , 𝐹𝐾−1

𝑡 accordingly. Finally, Box branch (BOTTOM) regresses
action instances’ spatial extent (i.e., height and width) at action centers deduced by the other two branches.
with the size prediction at 𝐹 1
𝑡 , 𝐹

2
𝑡 ,… , 𝐹𝐾

𝑡 . We optimize this branch by
summing the L1 loss at all clips as follows:

𝑙𝐵𝑜𝑥 = 1
𝑛

𝑛
∑

𝑖=1

𝐾
∑

𝑗=1
|�̂�𝑗𝑖 − 𝑠𝑗𝑖 |, (6)

where 𝑠𝑗𝑖 corresponds to the groundtruth height and width of the 𝑖th
action instance (out of 𝑛 instances) belonging to the 𝑗th clip.

The overall training objective of AMMA is shown in Eq. (7), where
hyperparameter 𝑎, 𝑏, and 𝑐 are set to 1, 1, and 0.1 respectively in
accordance with [16].

𝑙𝐴𝑀𝑀𝐴 = 𝑎𝑙𝐶𝑒𝑛𝑡𝑒𝑟 + 𝑏𝑙𝑇 𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦 + 𝑐𝑙𝐵𝑜𝑥 (7)

3.4. Online/incremental detection via feature-caching-dequeuing

Our proposed action detector requires only RGB frames as input. As
it generates motion representations on-the-fly, AMMA can be applied
directly to real-time video streams. To efficiently and continuously
handle incoming video frames, we employ a simple feature-caching
mechanism that allows AMMA to focus on extracting relevant features
only from the current clip while still being able to exploit clip-level
features from the past for longer-range spatiotemporal reasoning. Fig. 4
illustrates such an online detection workflow.

In detail, given that 𝐾 clips are needed for action inference, AMMA’s
backbone initially obtains 𝐾 clip-level features from which action
tubelets are regressed at the detector head. Meanwhile, the 𝐾 clip-
level features are also cached in AMMA’s buffer. Once enough incoming
frames are gathered as a valid new clip (i.e., reaching 𝑡 frames), our
detector only extracts the 𝐾th clip-level feature from this new clip.
The past 𝐾 − 1 features can be efficiently retrieved from the buffer
and combined with the current one, from which the detector head
predicts new action tubelets. Clip-level feature-caching and dequeuing
6

enable AMMA to incrementally infer action tubelets covering past and
incoming new frames while processing only the newly arrived clip.
During video streaming, AMMA’s buffer will be updated accordingly
to only keep the most recent 𝐾 features.

3.5. From coarse tubelets to dense action tubes

Given an incoming video stream, AMMA detects tubelets on top of
the latest 𝐾 clips. Notably, the lastly detected tubelets have a temporal
overlap with the previous ones by a duration of (𝐾 − 1) clips (as illus-
trated in the bottom-right corner of Fig. 4). When tubelet results within
the temporal overlaps are consistent, AMMA can incrementally link lo-
cal tubelets over time into action tubes, yielding long-range space–time
proposals for localizing actions in trimmed/untrimmed videos.

We adopt an online linking algorithm similar to the one used
by Kalogeiton et al. [5]. Given a video stream with sufficient frames
as input, AMMA detects 𝑁 initial tubelets. Among them, the top ten
tubelets with the highest confidence scores are kept as ‘‘active’’ action
links for subsequent tubelet linking. As the video continues to be
streamed, we incrementally extend active links with new tubelet candi-
dates if their detections at corresponding temporal positions match (i.e.,
the average IoU exceeds threshold 𝜏 = 0.5). It is noteworthy that each
candidate tubelet can only be assigned to an active link. On the other
hand, an active link stops extending and is terminated (‘‘inactive’’)
either when there no longer exists temporal overlaps with the newly
detected tubelets, or the video stops being streamed.

