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Abstract Programming in high abstraction level can

facilitate the development of digital signal processing

systems. In the recent 20 years, high-level synthesis (HLS)

has made significantly progress. This technique greatly

benefits the R&D productivity of the Field Programmable

Gate Array (FPGA) developments and helps for adding to

the maintainability of the products by automating the C-to-

RTL (register transfer language) conversion. However, due

to the high complexity and computational intensity, image

processing algorithms usually necessitate a higher

abstraction environment than C-synthesis, and the current

HLS tools do not have the ability of this kind. This paper

presents a conception of very high-level synthesis method

which allows fast prototyping and verifying the FPGA-

based image processing designs in the MATLAB envi-

ronment. We build a heterogeneous development flow by

using currently available tool kits for verifying the pro-

posed approach and evaluated it within two real-life

applications. Experiment results demonstrate that it can

effectively reduce the complexity of the development by

automatically synthesizing the algorithm behavior from the

user level into the low register transfer level and give play

to the advantages of FPGA related to the other devices.

Keywords High-level synthesis � FPGA � Fast
prototyping � Real-time image processing � Computer-aided

design

1 Introduction

In real-time image processing area, embedded systems are

often involved. A precise definition of embedded system is

not easy. Generally speaking, all computing systems other

than general-purposed computer (with monitor, keyboard,

etc.) are embedded systems. An embedded system inher-

ently needs to embed a software into hardware, which

makes it dedicated for a customized application or a

specific part of an application.

FPGA is one of the frequently used embedded devices in

digital signal processing for its significant advantages in

terms of running-cost, power consumption and flexibility

[5, 11, 27, 36, 40, 45, 46, 48, 51]. Advanced Digital Sci-

ences Center (ADSC) of the University of Illinois reported

that FPGA can achieve a speedup up to 2–2.5� and save

84–92% of the energy consumption comparing to Graphics

Processing Units (GPUs) [18]. However, its users have to

suffer from the complexity of the development flow due to

the fact that the configuration of the devices of this type

necessitates the low abstraction register transfer languages,

such as VHSIC Hardware Description Language (VHDL)

or Verilog. According to the evaluation results of Xilinx

[60], RTLs-based FPGA designs consume the highest

development period in all the devices available for digital

signal processing. ADSC indicates also that a manual

FPGA design may consume 6–18 months and even years
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123

J Real-Time Image Proc (2019) 16:1795–1812

DOI 10.1007/s11554-017-0688-1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0688-1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0688-1&amp;domain=pdf


for a full custom hardware, while the GPUs (CUDA) based

designs only 1–2 weeks [1]. Consequently, today’s elec-

tronic manufacturers are increasingly pushed to select low

development effort–cost devices by the pressure of market

competition so that in most cases designers may accept the

increased costs of performance, power or price in order to

reduce development time. As a result, despite many

advantages related to the other devices, i.e., general-pur-

posed processors (GPPs), GPUs or digital signal processors

(DSPs) [19, 22, 29, 64], FPGAs are usually applied only

when the other devices cannot satisfy the design require-

ments. The abstraction level gap between the user-conve-

nient and hardware-available languages seriously narrows

the applications of FPGA in the image processing field.

Since the 1990s, many efforts have been made to

develop a production quality high-level synthesis (HLS)

technique for FPGA designs [2, 12, 13, 34, 35, 43, 54, 55,

63]. Figure 1 compares the conventional RTL with the

HLS-based design flows by using Gasjki-Kuhn’s

Y-chart [39]. We can see that its philosophy is to provide

an error-free path from abstract specifications to RTL,

having significant values to the electronic manufacturers

that constantly strive to improve their productivity by

raising the abstraction level and easing the development

process for their engineers.

Up to present, many high-quality HLS tools have been

made available for practical applications [39, 42, 44], i.e.,

Vivado_HLS of Xilinx [59] and Catapult C-Synthesis

Work Flow [57]. However, all the currently available HLS

tools are based on C-synthesis techniques oriented to the

scalar variables, whereas in the field of image processing a

vector-oriented environment with higher abstraction level

is usually required due to the high complexity and com-

putationally intensity of the target algorithms. Basing on

the achievements of HLS, we intend to conceive an auto-

matical very high-level synthesis (VHLS) framework

(briefly presented by Bi et al. [8] for the first time) with the

following properties:

(a) to handle the algorithm behavior described in very

high-level languages, such as MATLAB or OpenCL,

(b) to handle the code written without FPGA expertise

or even not for FPGA but the platforms of other

types,

(c) to optimize the performances of the designs with the

hardware constrains such as frequency or area of the

target device,

(d) to automatically generate the desired RTLs in a short

time rather than hours or even days,

(e) to be capable of being implemented by using the

currently available electronic design automation

(EDA) tools. This is important for industrial designs,

because it can effectively reduce the R&D cost by

helping for fast building the desired design space

exploration (DSE) framework and avoiding the

additional cost for the new tool kits.

We base the conception on MATLAB for its advantages in

terms of vector processing and powerful built-in image

processing tools. The challenges of MATLAB-to-RTL

synthesis include:

(a) Operators in MATLAB perform different operations

depending on the type of the operands, whereas the

functions of the operators in RTL are fixed.

(b) MATLAB includes very simple and powerful vector

operations such as the concatenation ‘‘[]’’and column

operators ‘‘x(:)’’ or ‘‘end’’ construct, which can be

quite hard to map to RTL.

(c) MATLAB supports ‘‘polymorphism,’’ whereas RTL

does not. More precisely, functions in MATLAB are

genetic and can process different types of input

parameters. In the behaviors of RTL, each parameter

has only a single given type, which cannot change.

(d) MATLAB supports dynamic loop bounds or vector

size, whereas RTL requires users to initialize

explicitly them and cannot do and changes during

the synthesis.

(e) The variables in MATLAB can be reused for

different contents (different types), whereas RTL

does not, as each variable has one unique type.

For the issues above, we innovatively incorporate the

source-to-source compile into the proposed VHLS frame-

work in order to turn the nature of the source code from

vector- into scalar-oriented programming. Finally, the

generated code is classically synthesized via control & data

flow extraction and RTL generation processes.

