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Abstract In recent years, image processing technics have

attracted much attention as powerful tools in the assess-

ment of skin lesions from multispectral images. The

Kubelka–Munk Genetic Algorithm (KMGA) is a novel

method which has been developed for this diagnostic

purpose. It combines the Kubelka–Munk light–tissue in-

teraction model with the Genetic Algorithm optimization

process, and allows quantitative measure of cutaneous

tissue by computing skin parameter maps such as melanin

concentration, volume blood fraction, oxygen saturation or

epidermis/dermis thickness. However, its efficiency is se-

riously reduced by the mass floating-point operations for

each pixel of the multispectral image, and this prevents the

algorithm from reaching industrial standards related to

cost, power and speed for clinical applications. In this

paper, our work focuses on the improvement of this theo-

retical achievement. Therefore, we repropose a new

C-based Parallel and Optimized KMGA (PO-KMGA)

technique designed and optimized using multiple ways:

KM model optimized re-writing, operation massively par-

allelized using POSIX threads, memory use optimization

and routine pipelining with Intel C?? Compiler, etc.

Intensive experiments demonstrate that our introduced PO-

KMGA framework spends less than 10 min to finish a job

that the conventional KMGA spends around two days to do

in the same hardware environment with a similar algorithm

performance.

Keywords Multispectral image processing �
Kubelka–Munk model � Genetic algorithm � Function

parallelization � High-performance computer �
POSIX threads

1 Introduction

The incidence of skin diseases has drastically stepped up in

recent years. According to the World Health Organization,

more than 2 million non-melanoma skin cancers and about

132,000 melanoma skin cancers are recorded every year, of

which 48,000 related to deaths [3, 22]. It is also estimated

that around 0.5–1 % of people is affected by vitiligo in the

world. Although certain diseases are not medically harmful

and will not cause much physical pain, they have always a

strong psychological effect to the patients. Hence, the

assessment of cutaneous lesions is a subject that increas-

ingly attracts the medical researchers.

The diagnostic of cutaneous lesions is usually based on

the analysis of the ambient light reflected by the skin sur-

face. This re-emitted light carries important information

about the physical and optical tissue parameters. Well-

trained dermatologists analyze the skin color and interpret

the clinical pathologies with the help of their knowledge

and experience. In order to avoid the mistake due to the

subjective judgment, some imaging systems could be used

to assist clinicians. Meanwhile, the acquisition devices

installed in these earlier systems are color cameras or
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dermatoscope which gives a color information of the skin

with different scales thanks to the use of lens in

dermatoscopy.

In order to produce an enhanced information for di-

agnostic, some novel sophisticated multispectral imaging

processing methods emerged. To our knowledge, two

approaches are usually used to analyze human skin re-

flectance spectrum. The first is based on statistical ana-

lysis of the reflectance spectrum, such as partial least

squares regressions [37], Support Vector Machine (SVM)

[24], Blind Source Separation (BSS) [23] or Independent

Component Analysis (ICA) and Principal Component

analysis (PCA) [34]. These techniques are based on

composition assumption that assumes that skin reflectance

is a combination of different source components’ spectra

weighted by their mixing quantities. The second is the

analysis of the reflectance spectra by means of physical

models of light transportation that are used on the optical

properties of skin (scattering and absorption). Thanks to

the efforts of other researchers, different light propagation

models have been developed based on the modified Beer–

Lambert law or Monte Carlo simulations. Kubelka–Munk

is one of these models. It assimilates the parameter esti-

mation problem as an optimization problem. That is, the

properties of the model can be obtained from available

apriori knowledge of the skin absorption spectra and

scattering properties. Thus, comparing to the statistical

analysis of the reflectance spectrum, this approach is not

affected when the skin composition is different from the

composition assumption.

However, Light–Tissue Interaction-based skin lesion

assessment methods are very time consuming, because

(a) the multispectral images are usually composed of more

than three bands, which results in a large number of high-

dimension vectors and (b) a long time is required to opti-

mize the optical model function. Up to our knowledge,

concerned researches achieved hardly any concrete results

in terms of detection efficiency in the past few years. The

medical image processing specialists could hardly seek out

a more efficient optical model or function optimization

algorithm for it without degrading the accuracy perfor-

mance. For example, Shimada et al. [27] employed a

modified Beer–Lambert law as a model for light propaga-

tion in skin, which requires only a short calculation time.

However, this model is limited in terms of parameters and

shows errors in visible wavelength extremity for the esti-

mation of melanin. Meanwhile, parallel computing has

made great progress, and many highly effective devices,

such as CPU, GPU or MPoPC (Multi-core Processors on

Programmable Chips), have been made available to engi-

neers at a very convenient price. These achievements offer

nice opportunities to increase the efficiency of complex

designs. Moreover, hardware optimizations would not af-

fect the accuracy of the targeted implementation because

the basic algorithm is only a little bit modified during the

development procedure. Therefore, the motivation of our

work is to accelerate the Light–Tissue Interaction-based

skin lesion assessment system by transplanting it onto a

parallel computing platform.