The final action tubes are constructed from all the inactive action
links, where each tube’s confidence score is calculated as the average
score of all its enclosed tubelets. The temporal extent of any action tube
is determined by the starting frame of the initialized tubelet and the end
frame of the last tubelet. Lastly, we discard any final action tube having
either a low confidence score or a short temporal duration. To acquire
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Fig. 4. AMMA’s incremental feature-caching-dequeuing mechanism for online action detection on streaming videos.
temporally dense (i.e., frame-wise) detection, we apply coordinate-wise
linear interpolation between bounding boxes located at separate clips to
infer detection for intermediate frames. This design form is reasonable
as transitions of actions across consecutive frames are typically smooth
and continuous.

4. Experiments

4.1. Experimental setup

Dataset. Our proposed action detector is evaluated on two popular
action datasets: UCF-24 [39] and JHMDB-21 [40]. The former one is
composed of 3207 temporally trimmed/untrimmed sports videos of 24
classes. The number of action instances varies in this dataset. The latter
consists of 928 short videos (maximum of 40 frames) divided into three
splits, with 21 action categories in daily life such as sit, stand, and walk,
etc. Each video is temporally trimmed and has a single action instance.
For JHMDB-21, the experimental results are reported over the average
of its three splits. Unlike datasets for action recognition or temporal
action detection, both of the above datasets provide actions’ temporal
extent and frame-level bounding-box annotations which AMMA strictly
seeks for model training.

Metrics. Following previous studies in spatiotemporal action detec-
tion, we evaluate the accuracy of our proposed detector using frame-
mAP and video-mAP (mean Average Precision). The former metric
validates the IoU between the detected and groundtruth boxes at
each frame and is independent of the online linking strategy. For
frame-mAP, the IoU threshold is fixed at 0.5 throughout all experi-
ments. On the other hand, video-mAP inspects spatiotemporal overlaps
between linked action tubes and groundtruth tubes at multiple IoU
thresholds. Furthermore, to evaluate the efficiency of AMMA, we also
report its model size (number of trainable parameters), MACs (number
of multiply-accumulate operations), and speed (frame-per-second, or
FPS).

Implementation details. Aiming to conduct highly accelerated and
efficient detection, we first employ ResNet-18 as AMMA’s main 2D
7

CNN backbone. All RGB frames inputted to our model are resized to
288 × 288. AMMA’s backbone includes an encoder–decoder feature
extractor followed by a bilinear upsampling layer, transforming video
clips to clip-level representations of dimension 36 × 36 × 256. Prior to
AMMA’s detector head, clip-level features are first fed to another 1 × 1
convolutional layer to reduce their channel dimension by 4 in order
to gain efficiency at Center and Trajectory branches (who operate on
channel-wise stacked features).

Within AMMA’s backbone, the fusion of spatial and temporal in-
formation is realized by lateral fusion. In the case of ResNet-18, we
establish uni-lateral connections at the ‘‘stage’’ level. To investigate
the influence of combining micro-motion and RGB features at different
scales, we vary the extent of fusion by progressively deepening the
network dedicated to micro-motion abstraction while adding a lateral
connection at the output of each stage (up to five connections for
ResNet-18). To verify our detection framework on ultra-lightweight
architectures for resource-constrained devices, we also evaluate its in-
tegration with MobileNet-V2 [41] and ShuffleNet-V2 [42]. The weights
of all 2D CNN backbones are initialized with COCO pretrain (except for
ShuffleNet-V2 which uses ImageNet pretrain).