The proposed approach is evaluated by using two

complex image processing applications: Kubelka-Munk

genetic algorithm (KMGA) for the multispectral image-

based skin lesion assessments [28] and level set method

(LSM)-based algorithm for very high-resolution (VHR)

satellite image segmentation [6]. Experiment results
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Fig. 1 Comparison of RTL- and HLS-based design flows by using

Gasjki-Kuhn’s Y-chart: full lines indicate the automated cycles, while

dotted lines the manual cycles
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demonstrate that the proposed approach can effectively

reduce the complexities of description of the target algo-

rithms. Meanwhile, the generated implementations of RTL

have a higher performance than the reference implemen-

tations realized by using the other devices.

The remainder of this paper is organized as follows:

Sect. 2 presents the proposed very high-level synthesis

method. Section 3 discusses the challenges that we met

when prototyping this conception, as well as the solutions.

Section 4 evaluate the prototype of the proposed method

and analyzes the experiment results. Finally, a conclusion

is given in Sect. 5.

2 Proposed very high-level synthesis

This section presents the proposed VHLS method in detail

(see Fig. 2). It consists of three steps: source-to-source

compile (SSC), control and data extraction (CDE) and RTL

generation. For each step, interdependent tasks are

executed.

2.1 Source-to-source compile

As discussed before, the nature of vector-based represen-

tation of MATLAB and its powerful built-in tools result in

many challenges for synthesizing it to RTL. We summed

up these issues as the following three problems: dynamic

variable problem, operation polymorphism problem and

built-in function problem, and solve them by comply the

MATLAB source code into a second intermediate code.

2.1.1 Dynamic variable problem

Since the corresponding memories can be re-allocated over

and over for the new contents with different lengths

(types), MATLAB users do not have to declare the types

for variable initializing or allocate the right amount of

memory for vector variable before each use. The variables

can automatically change their lengths or dimensions

depending on the content to be held. But none of the cur-

rently available register transfer languages have the

dynamic variable ability like this. Therefore, as shown in

Fig. 3a, we must allocate explicitly enough storage for

every variable. In the proposed approach, a manually

specified define file is required for memory allocation.

Further more, when a variable is dynamically reused in the

source code, such as x and X in the example, some addi-

tional definitions with other names are necessitated, i.e.,

x 1 and X 1 in the example.

2.1.2 Operation polymorphism problem

MATLAB allows operator and function polymorphism.

That is, its operators or functions may support either a

matrix or a scalar as a second operand or argument, and

their returns are changed as well depending on the inputs.

For the operators, the nature of each invocation has to be

determined first. If scalar, they are mapped directly as the

corresponding monomorphism ones of the target lan-

guages, else they are replaced with a loop construct as

shown in the top of Fig. 3b. For the function mapping, the

types of all the arguments should be determined as well.

Depending on the invocation natures, we must create

multiple different versions for the same MATLAB func-

tions to satisfy the operations of different invocations as

shown in the bottom of Fig. 3b.

We can see that either operator or function mapping

may necessitate additional loop constructs in the present or

deeper function level. In RTL, all the loop boundaries must

be initialized in advance instead of using the unknown

variables due to the fact that FPGA supports only static

compile. In this paper, we use the vector information,

which has been explicitly defined in define file, to help to

compute the boundaries of the loops generated for opera-

tion polymorphism problem. Meanwhile, it should be noted
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Fig. 2 Flowchart of the proposed VHLS method
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that different vector dimensions may require more addi-

tional function versions even for the invocations that have

same nature.

2.1.3 Built-in function problem

The built-in algorithms/functions of MATLAB provide

users many benefits of facilitating their algorithm speci-

fying, but they are usually invisible to a third-party com-

piler and detected as undefined functions when invoked.

Therefore, we need to build a new library by using the

synthesizable code for these powerful algorithms. As

shown in Fig. 3c, the function sort of MATLAB is re-

specified in the library. When it is invoked in the source

code, the corresponding routine can be easily compiled by

including its specification into the generated file. Since the

built-in functions of MATLAB have also the polymor-

phism nature, we create different versions each. Depending

on the argument types, the right version is re-targeted to the

invocation in the source code.

2.2 Code and data extraction

Since there may be still a lot of variations between the

semantics of the pre-compiled code and the target

architectures, a canonical intermediate representation is

needed for data dependency analysis. This issue can be

formally solved by using the control and data flow graph

(CDFG), which is one of the most widely accepted

modeling paradigm for specifications that are processed

by HLS tools.

A CDFG is a directed graph in which every node and arcs

refer to a basic blocks B and control flows, respectively [16].

A basic block is defined as a straight-line sequence of

statements without branches. As shown in the top of Fig. 4, a

CDFG has two parts: control flow graph (CFG) and data flow

graph (DFG). In the proposed approach, the data and control

flows are firstly represented by using a DFG and a CFG,

respectively. InDFG, every node refers to an operationwhile

arcs the data assignments. Next, the two graphs are fused into

together as the desired CDFG by assigning the operations in

DFG into the basic blocks of CFG. In such a way, the exe-

cution order of the process elements can be determined as

well as its architecture.

The CDFGs can be classically created by using the finite-

state machines (FSMs) with datapath as shown in the lower

left of Fig. 4. This model is one of the most popular methods

for digital system specification in register transfer level

[60, 61]. The generated FSM divides the elements of CDFG

into a set of states S and control steps for synthesis. Mean-

while, it should be noted that the overall process of this

transformation can be automated or user-driven [15, 21, 49].

2.3 RTL generation

This subsection presents how the desired RTL is generated.

To do this, three interdependent tasks are needed first,

including scheduling, allocation and binding.

