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a b s t r a c t 

Interpreting human actions requires understanding the spatial and temporal context of the scenes. State- 

of-the-art action detectors based on Convolutional Neural Network (CNN) have demonstrated remarkable 

results by adopting two-stream or 3D CNN architectures. However, these methods typically operate in 

a non-real-time, ofline fashion due to system complexity to reason spatio-temporal information. Con- 

sequently, their high computational cost is not compliant with emerging real-world scenarios such as 

service robots or public surveillance where detection needs to take place at resource-limited edge de- 

vices. In this paper, we propose ACDnet, a compact action detection network targeting real-time edge 

computing which addresses both efficiency and accuracy. It intelligently exploits the temporal coherence 

between successive video frames to approximate their CNN features rather than naively extracting them. 

It also integrates memory feature aggregation from past video frames to enhance current detection stabil- 

ity, implicitly modeling long temporal cues over time. Experiments conducted on the public benchmark 

datasets UCF-24 and JHMDB-21 demonstrate that ACDnet, when integrated with the SSD detector, can 

robustly achieve detection well above real-time (75 FPS). At the same time, it retains reasonable accuracy 

(70.92 and 49.53 frame mAP) compared to other top-performing methods using far heavier configura- 

tions. Codes will be available at https://github.com/dginhac/ACDnet . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

In past years, human action detection has been an active area 

f research driven by numerous applications: autonomous vehi- 

les, video search engines, and human-computer interaction, etc. 

s it aims not only to recognize actions of interest in a video, but 

lso to localize each of them, action detection poses more chal- 

enges when compared to video classification. The task becomes 

ven more difficult in practical applications when detection is to 

e performed in an online setting and at real-time speed. For in- 

tance, time-critical scenarios such as autonomous driving demand 

nstant detection in order for machines to react immediately. Other 

se cases which seek for mobile or large-scale deployment, such as 

ervice robots and distributed unmanned surveillance, require de- 

ection or scene meta-data extraction at low-end edge devices. In 

eneral, edge devices (e.g., embedded systems) have limited com- 

utational power and are only compliant with resource-efficient 

etection algorithms. 

Following the success of Convolutional Neural Network (CNN) 

n diverse computer vision tasks, modern action detectors are 
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ainly based on CNN. In particular, fast object detectors have been 

idely adopted to spatially localize action instances at each frame 

1,2] . Naturally, effective tem poral modeling plays an imperative 

ole for identifying an action. To reason both spatial and tempo- 

al context, Simonyan and Zisserman [3] pioneered the two-stream 

NN framework which aggregates spatial and temporal cues from 

eparate networks and input modalities (RGB and optical flow). 

uch an approach has motivated many state-of-the-art methods in 

he field of action recognition and detection. Alternatively, 3D CNN 

4] which performs spatio-temporal feature learning on stacked 

rames has also been increasingly explored to tackle video analysis 

asks. 

Despite recent advances in action detection, existing methods 

re inherently sub-optimal in two aspects. First, consecutive video 

rames exhibit high appearance similarity. Extracting frame fea- 

ures without taking into account this inter-frame similarity in- 

roduces redundancy. Moreover, the increased system complex- 

ty associated with employing two-stream or 3D CNN models is 

ot proportionally reflected in the detection accuracy. In contrast, 

he above inevitably raises computational requirements associated 

ith motion extraction and 3D convolution operation, prohibiting 

ractical deployment on edge devices. 

This work focuses on action detection solutions more perti- 

ent to the criteria of realistic applications. To address the afore- 

https://doi.org/10.1016/j.patrec.2021.02.001
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entioned limitations, we first exploit the temporal coherence 

mong nearby video frames to enhance detection efficiency. This 

s embodied by performing feature approximation at the majority 

f frames in a video, mitigating re-extraction of similar features 

rom neighboring frames. Furthermore, we hypothesize that a less 

xpensive framework can effectively extract meaningful temporal 

ontexts. Here, we adopt a multi-frame feature aggregation mod- 

le, which recursively accumulates 2D spatial features over time to 

ncapsulate long temporal cues. Such feature aggregation implicitly 

odels temporal variations of actions and facilitates understanding 

egenerated frames with limited visual cues. 