Our introduced framework is based on the work of Jo-

livot et al. [18], in which a Kubelka–Munk Genetic Al-

gorithm (KMGA) method is developed and proposed. KM

is the name of the light–tissue interaction model combined

with Genetic Algorithm (GA) for the optimization process.

This innovative skin lesion assessment method is designed

to retrieve five skin parameter maps from a multispectral

image. In our previous efforts, the algorithm has been well

implemented and verified using Matlab [17]. As expected,

a common personal computer usually has to spend several

days to retrieve a set of data from a standard multispectral

lesion image with it. This shortcoming seriously hampers

the practical application of this technology as an help for

diagnostic which could be done by dermatologists or even

general practitioners. Fortunately, previous researches

have shown that GA-based designs can be optimized via

different parallel computing environments [2, 13, 14, 36].

For KMGA, the huge quantity of data from multispectral

images processing and GA’s population information re-

sults in a bottleneck of memory consumption on GPUs and

FPGAs, while multi-core CPUs have better overall prop-

erties, specially for efficiency and robustness perfor-

mances. Hence, multi-core CPUs is selected as the

hardware devices for high-performance KMGA imple-

mentation in this work.

This paper presents the experience of the Parallel and

Optimized KMGA (PO-KMGA) development. After a

detailed code source analysis, we have rewritten KM skin

optical model in order to reduce the instructions number

and speed up system execution. Our implementation also

takes advantages of the POSIX (Portable Operating System

Interface) to share the measured data and parallelize its

computation at each pixel. We optimized as well the rou-

tine using Intel C?? Compiler and other program accel-

eration techniques. According to our experiments, PO-

KMGA consumes only 5-6 minutes to finish the job that

takes around 2 days with the previous module.

The remainder of the paper is organized as follows:

Sect. 2 describes the fundamental principles of KMGA and

analyses further its prototype’s architecture, Sect. 3 intro-

duces PO-KMGA method with multiple optimizations,

Sect. 4 provides an experimental analysis and evaluation of

the proposed implementation using a standard multispec-

tral image, and finally, Sect. 5 concludes this paper and

proposes some perspectives.
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2 KMGA algorithm description

2.1 Kubelka–Munk model for light skin interaction

In order to retrieve the different skin physical or biological

properties, several skin models have been developed [4, 25,

29]. Kubelka–Munk model [19] is one of the most popular

and simplest approaches for computing light transport in a

highly scattering medium and has been widely used to

model the light–skin interaction. In our case, the skin is

seen as a 2-layer medium (epidermis and dermis) and five

principal parameters that affect the reflectance and the

transmittance are included in the model: melanin concen-

tration, epidermis thickness, blood concentration, blood

oxygen saturation and dermis thickness. The total re-

flectance Rtot and transmittance Ttot are expressed as:

Rtot ¼ R1;2 ¼ R1 þ
T2

1R2

1 � R1R2

ð1Þ

Ttot ¼ T1;2 ¼ T1T2

1 � R1R2

ð2Þ

The reflectance Rn and transmittance Tn for a single layer n

can be expressed as a function of the thickness of the layer

dn, the absorption coefficient la;n and the scattering coef-

ficient ls;n:

Rn ¼
ð1 � b2

nÞ � ðeKndn � e�KndnÞ
ð1 þ bnÞ2

eKndn � ð1 � bnÞ2
e�Kndn

ð3Þ

Tn ¼
4bn

ð1 þ bnÞ
2
eKndn � ð1 � bnÞ

2
e�Kndn

ð4Þ

where:

Kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la;nðla;n þ 2ls;nÞ
q

ð5Þ

bn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

la;n
la;n þ 2ls;n

s

ð6Þ

In our case, the suffix n equals 1 or 2 for epidermis or dermis.

The optical absorption coefficient of epidermis layer

la:epidermis is known as a function of concentration of melanin

fmel, the melanin spectral absorption coefficient la:melanosome

and the baseline skin absorption coefficient la:baseline:

la:epidermis ¼ fmella:melanosome þ ð1 � fmelÞla:baseline ð7Þ

where:

la:melanosome ¼ 6:6 � 1011k�3:33 ð8Þ

la:baseline ¼ 0:244 þ 85:3 � exp
�ðk� 164Þ

66:2
ð9Þ

On the other hand, the dermal absorption coefficient

la:dermis is expressed as follows:

la:dermis ¼fbloodðCoxyla:oxyÞ þ fbloodð1 � CoxyÞla:deoxy

þ ð1 � fbloodÞla:baseline ð10Þ

where fblood is the blood concentration in %, Coxy is the

oxygen saturation in blood, la:oxy and la:deoxy are the

absorption coefficients of the oxy-hemoglobin and deoxy-

hemoglobin in cm�1. The values of la:oxy and la:deoxy with

the different wavelengths can be calculated from the

Takatani–Graham table [16] using the following

equations:

la:oxy ¼ ln10 � HbO2ðkÞ � G=M ð11Þ

la:deoxy ¼ ln10 � HbðkÞ � G=M ð12Þ

where HbO2 and Hb are the oxy-hemoglobin and deoxy-

hemoglobin content in cm�1 l/mol, G is the hemoglobin’s

weight in gram per liter and M is the gram modecular

weight of hemoglobin. The values of G and M can be

calculated from the data presented in [31]. In our ex-

periments, we selected 150 g/l and 64,500 g/mol as G and

M. The scattering coefficients of the both lay-

ers ls:epidermis and ls:dermis are the sum of the Mie scattering

coefficient ls:Mie and Rayleigh coefficient ls:Rayleigh:

ls:epidermis ¼ ls:dermis ¼ ls:Mie þ ls:Rayleigh ð13Þ

where:

ls:Mie ¼ 2 � 105 � k�1:5 ð14Þ

ls:Rayleigh ¼ 2 � 1012 � k�4 ð15Þ

2.2 Model inversion procedure with Genetic Algorithm

In the previous section, we discussed the principle of the

KM skin model. According to Eqs.1–15, it is possible to

express RðkÞ, the total reflectance of the incident light with

a certain wavelength, as a function of the skin parameters:

RðkÞ ¼ fKMðfmel;Depi; fblood;Coxy;DdermisÞ ð16Þ

where Depi and Ddermis are the thickness of the epidermis

layer and the dermis layer.

The reflectance values are measured with an acquisition

system. In our experiments, we use the ASCLEPIOS sys-

tem described in [18]. After a pre-processing step, the

output of this system is a reflectance cube with two spatial

dimensions and one spectral dimension. This cube can be

seen as an image where each pixel is described by a vector,

representing the reflectance spectrum of the skin as a

function of the wavelength (see Fig. 1). From this measure,

the objective is to find the five skin parameters for each

pixel that are the most suitable for this measured re-

flectance spectrum. It is obvious that the KM model is a
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non-linear function with five arguments. Several studies

have been done about how to solve the similar complex

non-linear function. The achievements of Viator et al. [35]

and Choi [26] have proved that Genetic Algorithm (GA) is

an effective approach.

In KMGA, a candidate solution (called individual) is

composed of five skin parameters (fmel, Depi, fblood, Coxy and

Ddermis), the spectrum generated by these parameters using

Eq.16 and a fitness value as shown in Fig. 2. This last one

depends on the similarity between the spectrum generated

by the parameters and the measured spectrum. It can be

expressed by a metric scale such as Root Mean Squared

Error (RMSE). The set of individuals is called a

population.

Figure 3 illustrates GA’s overall implementation for the

KM inversion. Firstly, NP individuals are randomly gen-

erated within the range shown in Table 1 to form an initial

population. Then, in an iterative framework, population

evolves by techniques inspired by natural evolution. The

evolution of the population is composed of three steps:

best-individual selection, crossover mutation and random

selection. During the selection process, only the best in-

dividuals are kept for the next iteration. Then, crossover

process selects multiple couples of individuals (parents)

from the population and one crossover parameter from the

five skin parameters to create two new individuals (off-

springs) by swapping the parents’ selected parameter val-

ues. Finally, mutation process randomly generates some

new skin parameter values to replace certain individuals’

old ones. The aim of mutation is to keep exploring the

search space and avoid being trapped into a local mini-

mum. These processes are repeated until a predefined

number of iterations. Finally, the best candidate is selected.

3 Parallel and optimized KMGA design

The initial version of KMGA’s prototype was built with the

help of Matlab environment and is very time consuming.

For example, a dual-core computer has to spend about two

days in the skin parameter maps retrieving from a 328 �
270 image with 34 values per pixel for spectrum dimen-

sion. In this section, we design a novel Parallel and Opti-

mized KMGA (PO-KMGA) with the following

advantages:

• PO-KMGA’s algorithm is more computationally effi-

cient than before. We re-specify the KM algorithm and

replace some of the operations by a look-up table in

order to reduce the redundant operations down to

minimum.

• PO-KMGA is implemented through a multi-threads

shared-memory architecture that enables our design to

Fig. 1 Reflectance spectrum Sreflectance at a single pixel formed from

the reflectance cube measured: blue and red represent pixel’s position

and green represents the different wavelength values

Fig. 2 Population data structure: the skin parameters are fmel, Depi,

fblood, Coxy and Ddermis

Fig. 3 Overall genetic algorithm procedure for KM model inversion

Table 1 Size of search spaces for skin parameters (cf. [18]).