X = μ+I
x = μ+β

x := μ+β
allocate x, X

X[i] := μ + I[i]

i := 1:3

X = exp (A)
x = exp (α)

call exp_s (α, &x)

α := 0

call exp_v (A, X)

allocate x, X

I = [0, 0, 0]
μ = 0, β = 0 μ := 0

β := 0
I := {0, 0, 0}

α = 0
A = [0, 0, 0] A := {0, 0, 0}

X[i] := eA[i]
i := 1:3

free all

free all

x := eα

X = [0, 0, 0]
X = X’

X_0 := {0, 0, 0}
X_1 := X_0'

x = pixel
x = int32 ( x )

x_0 := pixel
x_1 := int32 ( x_0 )

allocate x_0, x_1

allocate X_0, X_1

free all

free all

Y = sort (X)

Input: X [3x1]
Output: Y [3x1]

if (X[0] ≤ X[1] or X[1] is NaN) then do {
if (X[1] ≤ X[2] or X[2] is NaN) then do Y := X
else {
if (X[0] ≤ X[2] or X[2] is NaN) then do
Y := {X[0], X[2], X[1]}

else Y := {X[2], X[0], X[1]}
}

} else {
if (X[0] ≤ X[2] or X[2] is NaN) then do
Y := {X[1], X[0], X[2]}

else {
if (X[1] ≤ X[2] or X[2] is NaN) then do
Y := {X[1], X[2], X[0]}

else Y := {X[2], X[1], X[0]}
}

}

X = [3, 2, 1] X := {3, 2, 1}

call sort_lib (X, Y)
allocate Y

free all

Detail

c Built-in function compile
b Operator (top) and user-function

(bottom) compile

a Scalar (top) and
vector (bottom)
variable compile

Library file

Fig. 3 Source-to-source compilation strategies for VHLS
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2.3.1 Scheduling

Scheduling task schedules the operations represented in

CDFG into cycles. More precisely, for every operation, its

operands must be read from either storage or functional

unit components, and the results must be assigned to its

destinations (another operation, storage or functional unit).

These operations need to be scheduled within a single

clock or over several cycles one by one.

Up to the present, many efforts have been made in

order to achieve more efficient scheduling [20, 24, 25,

38, 41, 52]. Integer linear programming algorithm [30] is

the most widely used solution for this problem, its solver

is guaranteed to find an optimal schedule from the

problem models. In this algorithm, the mobility range of

every operation M ¼ fmjjSi 6 j 6 Lig is calculated first

by using As Soon As Possible (ASAP) and As Late As

Possible (ALAP) algorithms [20, 38, 52], where ½Si; Li� is
the ASAP–ALAP range in which the i-th operation can

be scheduled. Next, for the sake of convenience, let us

suppose the extracted CDFG contains n operations and

need to be scheduled into s steps. Each of the operations

is denoted by oi, where 1 6 i 6 n. A precedence relation

between oi and oi0 is denoted by oi ! oi0 , where oi is the

immediate predecessor of oi0 . The cost of a function unit

of type tk, defined as FUtk , is ctk , and there are m types

of functions unites are available. Let Mtk be the number

of FUtk . xi;j is a Boolean variable associated with oi:

xi;j ¼ 1 if oi is placed into step j, otherwise 0. Now the

scheduling problem can be formulated as follows:

Minimize
Xm

k¼1

ctkMtk

( )
ð1Þ

subject to

X

i¼1

n

oi2FUtk

xi;j �Mtk 6 0; for1 6 j 6 s; 1 6 k 6 m ð2Þ

XLi

j¼Si

xi;j ¼ 1; for1 6 i 6 n ð3Þ

XLi

j¼Si

j� xi;j �
XLi0

j¼Si0

j� xi0;j 6 �1; for all oi ! oi0 ð4Þ

The objective function in Eq. 1 states that we are going to

minimize the total function unit cost. Equation 2 is the

constraint that there should be no more than Mtk function

units of type tk in a single step. Equation 3 states that the

operation oi can only be scheduled into a step between Si
and Li. Equation 4 ensures the precedence relations among

the operations extracted from the control and data flow

graph.

2.3.2 Allocation and binding

Allocation and binding processes come after scheduling. In

allocation, the type and quantity of hardware resources, i.e.,

functional units, storage or connectivity components, are

determined first depending on the scheduled CDFG. Next,

the desired hardware resources are selected from the given

IP library that contains all the necessary information for

every component, such as area, delay, power and metrics to

be used by other synthesis tasks as well. Finally, binding is

done with the following tasks:

(a) Functional binding: bind all the arithmetic or logic

operations to the functional units allocated from the

IP library.

Pre-compiled code

Input: pixel_in
Output: pixel_out

temp := pixel_in * λ

if (temp>255) then do
temp := 255

pixel_out := temp

B1
B2

B3

Control flow graph

Data flow graph

0
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pi
xe
l_
in

>×

λ 255

=

255
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xe
l_
ou

t
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λ

255

×
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Fig. 4 Control-and-datapath

extraction
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(b) Storage binding: each variable that carries values across

cycles must be bound to a storage unit like register.

(c) Connectivity binding: bind data transfers to the

connective units, such as assignments, buses. In

additional, if the interconnects are shared by multi-

ple data transfers, a multiplexer will be needed

between the sources and destinations.

Since an IP library usually has several alternatives for a

given functional unit or a storage unit, i.e., ripple-carry adder

versus carry-look-ahead adder or reset-only register versus

the register with both presets and reset, besides the right

function, the selected hardware must be able to optimize the

generated RTL or minimize either the total cost of source

consumption or interconnection length with the design

constraints. This allocation problem can be formulated as a

clique-partitioning problem classically in HLS [17, 23, 52].

A clique-partitioning problem is to partition an undirected

graph Gc ¼ ðVc;EcÞ into a minimal number of cliques such

that each vertex belongs to exactly one clique, in which Vc is

a set of vertices, Ec is a set of edges and a clique is a set of

vertices that form a complete subgraph of Gc. Figure 5a

displays a typical example of function unit allocation solved

by using this method. For functional unit allocation, a vertex

represents an operation. The two vertexes are connected by

an edge if and only if they are scheduled into different steps

and can be carried out by a single functional unit. On the

other hand, for the storage unit allocation problem, as shown

in Fig. 5b, a vertex represents a value r� needed to be stored,
and the two vertexes are connected if and only if the lifetime

of the corresponding values do not intersect. Historically,

this problem can be solved by using Tseng and Siewiork’s

algorithm [52].

2.3.3 Generation

Once all the decisions of the preceding tasks, including

scheduling, allocation and binding, have been made, we can

start to generate the desired RTL. Figure 6 shows a typical

example of the register transfer level architecture generated

through the proposed approach. The FSMdiagram ismapped

as a logic controller to orchestrate the data flow through the

control signals, i.e., selecting the right inputs for functional

units, registers or multiplexers. This architecture consists of

state logic, state register and output logic. The state register

stores the present state of the data path, while the state logic

computes the next state to be loaded depending on the control

inputs from the external world and the state signals from the

processor (data path architecture). Finally, the correspond-

ing control signals and control outputs are generated and

exports by output logic.