During training, we apply common practices of data augmenta-
tion such as photometric transformation, scale jittering, random crop-
ping/expansion, and location jittering, etc. To train AMMA on K-clip
sequences, each action tubelet is expected to last 𝐾 × 𝑡 frames. For
any action video having a shorter duration, we pad the beginning of
its K-clip sequence by the first frame of the video until the minimum
length requirement is met, simulating an action without movement
at the beginning. At AMMA’s detector head, only the groundtruth
associated with the final frame of a clip (i.e., 𝐹𝐾

𝑡 ) is used to train Center
branch. On the other hand, Trajectory and Box branch learn to regress
movement and spatial dimension of action instances over all the clips,
thus requiring groundtruth labels of 𝐹 1

𝑡 , 𝐹
2
𝑡 ,… , 𝐹𝐾

𝑡 .
We use the Adam optimizer to train our models. AMMA is trained

in an end-to-end manner where all its components (the backbone,
micro-motion estimator and detector head) are jointly optimized. An



Journal of Visual Communication and Image Representation 95 (2023) 103879Y. Liu et al.
Fig. 5. Frame-mAP performance under varied input duration (i.e., number of clips). ‘‘MM’’ denotes micro-motion.
initial learning rate of 5𝑒−4, 2.5𝑒−4, and 2.5𝑒−4 is applied when employ-
ing ResNet-18, MobileNet-V2 and ShffleNet-V2 as AMMA’s backbone,
respectively. For JHMDB-21, we train AMMA for 10 epochs while
reducing the learning rate by a factor of 10 at the 6th and 8th epoch.
Likewise, UCF-24 is trained for 10 epochs, but with the learning rate
reduced by half at every epoch after the second one. In our experiments,
all the training is conducted on an NVIDIA Titan V GPU while the
mini-batch size is fixed to 16.

4.2. Ablation study

In this section, we investigate various architectural configurations of
AMMA. For efficient exploration, the following studies are conducted
using ResNet-18 unless specified otherwise.

Effect of input duration and micro-motion fusion. The core of
AMMA lies in detecting action tubelets across successive video clips.
Intuitively, combining more clips as input encapsulates richer spa-
tiotemporal context. However, longer sequences could potentially in-
troduce irrelevant background cues, as well as raising difficulty to track
tubelets’ trajectories. To investigate how the input duration affects the
proposed detector, we conduct experiments on both JHMDB-21 and
UCF-24 by varying the number of input clips (denoted as ‘‘RGB’’).
To jointly examine the influence of incorporating dynamic features
under varied input length, we replicate the above experiment while
introducing micro-motion fusion (‘‘RGB + MM’’). In these experiments,
the extent of motion fusion is fixed to three lateral connections (at
the output of the first three stages in ResNet-18). The corresponding
frame-mAP results are depicted in Fig. 5.

From the above experiments, we first observe that AMMA generally
produces more accurate tubelets the longer video sequences it sees. This
result matches our hypothesis that reasoning from longer video clips
enriches spatiotemporal feature learning. Notably, AMMA’s accuracy
continues to benefit on JHMDB-21 as 𝐾 increases. We observe that
longer input sequences improve accuracy mainly by reducing false-
positive detection in videos where ambiguous visual cues are present.
Fig. 6 displays several examples where AMMA manages to detect cor-
rectly when enlarging its temporal receptive field across longer video
sequences. We stop increasing the number of clips at 5 (equivalent to
20 frames), as that nearly takes up half of the frames in most videos
of this dataset. We adopt a similar setup when evaluating UCF-24.
Interestingly, although input duration and accuracy remain positively
correlated, AMMA performs best when 𝐾 = 3. We deduce that as
UCF-24 consists of temporally untrimmed videos, AMMA is prone to
produce more temporal false-positive detection (on frames having no
groundtruth action) when assigning a unified action label to a longer
sequence.
8

Alongside varied input duration, all the configurations with micro-
motion feature fusion consistently outperform those using only appear-
ance cues, confirming the efficacy of modeling short-term dynamic
motion to help differentiate actions. For instance, the baseline config-
uration 𝐾 = 1 (‘‘RGB’’) is the least accurate due to a complete lack
of temporal modeling (neither incorporating short-term dynamic nor
successive appearance variation cues). To better understand predicted
tubelets’ accuracy with and without motion fusion, we examine five
mutually exclusive factors that result in the final frame-mAP. Following
common practices adopted by Kalogeiton et al. [5], we define five
sources of errors, namely localization error (EL), classification error
(EC), time error (ET), other error (EO), and missing-detection error
(EM). In brevity, EL is associated with detection that contains the
correct class, but does not precisely localize the target. In contrast, EC
is raised when a detection properly bounds the underlying target, but
the predicted class is incorrect. ET refers to having a detection in an
untrimmed video for the correct class, but the groundtruth temporal
extent of the action does not cover this frame. EO corresponds to
detection that is falsely detected in terms of both localization and
classification. Finally, EM refers to false-negative detection. Note that
the sum of these errors subtracted by 100 results in the obtained
frame-mAP of a particular model.