Skin parameter Symbol Range

Melanin concentration fmel 1.3–43 %

Epidermis thickness Depi 0.01–0.15 mm

Volume blood fraction fblood 0.2–7 %

Oxygen saturation Coxy 25–90 %

Dermis thickness Dderm 0.6–3 mm
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multiply the execution speed by parallelizing its

computations.

• The random number generator of GA is improved in

order to make the simulated results more reasonable.

• The data size is reduced, which improves the memory

complexity.

• During the compilation, the operations of the source

code are re-scheduled according to the pipelining

strategy.

3.1 KM model analysis and optimization

for computation complexity reduction

According to Fig. 3, KMGA method consists mainly in

population initialization, population generation, and

population evolution. Experimental results show that the

population initialization and generation take up to 96 % of

the total execution time, in which population evolution

takes 3 % and other operations only 1 %. KM is the key

technique used during the time consuming process of

population initialization and generation. Thus, in order to

speed up the KMGA method, we definitely have to im-

prove its efficiency. We therefore proposed an optimized

KM model using Matlab-to-C source translation.

KM function, the set of Eqs. 3–6, shows that the original

model is complex and most parts of its instructions are

costly and redundant. For example, the eKndn term appears

four times in Eq. 3. These redundant instructions are in-

significant and costly. So, in our case it is absolutely pos-

sible to avoid them by arithmetical reducing. Thus we

reform the KM function:

Rn ¼ FRðfmel;Depi; fblood;Coxy;DdermisÞ ð17Þ

Tn ¼ FTðfmel;Depi; fblood;Coxy;DdermisÞ ð18Þ

where FR and FT are optimized KM functions. These

symbols are expressed as:

FR ¼ ls:n � ðE � 1Þ
ðlaþs þ KnÞ � E � ðlaþs � KnÞ

ð19Þ

FT ¼ 2Kn�

ðlaþs þ KnÞ � E � ðlaþs � KnÞ
ð20Þ

where:

laþs ¼ la;n þ ls;n ð21Þ

E ¼ �2 ¼ e2Kndn ð22Þ

The above rewritten KM functions are simple and effective

to keep processors’ obligations down to minimum, because

reading the calculated data from local register, instead to

repeat the computations, can provide a great gain of ex-

ecutive time. In our case, expðÞ is the most costly function,

therefore we cut its repetitions down to only once per it-

eration by combining like terms and defining two interim

storing registers E and �. The other instructions are as well

reduced more or less by similar approaches. Table 2

compares the necessary instructions number between the

initial prototype and our implementation: the optimized

function requires fewer instructions than before.

On the other hand, Sect. 2.1 presents that the optical

absorption and scattering coefficients of epidermis and

dermal layers are ultimately functions of wavelength and

skin parameters. We can reformulate Eqs. (7, 10) and (13)

using vector equations:

Ua:epidermis ¼ fmelUa:melanosome þ ð1 � fmelÞUa:baseline ð23Þ

Ua:dermis ¼ fbloodðCoxyUa:oxyÞ
þ fbloodð1 � CoxyÞUa:deoxy

þ ð1 � fbloodÞUa:baseline

ð24Þ

Us:epidermis ¼ Us:dermis ¼ Us:Mie þ Us:Raylight ð25Þ

where:

Ua:melanosome ¼ 6:6 � 1011 �

k�3:33
1

k�3:33
2

k�3:33
3

..

.

k�3:33
n

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð26Þ

Ua:melanosome ¼ 0:244 þ 85:3

� exp �

k1

k2

k3

..

.

kn

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

� 164

0

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

A

=66:2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

ð27Þ

Ua:oxy ¼ ln10 �

HbO2ðk1Þ
HbO2ðk2Þ
HbO2ðk3Þ

..

.

HbO2ðknÞ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

� G=M ð28Þ

Table 2 Necessary instructions number comparison between original

and optimized KM functions.

Model þ/� �/� xy

Original KM 13 17 13

Optimized KM 8 9 3
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Ua:deoxy ¼ ln10 �

Hbðk1Þ
Hbðk2Þ
Hbðk3Þ

..

.

HbðknÞ

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

� G=M ð29Þ

Ua:Mie ¼ 2 � 105 �

k�1:5
1

k�1:5
2

k�1:5
3

..

.

k�1:5
n

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð30Þ

Ua:Raylight ¼ 2 � 1012 �

k�4
1

k�4
2

k�4
3

..

.

k�4
n

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð31Þ

In Eqs. (23–31), Ua:melanosome, Ua:baseline, Ua:oxy, Ua:deoxy,

Ua:epidermis and Ua:dermis are six coefficient vectors with

different wavelengths. In our case, the waveband is fixed

from 450 to 780 nm with the step of 10 nm. These vectors

can be pre-calculated and stored in the memory. Thus,

instead of calculating the values wanted at each iteration,

the processor is able to read them directly from the mem-

ory. This approach avoids all the repeated computations

due to Eqs. 8, 9, 11–15 in the routine.