To the best of our knowledge, this is the first attempt applying 

eature approximation and aggregation techniques to achieve effi- 

ient action detection which can benefit resource-limited devices. 

o summarize, our contribution is three-fold: 

• We propose an integrated detection framework, ACDnet, to ad- 

dress both detection efficiency and accuracy. It combines fea- 

ture approximation and memory aggregation modules, leading 

to improvement in both aspects. 
• Our generalized framework allows for smooth integration with 

state-of-the-art detectors. When incorporated with SSD (sin- 

gle shot detector), ACDnet could reason spatio-temporal context 

well over real-time, more appealing to resource-constrained de- 

vices. 
• We conduct detailed studies in terms of accuracy, efficiency, ro- 

bustness and qualitative analysis on public action datasets UCF- 

24 and JHMDB-21. 

. Related work 

Recent advancements in action detection are largely led by 

uilding upon successful cases in object detection and action 

ecognition. Here, we briefly review these relevant topics. 

Object detection based on CNN methods can be grouped into 

wo families. The two-stage approach such as Faster R-CNN by 

en et al. [5] and R-FCN by Dai et al. [6] first extracts potential

bject regions from images, on which it performs object classifi- 

ation and bounding box regression on features corresponding to 

ach proposed location. Such a sequential pipeline imposes a bot- 

leneck to real-time inference. Alternatively, single-stage detectors 

uch as YOLO proposed by Redmon and Farhadi [7] , or SSD in Liu

t al. [8] , remove the intermediate region proposal, directly achiev- 

ng bounding box regression and classification in a single forward- 

ass. Bypassing the intermediate bottleneck enables real-time de- 

ection at the cost of minor accuracy drop. 

A number of research focuses on video object detection instead 

f the image domain. Popular approaches such as Han et al. [9] and 

ang et al. [10] exploit videos’ temporal consistency by associat- 

ng detection boxes and scores from multiple frames. Similarly but 

n the feature level, Hetang et al. [11] and Zhu et al. [12] aggre-

ate multiple frame features to enhance detection accuracy. On 

he other hand, Zhu et al. [13] leverage the temporal redundancy 

mong video frames to improve detection efficiency. Their frame- 

ork propagates features from a sparse set of key frames to suc- 

essive ones by motion to avoid re-extracting similar object fea- 

ures. In a similar spirit, Liu and Zhu [14] propagate frame-level 

nformation across frames using a recurrent-convolutional architec- 

ure. 

Action recognition is typically treated as a classification task on 

rimmed videos [15] . In addition to spatial features, reasoning tem- 

oral information across multiple frames is also crucial. Among dif- 

erent temporal modeling techniques, the two-stream architecture 

n Simonyan and Zisserman [3] demonstrates state-of-art perfor- 

ance. Its framework consists of two feed-forward pathways, with 

ne CNN learning spatial features from RGB stream and the other 
119 
ne learning motion features from optical flow stream. The two 

treams are trained and run inference independently to aggregate 

omplemented features [16] . Even though such a framework can 

xploit existing 2D CNN backbones, fine-grained optical flow is ex- 

ensive to extract. Thus, flow images are typically pre-computed, 

hich do not conform to the online workflow demanded in real- 

orld scenarios. 

Recently, 3D CNNs have been increasingly explored [4,17] along 

ith the release of large-scale action dataset Kinetics. They uti- 

ize 3D kernels to jointly perform spatio-temporal feature learning 

rom stacked RGB frames, achieving comparable and even superior 

odeling capability than two-stream CNN. However, these models 

nherently suffer from higher number of parameters and compu- 

ational cost than their 2D counterparts, making their deployment 

n resource-constrained devices impractical. 

Efficient spatio-temporal modeling. To alleviate the high com- 

utational cost associated with flow extraction, several studies 

eek alternative motion representations that are easier to compute. 

hese include feature-level displacement [18,19] , or simply taking 

he RGB difference between adjacent frames [20] . On the other 

and, to reduce the complexity of 3D CNN, decoupled architectures 

uch as P3D [21] and R(2+1)D [22] have been studied. Alternatively, 

SM proposed by Lin et al. [23] handles temporal convolution as 

hannel-shifting operators to fuse spatial features from different 

ime steps. Their approach has demonstrated effectiveness on edge 

evices such as Jetson Nano and Galaxy Note8. 