Fig. 7 reports the error distribution comparison before and after
fusing micro-motion features. On JHMDB-21, one can perceive that
most of AMMAs’ false detection comes from EC while the rest of errors
are small and scattered (𝐸T = 0 as JHMDB-21 is a temporally trimmed
dataset). Specifically, the ‘‘RGB+MM’’ model significantly outperforms
the ‘‘RGB’’ one by improving EC for nearly 5% (27.4 vs. 32.21), which
gives rise to the discrepancy between their frame-mAP. This demon-
strates that integrating micro-motion features plays an essential role
to induce learning action-specific dynamics and reduce false-positive
classification. Our results are aligned with many previous studies which
find motion cues particularly useful for JHMDB-21. Different from
JHMDB-21, the highest frame-mAP loss for UCF-24 originates from
time error ET while the remaining loss is scattered across all other
types of errors. One can observe that fusing the proposed motion
features raises AMMA’s overall frame-mAP by reducing false-positive
and false-negative detection throughout all error categories.

More on micro-motion generation, fusion, and complexity. The
previous experiments demonstrate AMMA’s extensible temporal mod-
eling capacity along with varied input duration, as well as the benefit
of incorporating micro-motion features. Here, we further investigate
different forms of micro-motion generation and fusion, along with
associated computational cost.

Table 1 summarizes AMMA’s detection accuracy and computation
on JHMDB-21 in accordance with varied input forms. Building upon
the input-duration experiment, we adopt the 5-clip input and three
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Fig. 6. Examples of short-tubelet (𝐾 = 2) and long-tubelet (𝐾 = 5) detection on JHMDB-21. The groundtrue actions (from top to bottom) are catch, sit, and shoot_ball. The green
and red boxes correspond to correct and incorrect detection, respectively. Each colored box also displays the detected class and associated confidence score. Longer input sequences
help to reduce false-positive detection which are prone to occur in the presence of ambiguous visual cues (e.g., confusion between sit & stand, or catch & shoot_ball.).
Fig. 7. Frame-mAP error distribution before and after micro-motion (‘‘MM’’) feature fusion (JHMDB-21 and UCF-24). Each bar corresponds to a specific type of error (out of five
error categories). A model is more accurate when incurring lower error rates.
stages of lateral connections (when fusion is applied). To approximate
our model’s complexity under the streaming-video setting, we report
the MACs needed for tubelet inference over 𝐾 clips and then divide
it by 𝐾. The model size in terms of number of parameters is also
recorded. In addition, to verify the necessity of our micro-motion sub-
network operating on shallow patterns (expressed as 𝑀𝑀𝐶𝑜𝑛𝑣_𝐷𝑖𝑓𝑓 ),
we implement a simpler micro-motion variant (coined 𝑀𝑀𝐷𝑖𝑓𝑓 ) which
directly accumulates RGB difference maps to encode motion.
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Our experiments show that at minor increase in the model size, fus-
ing 𝑀𝑀𝐶𝑜𝑛𝑣_𝐷𝑖𝑓𝑓 features largely enhances AMMA’s accuracy from that
of only using RGB frames. Relative to the model size, which rises due
to adding the micro-motion sub-network and duplicating three early
stages of ResNet-18, the elevation is more prominent in the required
MACs. We found that the additional operations associated with fusing
𝑀𝑀𝐶𝑜𝑛𝑣_𝐷𝑖𝑓𝑓 all take place toward early layers of AMMA’s backbone
where target tensors still retain large spatial dimensions, resulting in a
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Fig. 8. Visualization of micro-motion cues between pairs of action frames.
Table 1
Performance summary of different forms of micro-motion on JHMDB-21. Input duration
is fixed to 5 clips, and three lateral connections are attached to the output of the first
three stages in ResNet-18.