On the other hand, the computing of each state ismapped as

a data path architecture that consists of a set of storage com-

ponents, a set of functional units and connectivity compo-

nents. The quantities and types of storage components and

functional units are allocated according to the decision made

in the allocation and binding tasks, then arbitrarily connected

through connectivity components. The interconnection

behavior of data path architecture is described in register level

language. Algorithm 1 shows the data path behavior

description of the RGB-to-gray level transformation. In this

example, three multipliers (FU1, FU2 and FU3) are allocated

to minimize the latency by parallelizing the production

operations. The two addition operations are serially scheduled

due to the data dependency, and because of this, only a single

adder is allocated to minimize the resource consumption.

r4

r5

r3

Clique 1

+
++
×

+

Step 1

Step 2

Step 3

v0 v1

v2
v3

v4

V0 V1

V2 V3

V4

Clique 2

Clique 3

a Function unit allocation

Step 1

Step 2

Step 3

r1

r2

v1

v2

v3

v4

v5

V1

V2

V3

V5

V4

Clique 1

Clique 2 Clique 3

b Storage unit allocation

Fig. 5 Examples of clique-partitioning problems and solutions for

function and storage unit allocations

Algorithm 1 Data path architecture of RGB-to-Gray
transformation: I = 0.2989×Ir+0.5870×Ig+0.1140×Ib
Require: Ir, Ig, Ib, Sctrl

Ensure: I, Sstate

1: Wctrl := Sctrl

2: {Register 1, Register 2, Register 3} := {Ir, Ig, Ib}
3: Bus 3 := FU1(Wctrl, Ir, 0.2989)
4: Register 1 := Bus 3
5: Bus 3 := FU2(Wctrl, Ig, 0.5870)
6: Register 2 := Bus 3
7: Bus 3 := FU3(Wctrl, Ir, 0.1140)
8: Register 3 := Bus 3
9: Bus 3 := FU4(Wctrl, Register 1, Register 2)
10: Register 1 := Bus 3
11: Bus 3 := FU4(Wctrl, Register 1, Register 3)
12: Register 1 := Bus 3
13: I := Register 1
14: Sstate := go to next state
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3 Prototype of VHLS process

According to Sect. 2, we can see that the proposed VHLS

method is hard to be implemented. In this section, we will

discuss its challenges and solutions.

3.1 Work flow

The work flow for the proposed VHLS method is shown in

Fig. 7, within which the following tasks should be done:

(a) Users first specify and functionally verify their

algorithm behavior by using classical MATLAB.

(b) Next, the verified MATLAB code is compiled into

the intermediate code. Due to the compatibility

problem between the tools (discussed later), the code

needs to be further transformed for the subsequent

steps. Additionally, a second function verification

can be done by using the corresponding compilers if

necessary.

(c) Thirdly, the verified intermediate code is synthesized

into RTL through a synthesis tool with the user-

specified and hardware constraints.

(d) Fourthly, the generated RTL is evaluated. If the

results satisfy the design requirement, go to the next

step, otherwise go back to the first step.

(e) Finally, the evaluated RTL is send back to the

MATLAB environment for co-simulation. If its logic

verification is satisfied, work end, otherwise go back

to the first step.

3.2 Intermediate code

The first step of the proposed approach is to compile the

source code from MATLAB into an intermediate code. In

this paper, ANSI C is selected for the following reasons:

(a) It is a scalar-based language with high compatibility,

which can satisfy most requirements of synthesis

process related to language natures.

(b) It can be compiled as either source or destination

code by many mature source-to-source compilers,

which can facilitate the discovering of the alternative

solutions for source-to-source compile task. This is

important for DSE because the description methods

or code style could influence the performances of the

generated RTL [14].

(c) It is supported by most available FPGA synthesis

tools. Since the qualities of the generated RTL are

essentially decided by the synthesis strategies, i.e.,

scheduling and binding algorithms, so different tools

may result in different design results. Being sup-

ported by multiple synthesis tools allows easy

experiments for solution improvements.

Basing on this decision, MATLAB Coder is selected for

the MATLAB-to-C conversion.

3.3 Intermediate code versus RTL

In the electronic design automation world, many high-

quality HLS tools have been made available and used in

real-life applications [10, 42, 47, 53]. Meeus et al. [39]

evaluates the main characteristics of the most currently

available commercial HLS tools and represented the results

by using the 5-level spider web diagrams. According to

their achievements, we selected AutoPilot as our synthesis

tool from five candidates, including AutoPilot [62], Cata-

pult C [57], C-to-Silicon [9], Cyber Workbench [56] and

Synphony C [50]. Table 1 compares their characteristics,

and Table 2 describes its score levels. We can find that

AutoPilot has a near perfect performance related to the

others. It can benefit the desired design suite in the fol-

lowing aspects:

State logic

State
register

Output logic

Control
inputs

Control
outputs

FU_2 MULFU_1 Memry

Register_nRegister_2Register_1

Controller

Bus 1
Bus 2

Bus 3

Data path architecture

Control
signals

State
signals

FPGA device

Fig. 6 An example of VHLS-generated FPGA architecture
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(a) Scheduling untimed code (operations) without any

restrictions. Since MATLAB Coder does not have

the ability of code timing, this advantage allows us

to move the intermediated code into it without

further processing for time control.

(b) Handling floating point variable by mapping them

into fixed point. This facilitates the designs of high

accuracy applications.

(c) Providing extensive and intuitive exploration

options. With AutoPilot, users can discover new

solution alternatives by re-configuring the optimiza-

tion directives instead of modifying the source code.

(d) Ability of estimating the running-cost of the design.

This can facilitate the evaluation of the design

candidates and making the final decision.

(e) Generating high-quality RTLs. Designers always

strive for better design performances within their

powers. According to the measuring of Meeus et al.

[39], AutoPilot could save up to more than 95% of

hardware sources (slices) compared to the other HLS

tools.

(f) Easy to be learned even for those who is knowledge

less with FPGA. This tool can be quickly mastered

by C users and requires less hardware knowledge.

Furthermore, its documentation is extensive and easy

to understand.