Spatio-temporal action detection simultaneously addresses ac- 

ion localization and classification in time and space. Leading ap- 

roaches often leverage CNN object detectors as the core build- 

ng block. The extension mainly consists of adopting the two- 

tream framework, fusing complementary detection results from 

oth spatial and temporal stream to acquire frame-level detection, 

s demonstrated in Singh et al. [1] . For temporal localization, de- 

ection at each frame is then linked over time to construct action 

ubes [24] . Beyond detection at the frame-level, Kalogeiton et al. 

25] and Li et al. [26] adopt a clip-based approach, which exploits 

tacking multiple frame features to capture temporal cues on top 

f the two-stream architecture. In this case, actions are regressed 

nd inferred directly on action cuboids. 

Inspired by the latest adoption of 3D CNN in action recognition, 

ore recent studies incorporate 3D CNN as the backbone [27–31] . 

n addition, various ways of fusing spatial and temporal context 

ave also been investigated. Besides aggregating at the detection 

evel (e.g., union of detection results), others perform feature-level 

usion. These include the use of 1 × 1 convolution [32] , attention 

odel [33] or conditional normalization [2] . Such approaches allow 

 part of CNN layers to adaptively learn from the fused features. 

. ACDnet 

Our objective is to perform detection in an online manner for 

very incoming frame of a video. The proposed ACDnet which con- 

ists of the feature approximation and aggregation module, is sum- 

arized in Fig. 1 . 

.1. Feature approximation by motion guidance 

Video content varies slowly over consecutive frames. This phe- 

omenon is more so reflected in the corresponding CNN feature 

aps which capture high-level semantics. Intuitively, the shared 

ppearances among neighboring frames can help to propagate es- 

ential information for a given task. The practice of propagation 

n Zhu et al. [13] has established success to enhance object detec- 

ion efficiency in videos, which motivates our feature approxima- 

ion module. 
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Fig. 1. Illustration of ACDnet inference pipeline. (a) At the initial frame , features are obtained from the feature extraction sub-network ( N f eat ). (b) For non-key frames 

(dense), the flow sub-network ( N f low ) estimates a pair of flow field and position-wise scale map between the non-key frame and its preceding key frame. The resulted flow 

field is used to propagate appearance feature, which is then refined by the scale map via element-wise multiplication. (c) At key frames (sparse), new features are extracted. 

They are then aggregated with those from the past key frames (memory features) via N f low and the aggregation sub-network ( N aggr ). The fused features will be used for 

detection ( N det ) and also passed along as the updated memory. 
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Within the approximation scheme, the heavier feature extrac- 

ion sub-network, N f eat , only operates on a sparse set of key 

rames during inference. The features of successive non-key frames 

re obtained by spatially transforming those from their preceding 

ey frames via two-channel flow fields. The workflow can be sum- 

arized by the following equations. Let M i → k be the two-channel 

ow field capturing relative motion from the current frame I i to 

ts previous key frame I k (horizontal and vertical direction). Then, 

eature approximation (also referred as feature propagation) is re- 

lized according to inverse warping: 

 i = W (F k , M i → k ) (1) 

here F k is the key frame feature, and F i is the newly warped fea-

ure corresponding to I i . W denotes the inverse warping operation 

o sample the correct key frame features and assign them to the 

arped ones. Inverse warping is necessary to ensure every location 

p at the warped feature can be projected back to a point p + �p at 

he key frame feature, where �p = M i → k (p) . Concretely, the warp- 

ng operation W is performed as: 

f c i (p i ) = 

∑ 

p k 

G (p k , p i + �p) f c k (p k ) (2)

In Eq. (2) , f c 
i 

and f c 
k 

denote the c th channel of feature F i and

 k , respectively; G denotes the bilinear interpolation kernel. Ev- 

ry location p i in the warped feature map undergoes this warp- 

ng scheme to sample features from key frames, independently 

or each feature channel c. The warping operation is much lighter 

ompared to layers of convolution for feature extraction. Conse- 

uently, by applying feature approximation on a dense set of non- 

ey frames, computation is greatly reduced. 

Previous methods on action-based tasks typically acquire mo- 

ion features from accurate optical flow using non-learning-based 

lgorithms. However, computing flows in such a way imposes a 

ottleneck to real-time and online detection due to high consump- 

ion of time or requiring to pre-compute flow results. In contrast, 

CDnet integrates a fast flow estimation sub-network, N f low 

, to 

redict flow fields. In our case, optical flow serves to spatially 

ransform CNN features; it does not need to capture fine-grained 

otion details and has the same height and width as the corre- 

ponding feature. Using such a learning-based flow estimator also 
120 
llows it to be jointly trained with all other sub-networks specific 

o the task of action detection. 