Frame-mAP GMACs # params (M)

RGB only 65.08 3.49 15.07
RGB + 𝑀𝑀𝐷𝑖𝑓𝑓 67.69 5.14 15.75
RGB + 𝑀𝑀𝐶𝑜𝑛𝑣_𝐷𝑖𝑓𝑓 69.74 5.40 15.75

more noticeable raise in multiply-accumulate operations than in model
size. On the other hand, fusing 𝑀𝑀𝐶𝑜𝑛𝑣_𝐷𝑖𝑓𝑓 obtains higher accuracy
than 𝑀𝑀𝐷𝑖𝑓𝑓 by more than 2 frame-mAP at a negligible increase in
GMACs and model size. This suggests that the temporal evolution of
general patterns better encodes dynamic information than raw RGB
differences, which are more likely to carry local noises. In Fig. 8,
we show some examples of our micro-motion representation which
successfully captures motion boundaries near moving subjects.

Next, We explore different extents of fusion between appearance
and micro-motion information by incrementally increasing the number
of lateral connections. As shown in Table 2, the more stages lateral
fusion takes place, the more accurate AMMA becomes, indicating that
motion boundary features, from shallow to abstracted forms, facilitate
detection accuracy. Multi-scale lateral fusion ensures AMMA to simul-
taneously learn complementary spatiotemporal information throughout
the backbone. In exchange for enhanced accuracy, more lateral fusion
inevitably raises the model size and computation associated with ex-
tracting micro-motion features at deeper layers. To conclude, AMMA’s
capacity to jointly model actions’ visual and dynamic information can
be improved when adopting deep fusion. In spite of that, with the
aim of keeping an overall efficient detection architecture, we con-
tinue leveraging 3 stages of lateral fusion throughout the rest of the
experiments.
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Table 2
Performance summary of varied extents of fusion between appearance and
micro-motion features on JHMDB-21. Input duration is fixed to 5 clips.

Frame-mAP GMACs # params (M)

– 65.08 3.49 15.07
Stage 1 66.58 3.95 15.08
Stage 1–2 68.74 4.72 15.23
Stage 1–3 69.74 5.40 15.75
Stage 1–4 70.22 6.08 17.85
Stage 1–5 72.48 6.76 26.24

From lightweight to ultra-lightweight architectures. Ultimately
aiming at deploying the detector onto resource-constrained devices, we
examine AMMA’s generalization ability on ultra-lightweight mobile ar-
chitectures: MobileNet-V2 and ShuffleNet-V2. Both detection accuracy
(e.g., frame-mAP and video-mAP) and model efficiency (e.g., inference
speed, model complexity, and size) are assessed. In particular, speed is
recorded based on the per-frame processing time of the entire action
detection pipeline, i.e., the total runtime of generating action proposals
for all videos divided by the total number of their frames.

Integration of micro-motion and lateral fusion in these mobile-
friendly architectures closely follows our design in ResNet-18. With
MobileNet-V2 as the backbone, we append three lateral connections at
the output of the 1st, 3rd, and 6th bottleneck residual block (MobileNet-
V2 consists of 17 of these building blocks). For ShuffleNet-V2, three
lateral connections are established at the output of ‘‘Conv1’’, ‘‘Stage2’’,
and ‘‘Stage3’’ (naming of these layers/blocks follow the same con-
ventions in Ma et al. [42]). The resulting models are represented by
AMMA18 (ResNet-18), AMMAM (MobileNet-V2), and AMMAS
(ShuffleNet-V2) for simplicity. Note that we apply different clip-lengths
on the two datasets following their most accurate configurations found
in Fig. 5.