3.4 SSC versus HLS

As shown in Fig. 3, besides of the algorithm behavior, a

define file is needed to specify the size of the vector variables

used in the behavior file behavior.m. Moreover, since

MATLAB Coder is inherently designed for the MEX func-

tion rather than high-level synthesis, the compile process

needs to be re-configured to ensure the C code generated by

default amenable to the C-synthesis process. For the sake of

convenience, let us take the example shown in Fig. 8 as

instance to show how we make it. Figure 8a displays the

user-specified algorithm behavior, which first transforms the

input color image Irgb into gray level then enhances it using

log transformation. Figure 8b is the define file specified

manually in the format of MATLAB script (*.m), in which

the size of the input argument Irgb is defined by using function

zeros() with an element type of single-precision floating

point number. Next, the desired C code can be generated by

entering the following commands in the command window

of MATLAB:

� run define.m;

� cfg ¼ coder.configð’lib’Þ;
� codegen myfunc vhls -config cfg -argsfIrgbg;

The first command above is to create a set of vector or

matrix variables in the workspace of MATLAB by running

Algorithm
behavior

specification

Source-to-
source compile
(Matlab Coder)

Source code Intermediate
code

Intermediate
code

transformation

Intermediate
code verification

(ICC)

Algorithm
verification

Debugged
intermediate

code

Synthesis
process

(Auto Pilot)

RTL code

Define file

Evaluation
(Auto Pilot)Satisfy?Co-simulationSatisfy?

Begin

End

No

Yes

Testbench

Yes

No

Matlab level C level

Register transfer level

Fig. 7 VHLS-based work flow

Table 1 Evaluation of HLS tool candidates: ‘‘*’’ refers to the selected HLS tool for the proposed approach

Source Abstraction

level

Data type Design

exploration

Verification RTL

quality

Ease of

implementation

AutoPilot* C/C??, System C ?? ? ?? ?? ?? ??

Catapult C C/C??, System C ?? ? ?? ?? ? ??

C-to-Silicon C, TLM, System C ? ? - ? þ� ?

Cyber Workbench C, System C, BDL ?? ? ?? ? ?? ?

Synphony C C/C?? ?? ? þ� ?? þ� ??
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the define file. The elements of these variables are initial-

ized as zeros, but contain the desired size information of

the corresponding arguments of the algorithm behavior.

Next, we modify the transformation constraints of

MATLAB Coder from mex (for MEX functions) to lib (for

C/C?? Static Library). Finally, MATLAB-to-C transfor-

mation is run with the defined configuration (-config cfg)

and information of the input vector (-args {Irgb}).

In the generated code shown in Fig. 8(c), we can see that

the boundary of the loop nest is automatically detected

during the code transformation depending on the given size

information of the input vector Irgb, as well as the size of

the two output vectors Igray and Ilog. However, it should be

noted that compatibility problems still exist potentially due

to the source code constraints of AutoPilot, including but

not limited to:

(a) The memory manipulation statements frequently

used by MATLAB Coder, i.e., malloc() and mem-

cpy(), are not supported by AutoPilot;

(b) Static variable is not amenable to AutoPilot because

FPGA does not have the storage element of this type;

(c) Not all the MATLAB built-in functions are support

by MATLAB Coder.

Therefore, before CDFG extraction, once these problems

emerge, as shown in Fig. 7, an ‘‘Intermediate code trans-

formation’’ task must be done. For example, the memory

allocation statements can be mapped into the common

array declarations, while the static variable into a variable

out of the top entity and stored in the external memory.

3.5 Verification and evaluation

According to Fig. 7, we can see that three verification and

one evaluation tools are required. The source code can be

easily verified by using the compiler of MATLAB.

Meanwhile, we select Intel C?? Compiler (ICC) to debug

the intermediate C code and evaluate the generated RTL by

using AutoPilot directly.

Since the algorithm behavior is specified within a

MATLAB environment, the final co-simulation should be

performed between MATLAB and RTL. To do this, Sys-

tem Generator/Simulink [58] is suggested. This tool pro-

vides a visual programming environment which can

facilitate the building of the testbench and profiting from

the data base already configured in MATLAB.Fig. 8 An example of source-to-source compile

Table 2 Symbol definition of Table 1

þþ þ þ� - --

Abstraction level Untimed code Untimed code with

restrictions

Timed code Block level design

Data type Floating and fixed point

number

Fixed point number Need data conversion Neither floating nor fixed

point number

Design

exploration

Intuitive exploration options Non-intuitive

exploration options

By swapping

predefined blocks

Limited exploration

capabilities

Verification Support either source or

generated code

Require data

conversion

Support source code

only

No verification support

RTL quality

(slices)

Less than 300 300–1200 1200–2100 2100–3000 More than

3000

Ease of

implementation

No code modifications Less code

modifications

A number of code

modifications

Many code modifications Rewrite

code

The evaluation results of the tool candidates are represented by using five levels, --, -, þ�, ? and ?? from low to high, respectively [39]. The

abstraction level evaluates the ability of the tools in terms of timing control. Data types refer to the ability of data format supporting, such as

floating or fixed point data. Exploration is the design space exploration ability of the tool. Verification evaluates whether the tool can help to

generate easy-to-use test benches quickly. RTL quality is estimated by the amount of the hardware consumption of the generated RTL presented

in [39]. Ease of implementation means whether the original source code could be used with less modifications or need to rewrite completely
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4 Experiments

The experiments of the proposed approach are conducted

by using two real-life applications: KMGA method [28]

and LSM-based image segmentation algorithm [6] (defined

as KMGA and LSM in this paper). The two algorithms are

selected for the following two reasons: a) both of them

have complex iterative architectures, which are effort-cost

to be implemented by using conventional FPGA design

flows, and b) KMGA have a low parallelism while LSM

allows a Lattice Boltzmann Method (LBM) solver, which

has a high parallelism. This allows us to compare the

performance difference of the proposed approach in two

different cases.

This section first analyzes the synthesis process of

KMGA in detail in order to illustrate how VHLS works in

the real-life applications that evaluates the implementations

of the two algorithms from different aspects, including

accuracy, efficiency, code intensity and development cost.

For the purpose of concision, we present only the experi-

ment results of LSM in this paper, but readers can consult

the Reference [6] for more details about it if desired.