In detail, the flow sub-network take ( I k , I i ) as input, and gener-

tes a pair of motion field and position-wise scale map. Given that 

, W, and C denote height, width and channel of F k , then the flow 

eld M i → k is of size H × W × 2 , and the scale map is H × W × C,

hose dimension matches that of F k to be warped. After the in- 

erse warping described by Eq. (1) , the warped feature F i is refined 

y multiplying the scale map in an element-wise way. Any F k and 

 i would be fed to the shared detection sub-network, N det , to ob- 

ain final detection. This workflow is illustrated in Fig. 1 (a) and (b). 

.2. Memory feature aggregation 

Propagating features across frames reduces the computation 

ost associated with feature extraction. However, since most fea- 

ures are now approximated and heavily dependent of the quality 

f the precedent key frame features, we adopt a memory aggrega- 

ion module as inspired by Hetang et al. [11] to enhance the fea- 

ure representation at key frames. Given incoming video frames, 

he core of memory aggregation is to reinforce features of a target 

rame by recursively incorporating supportive and discriminating 

ontext from the past. This allows implicit spatio-temporal mod- 

ling without explicitly extracting motion features. In addition, in 

ases when the current frame is deteriorated, an action can still 

e inferred with the supportive visual cues from memory. Fig. 1 (c) 

ives an example when such memory aggregation could be useful. 

Memory aggregation shares the same warping operation used 

or feature approximation. ACDnet takes a sparse and recursive ap- 

roach to aggregate memory features only at key frames, due to 

imilar appearances shared among nearby frames. Given two suc- 

eeding key frames I k 1 and I k 2 , where I k 2 is the more recent one in

ime, memory aggregation follows Eq. (3) : 

 k 2 _ aggregated = w k 1 � F ′ k 1 + w k 2 � F k 2 (3) 

here F ′ 
k 1 

= W (F k 1 , M k 2 → k 1 ) , is the warped feature of I k 1 to spa-

ially align its position with that of I k 2 . The position-wise weights 

 k 1 and w k 2 both have the same height and width as F ′ 
k 1 

and F k 2 .

hese weights are normalized and determine the importance of 

emory feature at each location p with respect to the target frame 
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Fig. 2. Training procedure. Each mini-batch consists of three frames ( I mem , I k , and I i ) and the groudtruth of I i . 
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eature map ( w k 1 (p) + w k 2 (p) = 1 ). All channels of a feature share

he same spatial weights. 

The weights w k 1 and w k 2 are adaptively calculated based on the 

imilarity of memory and target features. We estimate feature sim- 

larity by first projecting them into an embedding space via a few 

onvolution layers, and then computing the cosine similarity be- 

ween the embedded features. Finally at the current key frame, the 

eighted sum of the memory and current features will be fed to 

he detection sub-network and passed along as the new memory. 

.3. Training procedure 

ACDnet follows a three-frame training scheme, as depicted in 

ig. 2 . From each training mini-batch, frame I i and two precedent 

ideo frames ( I k and I mem 

) are selected, whose features simulate 

ey frame and memory features respectively. The offset between I i 
nd I k is a random number from 0 to T k → i , and the offset between

 k and I mem 

is fixed at T mem → k . 

The feature maps F mem 

and F k are first extracted from I mem 

and 

 k respectively. Two sets of flow fields, namely, the relative mo- 

ion between I k − I mem 

, and I i − I k are also estimated. The former 

ow is used to propagate F mem 

to F k to simulate the occurrence 

f memory feature aggregation following Eq. (3) . Finally, the fused 

eature is warped with the second flow (simulating feature approx- 

mation) following Eq. (1) , which will be the final feature map for 

 det . Under this training mode, only the groundtruth of I i is needed 

o determine losses, which are back-propagated to update all sub- 

etworks. 

.4. Adaptation for multi-feature scale detector 

Workflows of feature approximation and aggregation are 

eneric for video-based tasks. ACDnet further employs SSD, an 

ne-stage detector to fulfill the objective of high-speed action de- 

ection potentially for embedded vision systems. In particular, the 

SD300 model is chosen due to its superior speed. 