3.2 Multi-threads KMGA parallelization

In order to achieve more effective use of hardware resources

in a multiple cores environment, many parallel programming

methods have been developed [8, 20, 28]. A lot of studies

have demonstrated that the parallelization architecture can

greatly improve the image processing prototypes’ efficiency

[5, 11, 12, 15, 33]. POSIX Threads (Pthreads) is one of the

most popular parallel programming technologies for the

UNIX-like operation systems. The POSIX standard defines

an API (Application Programming Interface) for creating

and manipulating threads [1]. Comparing to the other

methods, Pthreads’ advantages consist in the rapid thread

creation [10], the shared global memory and the private data

zone for each thread, so the Pthreads implementations may

gain more potential improvement of the running-time and

hardware cost performances.

In parallel programming, the first step is usually to find

out the independent data flows in original algorithm. Fig. 1

illustrates that KMGA method analyses each single pixel’s

reflectance spectrum. That is, the algorithm sweeps all over

the lesion zone pixel by pixel, and their data flows are

absolutely independent with each other. This intrinsic na-

ture of KMGA provides a nice parallelization potential.

Using the Pthreads technology, we designed a SPMD

(Single Program Multi Data) parallelization as shown in Fig.

4: the multispectral image and retrieved skin parameter maps

are stored in two allocated shared memory regions in float-

ing-point format; PO-KMGA divides the multispectral im-

age into N work areas and each of them is distributed to a

single thread. Because all the data flows are independent,

there are no interactions between two threads. Once the

processing of a distributed reflectance spectrum is finished,

the thread accesses to SM (Shared Memory) again with store

address to write data into the right position and starts another

operation. During the processing, parallel threads need only

to traverse their own data segment using KMGA method.

In additional, given that a multi-core superscalar processor

is selected as hardware platform, PO-KMGA scheduled the

algorithm via a MIMD (Multiple Instruction Stream Multiple

Stream Data Stream) strategy, which allows a superscalar

CPU architecture to execute more than one instruction during

a clock cycle by simultaneously dispatching multiple in-

structions to different functional units on the processor such as

an arithmetic logic unit, a bit shifter, or a multiplier. For ex-

ample, the computations of Eq.23 consist in two independent

terms fmelUa:melanosome and ð1 � fmelÞUa:baseline, MIMD can

therefore accelerate computations by scheduling their in-

structions in parallel rather than make the algorithm to run

them one by one via a superscalar CPU architecture.

Moreover, POSIX threads can be automatically sched-

uled depending on the cores number in a out-of-order

execution way by the compiler, therefore the developers

have no need to consider the compatibility between the

thread number implemented and core number to make

processor run at full load all the time. This allows an ef-

fective use of processors resources and an important ac-

celeration of PO-KMGA processing.

3.3 Parameters configuration of GA

As there is no golden rule to define the value of the GA

different parameters, PO-KMGA’s parameters configura-

tion was performed empirically through series of tests. This

subsection presents how the parameters of PO-KMGA are

configured according to our previous work [17].

Population size

In Genetic Algorithm, the convergence condition changes

with the population size. A large population ensures the

diversity over the search space and limits the risk of con-

vergence towards local minima, but the execution time for

each generation is increased. In opposition, a small
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population increases the risk to converge towards a local

minimum but offers a higher execution speed.

Table 3 compares the experimental results of KMGA

and PO-KMGA with five population sizes: 500, 300, 100,

50 and 25 for 25 iterations. According to the comparative

result, the populations with 100, 300 and 500 individuals

offer the similar fitness values both for the two imple-

mentations. Considering that a large population requires a

huge computational time with only a slightly better preci-

sion (10.41E-4 for KMGA and 4.36E-4 for PO-KMGA

when the population varies from 100 to 300 individuals),

we select a population size of 100 individuals. The preci-

sion gained was not judged sufficient in comparison to lost

in computational time.

Iteration number

Genetic Algorithm ends after a number of iterations, by

comparing the fitness value with a satisfactory fitness level.

Indeed, a higher fitness level (lower satisfactory fitness val-

ue) may improve the accuracy performance of the design and

avoid falling into an local optimum (known as premature

convergence), but it might lead to a huge computational time,

the algorithm can even be trapped into an infinite loop.