Results of the three AMMA variants are reported in Table 3. We ob-
serve that AMMA consistently obtains higher accuracy than the other
18
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Fig. 9. AMMA18 ’s runtime breakdown over varied sequence length (𝐾) evaluated on UCF-24. The bar graph (referencing 𝑌 -axis on the left) captures the decomposition of detection
runtime. The red plot (referencing 𝑌 -axis on the right) describes the average FPS at each configured 𝐾.
Table 3
Performance summary of integrating different 2D CNN backbones.

JHMDB-21 (𝐾 = 5)

Frame-mAP Video-mAP
@0.2 0.5 0.75 0.5:0.95

GMACs Param. (M) FPS

AMMA18 69.7 73.7 72.7 60.1 50.3 5.2 15.8 80
AMMAM 66.1 70.0 69.0 53.7 45.3 1.3 6.8 77
AMMAS 67.7 72.3 70.9 47.9 43.0 1.0 6.0 75

UCF-24 (𝐾 = 3)

Frame-mAP Video-mAP
@0.2 0.5 0.75 0.5:0.95

GMACs Param. (M) FPS

AMMA18 74.6 81.1 53.5 24.6 26.3 5.2 15.8 115
AMMAM 71.8 78.0 49.7 22.0 23.5 1.3 6.8 110
AMMAS 71.3 78.7 47.4 20.9 22.5 1.0 6.0 100
t
S
l
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two (especially reflected in video-mAP at high detection thresholds).
This is expected as ResNet has higher capacity to extract richer visual
context in general than the mobile architectures who prioritize effi-
ciency. Indeed, both datasets consist of actions embedding prominent
appearance cues such as shoot_bow and pole_vault that could benefit
rom a more powerful feature extractor. In terms of efficiency, the
verage GMACs of AMMAM and AMMAS are approximately 1∕4 and 1∕5
f that of AMMA18 due to their highly optimized architectural design.
imilarly, the model size of AMMAM and AMMAS are also significantly
maller.

Countering the above observations, the two ultra-lightweight vari-
nts have slightly slower runtime than AMMA18 even though their
omputational cost is substantially lower. On the one hand, this phe-
omenon has been addressed by Orsic et al. [43], which points out
hat the implementation of depth-wise separable convolution is not
ptimized in the cuDNN library (therefore, MobileNet-V2 tends to be
lower than ResNet-18 in standard experimental setups). Moreover,
omputational complexity does not necessarily guarantee faster run-
ime as GMAC does not take into account factors such as memory access
ost and platform characteristics [42]. Further, even though all AMMA
odels are equipped with three lateral connections, their extents of

patial–temporal fusion still differ according to the architectural de-
igns of their backbone CNNs. For example, ShuffleNet-V2 has more
onvolutional layers in ‘‘Stage3’’ than those in ResNet-18 to process
otion cues. All of our models still exceed real-time performance by
11

large margin.
One may have noticed AMMA’s conspicuous difference in speed be-
ween JHMDB-21 and UCF-24, as shown in the last column of Table 3.
uch discrepancy is mainly associated with the choice of input sequence
ength. In Fig. 9, we demonstrate the influence of sequence length
𝐾 = {2, 3, 4, 5}) on AMMA18’s runtime based on UCF-24. The average
untime (millisecond, or ms) of a detection cycle can be decomposed
nto tubelet inference (including feature extraction) and tubelet linking
including intra-frame interpolation); the average FPS is plotted in red.
ote that the tubelet inference time is nearly invariant to 𝐾, as our

detector exploits an efficient feature-caching and retrieval workflow
on clip-level features (see Fig. 4). In fact at a larger 𝐾, the minor
increase in runtime is related to filling AMMA’s buffer with 𝐾 clip
features during initialization, as well as a slight increase of computation
at the detector head. On the other hand, the runtime associated with
tubelet linking prominently rises along sequence length. As tubelet
linking depends on calculating the mean IoUs of detection across 𝐾 −1
overlapping frames, determining whether two tubelets match becomes
more computationally demanding when longer tubelets are considered.
These results pin-point the importance of a carefully chosen sequence
length for balancing AMMA’s accuracy and speed performance.