In SSD, a set of auxiliary convolutional layers are progressively 

dded after the base network (e.g., VGG16 in a standard SSD) to 

xtract features at multiple scales. This creates multiple feature 

aps where the detector makes prediction for objects of various 

izes. Consequently, adopting the described framework in SSD re- 

uires feature approximation and memory aggregation to be han- 

led for features at all scales. 

To enable multi-level feature approximation, we duplicate 

 f low 

’s flow prediction layer into several branches. The number of 

ranches matches that of the feature maps; the branches’ outputs 

re also progressively resized via average pooling according to sizes 
121 
f SSD’s feature maps. Then, each branch reconstructs a pair of 

ow field and scale map in accordance with the dimension of SSD 

eature (refer to Fig. 3 ). To cope with multi-level feature approx- 

mation and aggregation, Eqs. (1) and (3) are also generalized to 

ake place at each feature level independently. Note that the stan- 

ard SSD300 applies detection at six feature scales. Nevertheless, 

e only use the first five of them, as the dimension of the last 

eature map becomes a 1D vector resulting from progressive resiz- 

ng, which is not feasible for feature approximation governed by 

D spatial warping. 

. Experimental results 

.1. Experimental setup 

Dataset Our proposed methods are evaluated on two popular 

ction datasets: UCF-24 and JHMDB-21 . The former one released 

y Soomro et al. [34] is composed of 3207 sports videos of 24 ac- 

ion classes. Following previous work, we use 2290 of these video 

lips for training. The latter collected by Jhuang et al. [35] con- 

ists of 928 short videos divided into three splits, with 21 action 

ategories in daily life. Each video is trimmed and has a single ac- 

ion instance. We report our experimental results on the average 

f three splits for this dataset. 

Network architectures ACDnet incorporates the following sub- 

etworks: SSD300 (with VGG16 backbone), FlowNet [36] and fea- 

ure embedding. Feature embedding contains five branches for 

easuring feature similarity at five different scales. Each embed- 

ing branch has a bottleneck design of three 1 × 1 convolution lay- 

rs interleaved with ReLU non-linearity, where the number of fil- 

ers corresponds to the number of channels at each feature level l: 

f eat l 
channel 

/ 2 , f eat l 
channel 

/ 2 and f eat l 
channel 

× 2 , respectively. 

FlowNet is modified to also generate five sets of flow fields 

nd position-wise scale maps, each pair being used for warping 

nd refining designated features. We initialize the weights of the 

rst two branches of flow generation layers using FlowNet’s pre- 

rained weights. Considering the later three flow outputs are spa- 

ially much smaller than that of the original FlowNet, we randomly 

nitialize the weights of those branches. 

Training Images are resized to 300 × 300 for training and in- 

erence. Training is conducted by stochastic gradient descent. To 

ddress data imbalance among different actions, from each train- 

ng video clip of UCF-24, 15 frames spanning the whole video are 

venly sampled as the training set. Since video clips of JHMDB-21 

re generally short ( ≤ 40), we evenly sample 10 frames from each 

lip for training. Specifically, both T mem → k and T k → i are set to 10 

uring training. These chosen values correspond to the key frame 
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Fig. 3. Flow estimation sub-network adapted for multi-scale feature approximation and aggregation. The depicted design corresponds to the architecture of SSD300 and 

FlowNet. 
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Table 1 

F-mAP results for different configurations. The bold text indi- 

cates the best performers among the methods. 

ACDnet 

SSD 

√ √ √ √ √ 

FA 
√ √ √ √ 

Scale map 
√ √ 

MA 
√ √ 

F-mAP 

UCF-24 67.32 65.84 67.23 68.06 70.92 

JHMDB-21 47.90 46.65 46.69 49.37 49.53 
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nterval used during inference, which is also fixed at 10 in our ex- 

eriments unless specified. 

We apply different hyperparameters on the two datasets. UCF- 

4 is trained for 100 K iterations; the learning rate is initialized 

s 0.0 0 05 and reduced by a factor of 0.1 after the 80 Kth and

0 Kth iterations. Weights of VGG16’s first two convolution blocks 

re frozen. For JHMDB-21, due to its smaller training and testing 

ize, we observe that detection accuracy tends to fluctuate signifi- 

antly between successive epochs. Hence, we empirically train this 

ataset for 20 K iterations with learning rate initialized as 0.0 0 04 

nd reduced by a factor of 0.5 after the 8 Kth and 16 Kth iteration.

uring its training, the first three convolution blocks of VGG16 are 

rozen. In addition, all layers of FlowNet until the flow generation 

ayers (the five branches at the end of our modified model) are 

lso frozen to further reduce the risk of overfitting. 