4.1 Synthesis process of KMGA

KMGA is a promising technique for the computer-aided

skin lesion assessment. As shown in Fig. 9, this method

can retrieve the skin parameter maps from a multispectral

reflectance cube to perform a second quantified diagnostic

opinion in consultation. Its algorithm behavior needs to

combine a light-tissue model, Kubelka-Munk (KM) func-

tion, with a function optimizer of genetic algorithm (GA).

In other words, this algorithm inverses the KM process by

using the genetic algorithm. In our experiments we use a

reduced 2-layer KM function [33] and a nature evaluation

process for function optimizing.

Algorithm 2 KMGA method
Require: Reflectance array: R
Ensure: Skin parameter array: Pskin

1: Initialize seed of Random Generator
2: Pop := initialize population
3: Pfitness := positions of fitness genes
4: Pop(Pfitness) := get fitness value via KM model
5: for all iterations do
6: Pbest := positions of best individuals
7: if iter = the last iteration then
8: Pskin := the best individual
9: else
10: for i ∈ positions of all the best individuals do
11: NewPop(i) := get best individuals
12: end for
13: Prandom := positions of random individuals
14: for i ∈ positions of all the random individuals do
15: NewPop(i) := get random individuals
16: end for
17: Pcross := positions of cross individuals
18: for i ∈ positions of all the cross pairs do
19: p := position of cross gene
20: Swap cross genes
21: end for
22: for i ∈ positions of all the cross individuals do
23: NewPop(i) := get cross individuals
24: end for
25: Pmutation := position of mutation individuals
26: for i ∈ positions of all the mutation individuals

do
27: p := position of mutation gene
28: NewPop(i×6+p) := renew the mutation gene
29: end for
30: NewPop(Pfitness) := get fitness value via KM
31: Pop := NewPop
32: end if
33: end for

The overall flowchart of KMGA is described in Algo-

rithm 2. Firstly, the individuals are randomly generated

within reasonable range to form an initial population. Next,

in an iterative framework, population evolves using tech-

niques inspired by natural evolution. The evolution of the

population is composed of three steps: best-individual

selection, crossover-mutation and random selection. Dur-

ing the selection process, only the best individuals are kept

Fig. 9 Skin parameter maps retrieved through KMGA: a reflectance

image of Vitiligo at 550 nm, b volume fraction of melanosome map,

c volume fraction of hemoglobin map, d relative blood oxygenation

map, e epidermis thickness map and f dermis thickness map
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for the next iteration. Then, crossover process selects

multiple couples of individuals from the population and

one crossover parameter from the five skin parameters to

create two new individuals (offsprings) by swapping the

parents’ selected parameter values. Finally, mutation pro-

cess randomly generates some new skin parameter values

to replace certain individuals’ old ones. These processes

are repeated until a predefined number of iterations.

Finally, the best candidate is selected.

Figure 10 displays the function hierarchy of the trans-

formed intermediate code. Firstly, in the source code, we

specify a single random position sequence generator for the

selection of random, cross and mutation individuals. This

method handles the generations of the three size-different

random sequences by taking advantage of the polymor-

phism of MATLAB functions. In the intermediate code,

this function is mapped to three similar functions, Position

Generator_{0, 1, 2}, depending on the invocation natures.

Next, we can see that four C library functions, rand (), sqrt

(), exp () and pow () are invoked in the MATLAB Coder-

generated code. However, rand (), exp () and pow () are not

supported by the selected HLS tool because they necessi-

tate static variables. We therefore map them to the design

library functions, rand_hls (seed), exp_hls () and pow2_hls

(). It should be noted that in rand (), a seed variable must

be defined to initialize it. In ANSI C it is declared as static

variable, and we transform it into global one and allocate in

the external memory in our case.

The left schematic diagram of Fig. 11 displays the

CDFG of the top behavior of KMGA which is scheduled as

a FSM with four states labeled S0, S1, S2 and S3. In state S0,

the Population Initialization block waits for the control

signal of ap_start. When the population is initialized, the

state transits to S1 to compute the fitness values of the

randomly generated individuals by using KM function.

Next, the population starts to evolve. In the evolution

process, the population is first sorted depending on their

fitness, and then the present iteration count is verified to see

whether reach to the defined maximum iteration number. If

yes, the information of the best individual is exported,

otherwise the evolution continues. When the present iter-

ation finishes, the FSM controller goes back to the entrance

of S2.

It should be noted that the desired KMGA is complex,

so we map the functions of intermediate code to the

behavioral instances to enforce the robustness of the

design. In Fig. 11, we illustrate also the details of CFGs of

the basic blocks of KMGA. We can see that these sub-

blocks are implemented by using FSM architectures as well

as the top behavior.

Table 3 lists the hardware elements required by the

generated RTL with the device of xc7vc1140tflg1928-1 of

Virtex7. During the generation process, two user-specified

basic blocks, KM function and Fitness Ordering, are gen-

erated, while the others are inlined into the top behavior.

Next, nine types of different library functional units are

allocated. Despite high complexity, the algorithm behavior

does not result in a quantity skyrocket for each unit. This is

because the selected HLS tool can effectively handle the

scheduling and allocation problem to benefits the area cost

performance. For storage, 101 registers and 7 BRAM are

allocated respectively. Finally, 39 multiplexers and 117

other units are allocated for logic control.

4.2 Evaluations of KMGA and LSM

implementations

Table 4 describes the implementations used for this eval-

uation experiments. In order to obtain an unbias compar-

ison, the different implementations of MATLAB and

VHLS versions are developed from the same algorithm

behavior described in MATLAB, while the two C versions

are manually implemented additionally.

4.2.1 Function verification

We first functionally verified the generated RTLs,

kmga_fpga_vhls and lsm_fpga_vhls. Figure 12 statistically

analyzes the final fitness values of the evolution processes

of all the KMGA implementations using box-whisker plot,

in which a box with whisker is produced for each data set

of the corresponding measure results, the red central mark

is the median value, the edges of the blue boxes are 25th

rand_hls
(seed)

Population
Initializer

Position
Generator_1

Position
Generator_2

Position
Generator_0

sqrt (x)

exp_hls (x)

pow2_hls (x) Fitness
Ordering

KM function

KMGA

Description:

rand_hls (seed):
generate a random real number.

Population Initializer:
initialize the population.

Position Generator_{0, 1, 2}:
generate a random position
sequenc for random, cross or
mutation process.