4.3. Comparison with state-of-the-arts

In this section, we evaluate AMMA against several state-of-the-art

methods on JHMDB-21 and UCF-24. We emphasize that as our tubelet
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Table 4
Comparison with the state-of-the-art methods. Under column ‘‘Input’’, ‘‘+OF’’ indicates applying optical flow as the additional
input modality (alongside RGB input).

Method Input JHMDB-21 UCF-24

F-mAP Video-mAP F-mAP Video-mAP

0.2 0.5 0.75 0.5:0.95 0.2 0.5 0.75 0.5:0.95

2D backbone

Saha et al. [30] +OF – 72.6 71.5 43.3 40.0 – 66.7 35.9 7.90 14.4
Peng and Schmid [3] +OF 58.5 74.3 73.1 – – – 73.5 32.1 2.70 7.30
Saha et al. [32] +OF – 73.5 72.8 59.7 48.1 – 78.5 49.7 22.2 24.0
Kalogeiton et al. [5] +OF 65.7 74.2 73.7 52.1 44.8 69.5 76.5 49.2 19.7 23.4
Singh et al. [4] +OF – 73.8 72.0 44.5 41.6 – 73.5 46.3 15.0 20.4
Yang et al. [7] +OF – – – – – 75 76.6 – – –
Zhao and Snoek [6] +OF – – 74.7 53.3 45.0 – 78.5 50.3 22.2 24.5
Song et al. [44] +OF 65.5 74.1 73.4 52.5 44.8 72.1 77.5 52.9 21.8 24.1
Zhang et al. [31] +OF 37.8 – – – – 67.7 74.8 46.6 16.7 21.9
Li et al. [8] +OF 68.0 76.2 75.4 68.5 54.0 76.9 81.3 54.4 29.5 28.4
Liu et al. [45] – 64.7 67.9 67.4 53.7 44.7 70.8 74.6 50.4 21.8 25.0
AMMA18 – 69.7 73.7 72.7 60.1 50.3 74.6 81.1 53.5 24.6 26.3
AMMAM – 66.1 70.0 69.0 53.7 45.3 71.8 78.0 49.7 22.0 23.5
AMMAS – 67.7 72.3 70.9 47.9 43.0 71.3 78.7 47.4 20.9 22.5

3D backbone

Hou et al. [10] – 61.3 78.4 76.9 – – 67.3 73.1 – – –
Gu et al. [11] – 73.2 – – – – 77.0 – – – –
Qiu et al. [34] – – 77.3 74.2 – – – 69.3 – – –
Li et al. [15] – – 84.8 83.7 62.4 51.8 69.7 79.4 62.7 – 25.5
Zhao et al. [12] – – – 79.5 – 58.0 – – 52.0 – 25.2
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detector concurrently seeks competitive accuracy, low complexity, and
real-time runtime for practical deployment, only state-of-the-arts with
loosely comparable architectures as AMMA are listed in Table 4. Recent
top-performing approaches/models that employ much heavier config-
urations (such as those relying on both 3D CNN and optical flow) are
excluded for fair comparison.

It can be observed from Table 4 that AMMA18 achieves compet-
tive accuracy on both datasets. Notably, our proposed model uti-
izes the most lightweight feature backbone than all other methods
n the list, such as two-stream VGG16, two-stream DLA-34, C3D,
3D, and S3D, etc. Furthermore, leveraging only RGB frames as input,
MMA18 still outperforms most of the other two-stream methods rely-

ng on fine-grained optical flow (especially reflected in its frame-mAP
nd video-mAP at high detection thresholds). Further, AMMA18 scores
ompetitively against several 3D CNN-based methods even though
esNet-18 has far less capacity to reason spatiotemporal information,

ndicating the effectiveness of fusing coarse-scale visuals and comple-
entary dynamic cues at limited computational budgets. Finally for
MMAM and AMMAS, due to their CNN backbones being less capable
f abstracting visual patterns in exchange for substantially lower com-
utational cost, there remains a perceivable margin from the accuracy
f other top-performing detectors.