All sub-networks are trained jointly (also evaluated) on an 

VIDIA Quadro P60 0 0 GPU using a training batch size of 8. For 

he rest of hyperparameters and data augmentation methods, we 

ollow the same setup as the original SSD by Liu et al. [8] . The

eights of VGG16 and FlowNet are pre-trained using ImageNet and 

he Flying Chair dataset respectively. 

.2. Ablation study 

Our proposed architecture has been evaluated in terms of ac- 

uracy, efficiency and robustness over several network configura- 

ions. The standard frame-level mean average precision (F-mAP) 

nd frame-per-second (FPS) have been used as the evaluation met- 

ics. Specifically, FPS is measured based on the complete detec- 

ion pipeline, including data loading and model inference using 

atch size of 1. The Intersection-over-Union threshold is set to 0.5 

hroughout all experiments. For brevity, we refer to feature approx- 

mation and memory feature aggregation as FA and MA respec- 

ively when presenting their results. 

Accuracy F-mAP results of different configurations are reported 

n Table 1 . From both datasets, we observe a decrease of accuracy 

hen only feature approximation is included. However, the accu- 

acy drop can be compensated by the addition of memory aggre- 
122 
ation, which exceeds the accuracy of the stand-alone SSD. Fig. 4 

hows some examples of how the memory aggregation module 

enefits detection. Overall, we remark that aggregating multiple- 

rame features over time, even in a sparse manner, improves mod- 

ls’ abilities to more confidently discriminate among different ac- 

ions. 

We also examine the effect of separate branches of position- 

ise scale maps designed for refining visual features. Our results 

ndicate that such refinement mildly improves detection accuracy. 

he scale maps serve as implicit attention maps which reinforce 

eature responses associated with moving actors (elaborated in 

ig. 5 ). 

Even though similar result patterns can be seen from both 

atasets, the benefit of memory aggregation appears less promi- 

ent in JHMDB-21. This could result from the fact that each video 

lip in JHMDB-21 is much shorter (40 frames or less). As MA is per- 

ormed sparsely at every 10th frame, its impact is limited to 2–3 

ggregation per clip. Furthermore, we observe that motions in sev- 

ral JHMDB-21 clips are relatively small. In these clips, key frames 

ar apart still appear fairly identical, limiting additional visual cues 

o be propagated. 

Efficiency is evaluated on UCF-24 by simultaneously inspecting 

ccuracy, run time and number of parameters of various configu- 

ations. Here, we assume the use of scale map refinement if ap- 

licable. As shown in Table 2 , ACDnet (SSD, FA, MA) outperforms 

he stand-alone SSD in both speed and accuracy. This suggests it 

s relevant to handle inter-frame redundancy, and that long-range 
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Fig. 4. Examples where ACDnet (FA, MA) improves the baseline SSD. Green / Red boxes correspond to correct / incorrect detection respectively. 

Table 2 

Performance of different configurations on UCF-24. 

F-mAP FPS # params 

SSD 67.32 70 26.8 M 

ACDnet (SSD, FA) 67.23 85 50.8 M 

ACDnet (SSD, FA, MA) 70.92 75 57 M 

R-FCN 68.2 15 60 M 

ACDnet (R-FCN, FA) 66.19 33.5 85.7 M 

ACDnet (R-FCN, FA, MA) 68.31 32 89.6 M 
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emory fusion is effective for collecting more discriminating fea- 

ures. Regarding the number of required parameters, the increase 

n ACDnet (SSD, FA) from stand-alone SSD is associated with the 

ddition of FlowNet, which can be replaced by much lighter ar- 

hitectures in the future. Likewise, the increase with the addition 

f MA module corresponds to the extra embedding layers for mea- 

uring feature similarity at various scales. In terms of run time, the 

peed drop with MA is incurred by the additional operations at key 

rames (except for the first one), where flow estimation, feature ex- 

raction, similarity measure and aggregation all take place. 