In our case, instead of using a satisfactory fitness level, we

set an evolution termination iteration number for PO-KMGA

according to a series of tests. Fig. 5.20 of [17] illustrates the

experimental results related to the convergence of a

population composed of 100 individuals with 10, 25, 50 and

100 iterations. We noted that after around 20 to 25 iterations,

the fitness value does not change and the algorithm is con-

sidered to have converged. Thus, KMGA selects 25 as the

total number of iterations. Meanwhile, the experimental re-

sults shown in Fig. 5 compare the convergence rate of

KMGA and PO-KMGA. It is found that a steady fitness value

is obtained after 40 iterations. That is, PO-KMGA converges

more slowly with the increase of the iteration number than

the former. This is because the data precision falls from 64 bit

down to 32 bit (double versus float) due to the memory use

optimization effected in the C implementation (see Sect.

3.4), therefore we raise our implementation’s iteration

number up to 40 to ensure its accuracy.

Crossing and mutation rate

We select both crossing and mutation probability depend-

ing on the literature [30] (Pc ¼ 0:6 and Pm ¼ 0:02). As in

our experiments, it is noticed that the convergence is not

smooth and often temporarily increased with a mutation

probability of 0.02, we select 0.03 as PO-KMGA’s Pm.

3.4 Supplementary optimizations in PO-KMGA

Random sequence generator optimization

KMGA creates the random sequence according to Linear

Congruential Generator (LCG) algorithm that yields a

Fig. 4 N-threads PO-KMGA architecture using POSIX threads: Sreflectance n is the reflectance spectrum at (in, jn) in the work area of the nth

thread and Ppixel n is its skin parameters retrieved

Table 3 Average fitness value

for different population sizes

with an iteration number of 25.

Population size KMGA average

fitness values (�10�4)

PO-KMGA average

fitness values (�10�4)

25 120.31 150.77

50 96.57 111.45

100 26.79 36.72

300 16.38 32.36

500 12.64 13.21
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sequence of pseudo-randomized numbers calculated with a

discontinuous piecewise linear equation. This generator is

defined by the recurrence relation:

Xnþ1 ¼ ðaXn þ cÞmodm ð32Þ

where X is the sequence of random values, mðm[ 0Þ is the

modulus, að0\a\mÞ is the multiplier, cð0� c\mÞ is the

increment and X0ð0�X0\mÞ is the start value (also called

seed). This method does not consumes many hardware

resources and executes fast. But as all the other pseudo-

random generators, it works via a fixed algorithm, which

results in changeless skin parameters every time the routine

is run. Thus, LCG alone cannot meet completely the ran-

domicity requirement of genetic algorithm.

A popular solution to this problem is to initialize the

random generator with different seed values. In our im-

plementation, the system’s start time is used as seed to

initialize LCG. Thus comparing to KMGA, PO-KMGA can

provide better randomicity performance relative to

population evolution and its simulation results are more

close to actualities.

Memory use optimization

PO-KMGA’s memory use is optimized by changing the

data type and saving the memory allocations. KMGA de-

fines the individual as a N � 3 array in double-precision

floating-point format. The three columns of this array refer

separately to the reflectance spectrum, skin parameter and

fitness vectors shown in Fig. 2. Thus, although the skin

parameters and fitness vectors’ sizes are only 5 � 64 bits

and 1 � 64 bits, the system still allocates an N � 64-bit

memory region to each. In order to make an effective use

of memory space, the population space is defined as a

ð34 þ 5 þ 1Þ � 32-bit floating-point vector in PO-KMGA.

The allocated memory’s size is perfectly able to meet a

single individual’s memory capacity requirement. Thus,

our approach provides a better data storage performance.

Furthermore, this optimization accelerates the designs

by reducing the memory access conflicts and making

more effective use of memories. Given that the memory

architecture of multi-core CPUs is hierarchical, and

higher hierarchy has faster access speed, processors

preferentially accede to local cache to fetch the wanted

data. But due to the production cost, their storage space is

limited. PO-KMGA stores all the spectral cube informa-

tion in a shared memory and each core accedes to it to

read the wanted data, and then these data are temporarily

saved in the local cache. Obviously, the reduced data size

makes local cache of each core to load more information

than before; some of the information may be reused by

different operations, therefore larger local data quantity

accelerates the running time of the system by reducing the

access times to the slower shared memory. With the re-

duction of access times, the access conflicts are gotten

down as well. Thus, the use of shared bus is also

optimized.

Optimizations with ICC

In order to ease the developers’ workload, certain Com-

piler-based optimization methods are developed to help the

users to parallelize or pipeline their routines automatically

[6, 7]. For example, the Intel C?? Compiler (ICC) can

analyze and vectorize the data flow in order to benefit from

SSE (Streaming SIMD Extensions) instructions. It opti-

mizes also the loops by helping OpenMP (Open Multi-

Processing) or auto-vectorization to make effective use of

caches and memory access [9]. During PO-KMGA’s

compilation by ICC, ‘‘Maximize speed’’ mode is used to

schedule the algorithm within a multi-threads framework

and improve our implementation’s running-time perfor-

mance from the low level of the whole system.