KM function:
formulation of KM model

Fitness Ordering:
sort the individuals by their
fitness values, and return the
postion sequence of the best
individuals.

sqrt (x):
C library function, return the
square root of x.

exp_hls (x):
return the value of e raised to xth

power.

Pow2_hls (x):
return x2.

Fig. 10 Function hierarchy of KMGA within transformed interme-

diate C code
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and 75th percentiles, the black whiskers extend to the most

extreme data points. The measurements are conducted by

using 100 skin spectral samples, and lower fitness value is

better. We can see that kmga_cpu_m has the lowest fitness

value in a whole, whereas the kmga_fpga_vhls the highest.

That is, the accuracy performance of the VHLS imple-

mentation is lower than either MATLAB or C

implementation.

On the other hand, the function of LSM is verified by

observing the similarities between the segmentation results

of the implementations and the ground truth images.

Table 5 shows the image similarities tested by using the

three images taken by IKONOS and GeoEye-1 shown in

Fig. 13. The image similarities are figured out by using the

built-in function corr2() of MATLAB. We can see as well

that lsm_fpga_vhls has different segmentation results with

the other three implementations.

The differences of the obtained experiment results are

caused by two reasons: (a) the evolution process of KMGA

is random, so the results are hardly identical for each

Population
initialization

Export the
best

individual

Evolution
process

KM function

S0

S1

S3

Generate
genes

Fitness
OrderingS2

Initialization

Export best
individuals

Swap
positions

Gene_0 Gene_1 Gene_2 Gene_3 Gene_4

Get best
individual

Position
Generator_0

Position
Generator_1

Get random
individual

Swap selected
genes

Get cross
individual

Position
Generator_2

KM functionGet new
individual

Generate
random
position

Generate
cross

position

Generate
mutation
position

Fig. 11 CDFG of KMGA

Table 3 Hardware element

estimation of KMGA:‘‘*’’ refers

to the user-specified behaviors

Element Description Quan.

KM function* Tissue-light interaction model of skin depending on the fitness 1

Fitness Ordering* Sort the individuals 1

dadd Double-precision floating point addition 1

ddiv Double-precision floating point division 2

dmul Double-precision floating point multiplication 2

fadd Single-precision floating point addition 1

fpext Single-precision floating point sign-extension 2

fptrunc Single-precision floating point truncation 2

sitodp Signed-integer to double-precision floating point conversion 1

sitofp Signed-integer to single-precision floating point conversion 2

urem Unsigned Remainder 11

Register – 101

Memory Internal storage space (BRAM) 7

Multiplexer – 39

Others Operators/components for logic control 117
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running, and (b) we convert the data type from double to

float to save the area consumption of the design, which

results in a lower accuracy. Further more, in C-synthesis

process, the single-precision floating point numbers are

further mapped to the fixed point ones, which results in a

second change of experiment result. However, all these

differences are tiny, so it will not seriously influence the

performances of the final implementations. Despite the

reduction of accuracy, these experiments demonstrate that

the proposed VHLS can generate the desired implementa-

tions with the correct functions.

4.2.2 Hardware estimate

We evaluate the hardware occupancy of VHLS by com-

paring the hardware consumption of kmga_fpga_vhls and

lsm_fpga_vhls with two reference implementations. The

reference implementation of KMGA, FPGA-KMGA [32] is

realized through a C-synthesis based design flow and

optimized by using the directives of Vivado_HLS, while

the one of LSM through a manual MATLAB-to-RTL

development framework proposed by Chao et al. [31]

without any optimizations.

As shown in Table 6, it is first found that neither of the

two implementations consumes a large number of resour-

ces. kmga_fpga_vhls takes up only 4% of look-up

tables (LUTs) of the target device, while lsm_fpga_vhls

only 55:5%. This is because the selected HLS tool,

AutoPilot, provides a high-quality scheduling, allocation

and binding. Secondly, since FPGA-KMGA is accelerated

by using a series of optimization methods, requiring more

components to parallelize the operations, it costs much

more hardware resources than kmga_fpga_vhls. Mean-

while, because neither of lsm_fpga_vhls and its reference

implementation is optimized, their hardware consumptions

are very close.

4.2.3 Efficiency

Thirdly, we show the running speed ratio in Fig. 14. This

experiment is made by using a standard skin lesion

reflectance cube retrieved through a neural network

designed by Mansouri et al. [37] for KMGA, and the

photos taken by the satellite IKONOS for LSM. The

MATLAB CPU implementations of each algorithm are set

as the reference. We can see that the proposed VHLS

method achieves a speedup of around 6� and 1:42� for

kmga_fpga_vhls versus kmga_cpu_m and lsm_fpga_vhls

versus lsm_cpu_m. This demonstrates that our approach

can effectively give play to the advantages of Field Pro-

grammable Gate Arrays (FPGAs) in terms of running speed

when the design is made in the same high abstraction level.

Related to the C implementations, our approach

achieves a speedup of 2:2� for KMGA but reduces the

running speed of LSM by 46:3%. This is because the

selected C compiler, ICC, allows optimizations of different

forms [3, 4, 7, 26]. In this experiment, ‘‘Maximize speed’’

mode is used to schedule the algorithm automatically.

Since the evolution process of KMGA is an iteration-de-

pendent loop, the parallel optimizations, such as vector-

ization or Streaming SIMD Extensions (SSE), cannot

Fig. 12 Fitness values of KMGA implementations

Table 5 Segmentation result similarities of the LSM

implementations

Uxmal Volcano Ice sheet

lsm_cpu_m 0.9131 0.9722 0.9514

lsm_cpu_c 0.9452 0.9977 0.9812

Table 4 Implementation

description
Algorithm Implementation Tool Hardware

KMGA [28] kmga_cpu_m MATLAB R2012a Intel Q6600 processor

kmga_cpu_c ICC 13.1.1 Intel Q6600 processor

kmga_fpga_vhls proposed VHLS Xilinx Virtex-7

LSM [6] lsm_cpu_m MATLAB R2012a Intel Q6600 processor

lsm_cpu_c ICC 13.1.1 Intel Q6600 processor

lsm_fpga_vhls proposed VHLS Xilinx Kintex-7
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benefit the running-cost performance of the design. In

contrast, LSM has a high parallelism, so this method pro-

duces a very high-quality implementation. But it should be

noted that the comparisons between the C- and VHLS-

based implementations are not fair, because the former

must be developed in the lower C abstraction level, which

usually requires more design efforts than the latter. Further

more, this performance gap is not impassable, because we

do not make any parallel optimizations in the VHLS-based

implementations yet.