To examine how our generic architecture performs on a differ- 

nt detection framework, we conduct the same experiments while 

ncorporating ACDnet with R-FCN, a state-of-the-art two-stage de- 

ector. The run time improvement brought by feature approxi- 

ation is more significant with R-FCN, due to it using a much 

eeper backbone for feature extraction. The number of additional 
123 
arameter needed to carry out memory aggregation is less too 

or R-FCN, as it is designed to perform prediction on a single- 

cale feature (needing only one branch for the embedding and flow 

ub-networks). Overall, when taking into account run time, mem- 

ry consumption and obtained accuracy together, our results still 

trongly favor the SSD-based ACDnet. 

Robustness Concerning the robustness of our models trained 

ith a fixed duration T mem → k and T k → i (at 10), we evaluate their 

erformances under various key frame intervals ( k ) during infer- 

nce. Fig. 6 displays F-mAP results on both datasets, with k rang- 

ng from 2 to 20. Both models (with and without MA) express an 

verall steady drop in accuracy on the two datasets as k increases. 

his is reasonable, as the ability of flow fields to correctly en- 

ode pixel correspondence diminishes under large motions. How- 

ver, even when k is large, ACDnet with MA still retains decent 

ccuracy which outperforms or is comparable with the best cases 

f the other configurations. 

Run time is also inspected under the same setting, as shown 

n Fig. 7 . It can be observed that ACDnet (FA, MA) exceeds the 

peed of SSD starting around k = 8 , while the FA-only model is 

onsistently faster. Larger key frame intervals intuitively should 

ead to further speed boost, as higher ratio of features are approx- 

mated. Interestingly, we observe that this pattern is neatly pre- 

ented when k ≤ 10 . After that, the run time of the examined mod- 

ls begin to saturate. This phenomenon is associated with two fac- 

ors. On the one hand, as key frame interval increases, the ratio 

etween approximated and real features become less significant. 
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Fig. 5. Position-wise scale maps produced by our modified FlowNet. The scale map (bottom row) only reinforces activation (top row) associated with the actor by up-scaling, 

without altering activation in other feature regions. 
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n the other hand, larger key frame intervals introduce more mo- 

ion which could compromise the quality of approximated features. 

his results in an increase of low-confident predictions, which take 

onger for SSD’s non-maximum suppression to filter. 

.3. Comparison with state-of-the-art 

We compare the complete ACDnet (with FA and MA) against 

tate-of-the-art methods in Table 3 . Since our proposed framework 

argets lightweight action inference for realistic deployment rather 

han solely obtaining superior accuracy, only top-performing works 

hich take into account both accuracy and run time are considered 
124 
or fair comparison. With this in mind, recent research such as the 

orks of Wei et al. [31] and Gu et al. [30] demonstrate impres- 

ive accuracy but are excluded from our comparison, as they uti- 

ize heavier configurations and omit speed analysis. Alongside per- 

ormances, comprehensive summary of each method’s backbone is 

lso reported for clearer comparison. It should be noted that meth- 

ds such as ACT, STEP and MOC perform clip-based detection. In 

ther words, they take clips of multiple RGB frames with the sup- 

ort of stacked flow images at once (e.g., five flow for each RGB), 

redicting action tubelets spanning these RGB frames. In contrast, 

ethods such as YOWO gather supportive contextual cues from 

ultiple frames to augment the target one. These particular at- 

ributes are summarized Table 3 column 4. 
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Fig. 7. FPS under varied key frame intervals. 

Table 3 

State-of-the-art comparison. ∗For any key frame, ACDnet (FA, MA) fuses the accumulated key frame feature from the past with the current one (considered 2RGB implicitly). 

For any non-key frame, its feature is approximated based on the preceding key frame feature (considered 1RGB). 

Method + 2-stream Flow + 3D CNN #frames:#det. UCF24 JHMDB21 FPS 

ROAD, Singh et al. [1] Kroeger ✗ (1RGB + 1FL):1 65.66 – 28 

ACT, Kalogeiton et al. [25] Brox ✗ (6RGB + 30FL):6 69.5 65.7 25 

TS-YOLO, Ali and Taylor [32] FlowNet2-SD ✗ (1RGB + 1FL):1 71.67 – 25 

STEP, Yang et al. [27] Brox 3 × 3D conv (6RGB + 30FL):6 75 – 21 

YOWO(a), Köpüklü et al. [33] ✗ 3D-ResNet101 16RGB:1 80.4 74.4 34 

YOWO(b) ✗ 3DShuffleNetV2 16RGB:1 71.4 55.3 –

YOWO(c) ✗ 3DMobileNetV2 16RGB:1 66.6 52.5 –

MOC, Li et al. [26] Brox ✗ (7RGB + 35FL):7 78 70.8 25 

ACDnet (FA, MA) ✗ ✗ 2(1) ∗RGB:1 70.92 49.53 75 
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As shown in Table 3 , ACDnet outperforms the others in terms 