Beyond competitive accuracy, the evident strength of AMMA lies in
ts cost-effective architecture and workflow tailored for real-world sce-
arios and deployment. Specifically, the vast improvement in AMMA’s
rocessing efficiency is attributed to its coarse-detection paradigm as
ell as being free of expensive optical flow extraction. The former not
nly bypasses redundancy associated with dense per-frame detection,
ut also facilitates capturing actions’ prominent appearance variation
ver time. Adopting on-the-fly motion cues instead of pre-computed op-
ical flow, AMMA supports detecting actions in an online manner from
ideo streams when exploiting feature-caching and interpolation from
oarse-level detection. As shown in Fig. 10, while retaining competi-
ive video-mAP on UCF-24, our models considerably outperform other
ction detectors reporting real-time or near-real-time performance.

Note that speed performances can be impacted by other elements
uch as hardware devices and manners of measurement. For example,
he delay in generating optical flow was not considered in works such
s Kalogeiton et al. [5],Zhao and Snoek [6], and Li et al. [8]. On the
ther hand, efficiency measures in terms of MACs and model size are
12
ndependent of the above factors. We refer our readers to Table 3 for
uch information. To summarize, our most lightweight model (AMMAS)
ncurs 1 GMACs in the online detection setting while requiring 6M
arameters. To put these values in perspective, the standard SSD which
s widely used in the domain of spatiotemporal action detection such
s Singh et al. [4],Kalogeiton et al. [5],Saha et al. [32], and Zhao
nd Snoek [6], has around 27M trainable parameters (54M in the
wo-stream setup). Similarly, the two-stream SSD architecture incurs
pproximately 32 GMACs (with input image size of 300 × 300), which
s nearly 32 times more computationally expensive than our lightest
odel. Methods leveraging 3D CNN [11,13] such as I3D or S3D as

he feature backbone, are estimated to exceed 45 and 32 GMACs,
espectively.

. Conclusion and future works

In this paper, we present a lightweight, online action tubelet detec-
or based on 2D CNN (termed AMMA). It makes use of a coarse detec-
ion paradigm to efficiently model actions from underlying appearance
nd variation cues over video sequences. Specifically, AMMA incor-
orates complementary motion dynamics by accumulating adaptive
icro-motion representations generated on-the-fly, facilitating learning

ppearance-motion correspondences. Our integrated solution conforms
o stringent design constraints sought after in many practical applica-
ion scenarios. As demonstrated in two challenging action benchmarks,
MMA achieves competitive precision (frame and video-mAP) while
tilizing significantly more compact backbones and executing at an
nference speed far beyond real-time (up to 100 FPS).

In the future, we will evaluate AMMA on more challenging public
enchmarks, e.g., AVA, which contains more complex scenes and so-
histicated action categories. Note that our coarse detection pipeline
s designed to smoothly adapt to the sparse training annotations of
his dataset. We also attempt to extend AMMA’s 2D backbones to
ltra-lightweight 3D CNN for enhancing its spatiotemporal modeling
apacity. Further, aiming at a fully resource-efficient vision system for
eployment, we will also precisely customize AMMA for embedding
nto different edge devices such as NVIDIA Jetson TX2 or Xavier GPUs.
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Fig. 10. Comparisons of runtime-accuracy trade-off between AMMA and state-of-the-arts on UCF-24 (video-mAP). ‘‘AF’’ and ‘‘RTF’’ denote accurate flow and real-time flow,
respectively. It is note-worthy that methods that depend on externally calculated optical flow typically omit this part of the computation in their runtime measurement.
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