4 Parallel and optimized KMGA evaluation

experiments

In this section, we firstly analyze the implementation results

and perform an unbiased comparison between PO-KMGA

and other two different KMGA versions: Matlab-KMGA

and C-KMGA. Matlab-KMGA is the earliest version of

KMGA implemented in Matlab by Jolivot et al. [18], while

C-KMGA is its Matlab-to-C transforming version without

any optimizations. Then we transplant PO-KMGA from

CPU onto FPGA to evaluate the performance differences

with different hardware platforms. Our experiments have

been realized using a Dual-Core CPU P6200 (Intel Pen-

tium(R) CPU P6200 @ 2.13 GHz � 2) and a Quad-Core

CPU Q6600 (Intel CoreTM Quad CPU Q6600 @ 2.40 GHz
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� 4) with ICC 13.1.1 in 32-bit in Ubuntu 13.04 system. The

FPGA implementation is simulated with Zynq-7000 de-

velopment board of Xilinx in Vivado_HLS 13.1. The ex-

perimental specifications are displayed by Table 4. In order

to ensure the accuracy of PO-KMGA, its iteration number is

set to 40 rather than 25 relative to its prototype of Matlab

(see Subsection Iteration number in Sect. 3.3).

4.1 Individual optimization methods evaluations

In this subsection, we evaluate the effects of all the run-

ning-time optimizing methods including model re-writing

(RW), memory optimization (MO) and multi-threads op-

timization (MT). We set the running-time of C-KMGA

with P6200 as reference, then individually optimize it via

these methods one by one and test them with both of the

CPUs. For the MT implementations, the thread numbers

are equal to the core number of the used platform. The

acceleration ratio comparison results shown in Fig. 6

demonstrate that the proposed approaches make more ef-

fective use of hardware resources.

The first pair of column in Fig. 6 indicates that there is a

difference between the two test results of C-KMGA. This is

caused by the performance difference between P6200 and

Q6600. Next, model re-writing provides about a 3.5�
speedup on average. KM model takes up approximately 96

% of the total running time according to our tests, so

simplifying its computation provides a quite high gain in

speed comparing with the other optimizations. Thirdly, for

the memory use optimizing, the acceleration ratios of

memory optimizing by data type transferring are limited to

the data size ratio between before and after optimizations

in theory. In our case, only part of the data is transferred

from double to float, so the acceleration from memory

optimizing is about 1:5 times and lower than 2 (64/32 bits)

times. Finally, POSIX multiples the running speed de-

pending on the cores and threads numbers (see the next

subsection for a further discussion).

4.2 Performance comparisons of final implementations

4.2.1 Running-time comparison

We firstly test the PO-KMGA implementation with dif-

ferent thread numbers using the two CPUs. The running-

time test results shown in Fig. 7 indicate that Q6600 pro-

vides a much better performance in term of speed than

P6200 for the single thread implementation.

Theoretically, the 2N-thread application should have

doubled the execution speed comparing to the N-thread

one. But due to the thread creation and management, extra

clock periods are consumed in the multi-threads systems.

For example, according to the test results, our implemen-

tation with 4 threads in parallel achieves only an accel-

eration of around 1.49� comparing with double threads in

the same Q6600 CPU. Meanwhile, it is also found that

there are no more gains in speed while the thread number

exceeds the core number for P6200. This is because the

instruction number that can be parallelized is limited by the

processor’s cores number.

In order to finish the job as soon as possible, the threads

have to contend for the system resources against each

other. That is, the cores are rotated among the different

threads. Comparing to run the threads one by one in a

single core, the advantage of this strategy is that the time

wastes due to waiting state are avoided by the out-of-order

execution among the threads. However, the system has to

consume extra resources in control flow to manage the

threads. As shown in Fig. 7, the running-time of four-

thread implementation with P6200 is a little higher than its

two-thread implementation. And finally, it is concluded

that the best efficiency is achieved only while the threads

number equals to the core numbers.

We compare as well the running-time performances of

PO-KMGA with C-KMGA using the same multispectral

Table 4 Experimental parameter configuration

Parameters Matlab/C-KMGA PO-KMGA

Population size 100 100

GA iteration number 25 40

Best individuals 10 10

Random individuals 30 30

Crossing individuals 30 pairs 30 pairs

Mutation individuals 3 3

Multispectral sample number 34/pixel 34/pixel

Resolution 328 � 270 328 � 270

Thread number 1 1, 2 and 4

C−KMGA RW MO MT
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Implementations

A
cc

el
er

at
io

n 
ra

tio
s

 

 

P6200
Q6600

Fig. 6 Individual evaluation of the used optimization methods

J Real-Time Image Proc (2018) 15:407–420 415

123



image with different resolutions. The comparative results

illustrated in Table 5 demonstrate that with the proposed

methods, PO-KMGA further improves C-KMGA and

achieves an acceleration of 17:11� for C-KMGA with a

standard multispectral image. It is also found that the ac-

celeration ratios increase with the image resolutions, i.e.

the acceleration ratio of PO-KMGA/Matlab-KMGA with a

328 � 270 image using Q6600 is around two times higher

than the one obtained with of a 18 � 15 image, though they

should be same in theory. This is because the memory

using optimization leads to a more effective use of CPU

cache for high-resolution images. Hence, relative to origi-

nal Matlab or C implementations, the more the data need to

be computed, the more is the speed improvement achieved

by PO-KMGA.