f run time. This is ascribed to the feature approximation module 

nd our less complex architecture overall. The other methods ei- 

her adopt two-stream or 3D CNN architectures to capture comple- 

ented spatial and temporal features, which raise computation. In 

ddition, preparation of accurate flow using Brox [37] or FlowNet2 

38] is particularly expensive; as a result, all methods employing 

 second flow stream do not take into account optical flow acqui- 

ition when measuring run time (except ROAD using a fast flow 

stimator by Kroeger et al. [39] ). In contrast, flow generation in 

CDnet is fast and can be carried out in an online setting as it 

oes not aim to encode fine-grained motion features. 

In terms of accuracy, ACDnet retains competitive performance 

n UCF-24. On the other hand, its performance on JHMDB-21 is 

ess impressive compared to the other methods. As opposed to 

CF-24, whose classes of sports activities are visually more distinc- 

ive, we observe that JHMDB-21 contains more classes that share 

imilar visual context (for example, Sit vs. Stand , and Run vs. Walk , 

tc.). Fig. 8 demonstrates a few falsely detected examples by our 

odel which result in lower F-mAP in JHMDB-21. Such ambiguous 

isual context is challenging even for human to confidently infer 

he correct action unless viewing consecutive frames at once. As 

hown in column 4 of Table 3 , ACDnet applies detection on frames 
125 
ar fewer than other methods, which limits its ability to model 

etailed variations of visual cues over time. In addition, JHMDB- 

1 consists of short clips for which sparse memory aggregation 

an only take place minimally. The above factors result in ACD- 

et’s less satisfactory accuracy on JHMDB-21. This visual ambiguity 

ould generally be mitigated when examining more frames at once, 

s demonstrated by all clip-based methods. 

Similarly, 3D-CNN-based method such as YOWO also proves 

ffective to learn spatio-temporal features when taking 16 con- 

ecutive frames. However, such an approach inevitably raises 

he computation time; not only from model inference, but also 

ata loading, which is excluded in their reported speed perfor- 

ance. Furthermore, ACDnet achieves comparable accuracy when 

OWO employs lighter 3D CNN variants, implying the neces- 

ity of deeper models to effectively reason temporal context. 

n conclusion, our experimental results verify ACDnet’s competi- 

ive capability to efficiently infer actions with strong visual cues, 

ut its sparse spatio-temporal modeling scheme does not cap- 

ure temporal cues as effectively as the more expensive two- 

tream / 3D CNN. On the other hand, ACDnet is compact and 

an achieve inference speed far beyond real-time requirement. 

his not only permits more seamless deployment potentially on 

esource-constrained devices, but also can afford to further adopt 
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Fig. 8. Examples of false detection in JHMDB-21. (a) Correct action: Jump . (b) Correct action: Sit . (c). Correct action: Stand ; ACDnet incorrectly predicts two actions ( Stand 

and Run ). 
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 clip-based framework or light-weight 3D CNN to improve its 

ccuracy. 

. Conclusions and future works 

In this paper, we present ACDnet, a compact action detection 

etwork with real-time capability. By exploiting temporal coher- 

nce among video frames, it utilizes feature approximation on 

rames with similar visual appearances, which significantly im- 

roves detection efficiency. Additionally, a memory aggregation 

odule is introduced to fuse multi-frame features, enhancing de- 

ection stability and accuracy. The combination of the two mod- 

les and SSD detector implicitly reasons temporal context in an 

nexpensive manner. ACDnet demonstrates real-time detection (up 

o 75 FPS) on public benchmarks while retaining decent accu- 

acy against other best performers at far less complex settings, 

aking it more appealing to edge device deployment in practi- 

al applications. Our future works include further investigation in 

ost-effective architectures for spatio-temporal modeling and per- 

orming temporal localization. For a fully integrated and resource- 

fficient vision system, lightweight alternatives of the current sub- 

etworks will be explored, and we will precisely customize can- 

idate solutions for embedding them on edge devices such as 

VIDIA Xavier GPU. 
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