4.2.4 Productivity

The code intensities of different implementations are first

evaluated using the line quantities of their routines as

metric. As shown in Fig. 15, we can see that the VHLS-

based implementations have the same code intensities with

the MATLAB ones. This demonstrates that the proposed

approach has a high compatibility with MATLAB. Mean-

while, the line quantities of kmga_fpga_vhls and

lsm_fpga_vhls are only around 50% of their C code, so it is

concluded that the proposed approach can effectively

reduce the complexity of the design related the reference

methods.

Next, the effort consumption of the manual and VHLS-

based MATLAB-to-C transplantations is estimated using

the metric time� persons. In this case, both of the

MATLAB implementations of the test algorithms are

manually made by the image processing experts with little

FPGA knowledge, then transplanted into to the C code

amenable to HLS tools.

During the implementation work, it is found that the

manual design flow requires an effort costly algorithm

analysis cycle for the hardware experts to understand the

fundamentals of the algorithm, and this cycle takes up

around half the work efforts. During the code conversion,

hardware experts must re-specify the algorithm behavior

manually line-by-line in C level, whereas it can be done

Fig. 13 Photos taken by IKONOS and GeoEye-1 for LSM evaluation: a Uxmal, b Volcano and c Ice sheet

Fig. 14 Acceleration ratio: a KMGA, b LSM

Table 6 Comparison of

hardware consumption
Algorithm Implementation Device BRAM_18K DSP48E FF LUT

KMGA kmga_fpga_vhls Virtex-7 14 116 19475 32245

FPGA-KMGA [32] Virtex7 192 2352 467264 668784

LSM lsm_fpga_vhls Kintex-7 3 74 14321 23854

Chao et al. [31] Kintex-7 3 74 13462 23403
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automatically in theory within VHLS. But in practical, due

to the built-in function problem of MATLAB, we still

spend several days to establish function libraries. Mean-

while, since the machine-generated code is usually much

harder to read than the manually written one, VHLS costs

more time than manual design flow on the code debug and

verification. In the two cases of this paper, the proposed

VHLS process raises the development productivity by

around 77% and 84.6%, respectively.

Meanwhile, it should be noted that for the VHLS pro-

totype of this paper, the practical productivity gain changes

with the algorithm complexity. For some classical and

simple benchmarks, such as matrix production, Sobel

operator, RGB-to-gray level transformation or log trans-

formation, since these algorithms are very simple, the

generated code, such as the one shown in Fig. 8, can be

directly used into the C-synthesis process without building

additional function library or debugging the intermediate

code. Under these circumstances, VHLS design flow can

get the highest productivity with a completely automatized

MATLAB-to-RTL conversion.

5 Discussion and conclusion

This paper proposes a VHLS method for image process-

ing designs by combining the recent source-to-source

compilation and HLS techniques. It provides a high

abstraction level environment to the users, which can

greatly benefit the development productivity by automat-

ing the MATLAB-to-RTL synthesis process. We proto-

typed the proposed approach by using currently available

EDA tools, and then verified it within two real-life

applications. Experiments demonstrate that it can effec-

tively give play to the advantages of FPGA related to the

devices of other types in the same abstraction level.

Furthermore, it will not increase the complexity of the

algorithm behaviors described using MATLAB in routine

level, even if they are not specially developed for FPGA.

So this method can effectively facilitate the transplanta-

tion between the different platforms, such as CPU versus

FPGA.

Meanwhile, it should be noted that VHLS constitution-

ally provides a vector-oriented programming environment.

Up to our knowledge, it does not yet exist a mature

MATLAB-to-RTL convertor with the capacity of this type.

For example, matrix variables are not supported by

MATLAB HDL Coder. Further more, since the VHLS-

based design flow is a heterogeneous development frame-

work, it can be potentially optimized by replacing the EDA

tools proposed in this paper by using other candidates, such

as Catapult C or Cyber Workbench. This characteristic

enables VHLS to benefit from the future progress of either

MATLAB-to-C transcompiler or C-synthesis techniques

easily.

On the other hand, some new issues and challenges are

found as well. The first is the significant efficiency per-

formance gap between the manual implementations and the

proposed method. According to the practices in the both of

software and hardware aspects, despite high development

productivity and maintainability, higher abstraction level is

bound to result in lower efficiency performance. For

example, in the cases of Rupnow et al. [44] and Liang et al.

[35], the performance difference between the HLS-gener-

ated and manual RTL designs is up to 40� for a high-

definition stereo matching implementation. In the case of

KMGA, the gap of running time performance due to this

reason can be estimated as around 4� by comparing to its

AutoPilot (Vivado_HLS)-based implementation [33]

(118.04 versus 29.48 ms/pixel).

Secondly, many image processing algorithms have a lot

of parallel processing code, e.g., the code with loops

optimized by using parfor in MATLAB or OpenMP in C,

whose fundamentals are also applicable to the proposed

method. Making VHLS to be capable of performing variant

optimization forms into the generated implementations can

greatly improve the quality of the design and provide a

much larger design exploration space.

Fortunately, currently available HLS tools have made a

large number of optimization forms available to the

C-synthesis, such as function inline, loop unroll, loop

pipeline. Moreover, these optimizations can be conve-

niently made according to the directive configuration

[59, 60]. Consequently, a potential solution for the two

challenges above is to map the optimization forms applied

in the source code into the corresponding optimization

directives during the MATLAB-to-C conversion.

Finally, it is also found that manual code transformation

is still needed sometimes due to the incompatibility

between the selected source-to-source compiler and HLS

tool. But in our opinion, this issue should not be considered

hard to fix, because MATLAB-to-C conversion has been aFig. 15 Complexity comparison
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quite mature technique in the software programming

engineering, taking the constraints of HLS-available C into

the compile process can be easily realized through the

currently available techniques.

For the future work, we plan to focus it on the

improvement of the proposed VHLS method. Some source-

to-source compile-based optimization strategies may be

developed to improve the quality of the generated RTL.

Meanwhile, we will further verify it within real FPGA-

based synthesis process.
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