4.2.2 Accuracy comparison

The five skin parameter maps retrieved by PO-KMGA are

shown in Fig. 8c. Comparing with Fig.8b, the two

simulation results subjectively lead to a similar visual ef-

fect. In order to get an unbiased conclusion, this difference

is quantified using RMSE (Root Mean Square Error) for-

mulated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

W � L

X

i¼W

i¼1

X

j¼L

j¼1

ðIi;j � Ki;jÞ2

v

u

u

t ð33Þ

where W and L are the widths and lengths of the images,

and I and K refer to the two comparative maps. The

computing results are shown in Table 6.

We should note that RMSE measures only the similarity

between the two simulation results, but could not point out

which one is the best, because the skin parameter maps of

Matlab-KMGA are simulated results as well as PO-

KMGA, and could not be seen as a reference-like measured

map. Thus, the average fitness of the PO-KMGA imple-

mentations is compared with the one of KMGA’s prototype

in Fig. 9. We can find that the KMGA prototype has lower

fitness values than PO-KMGA. That is, the skin parameters

retrieved by KMGA are more close to the lesion zone’s real

physical and chemical properties than PO-KMGA. This is

because PO-KMGA’s data precision is lowered in order to

optimize the memory use performance (see Sect. 3.4).

However, the values of PSNR (Peak Single-to-Noise Ratio)

for the retrieved maps vary from 20.29 to 31.43 dB, which

are all within the typical range for PSNR values (between

20 and 25 dB, where higher is better [21, 32]). Therefore,

we conclude that this accuracy loss is acceptable for

practical applications.

4.3 CPU vs FPGA

The last experiments compare PO-KMGA with its FPGA

implementation. For the purpose of an unbias compar-

ison, we synthesize directly the C code of PO-KMGA

into RTL (Register Transfer Language) via HLS (High-

Level Synthesis) procedure with the same parameter

configurations. Nevertheless, both these two implemen-

tations are farthest parallelized with their hardware

constrains respectively.

Table 7 displays the results of this experiment. Obvi-

ously, CPU is about 9.13 times more efficient than FPGA.

This is because: (a) Q6600 has a much higher clock fre-

quency than Zynq 7000, and (b) Q6600 can execute 4

threads simultaneously while only a single thread can be

implemented in Zynq 7000 because of the hardware con-

strains. On the other hand, thanks to the HLS technic, the

C-to-RTL translation does not affect the algorithm

specification. That is, these two implementations have ex-

actly the same functions, which leads to the same fitness

value as shown in Table 7.

Nevertheless, we should note that, for the reasons of

memory size constrain, we simulate the algorithm with

only a single pixel using FPGA, while the efficiency of

CPU implementation is estimated from the test results with

an entirely 328 � 270 multispectral image. Thus, the for-

mer is not affected by time consuming while the latter

does. It could therefore infer that the real efficiency ratio of

CPU vs FPGA is higher than 9:13� in our case.

Fig. 7 Running-time test results with different thread numbers (in

seconds)

Table 5 Acceleration ratios of PO-KMGA/C-KMGA with different

image resolutions.

18 � 15 36 � 30 65 � 54 109 � 90 328 � 270

P6200 3.51 3.92 4.76 6.23 8.46

Q6600 8.72 9.11 11.12 13.17 17.11
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5 Conclusions and perspectives

In this paper, we design and evaluate a novel framework

for fast Light–Tissue Interaction-based skin lesion medical

assessment using multispectral image processing and its

optimization process’ parameters configuration. We intro-

duced multiple acceleration and optimization techniques

such as functions re-writing for calculation complexity

reduction, operation massively parallelization using POSIX

threads, memory optimization, and routine pipelining with

Intel C?? Compiler.

We have evaluated our Parallel and Optimized KMGA

(PO-KMGA) method with a standard multispectral image

using a dual-core and a quad-core CPUs. Experiments

show that, when the number of threads and physical cores

are four for both of them, PO-KMGA is 604.8 times faster

than the conventional KMGA prototype with almost the

same order of accuracy. The optimizations made in PO-

KMGA accelerate the original version of its C implemen-

tation 8:46� for P6200, and 17:11� for Q6600. These

achievements demonstrate that our approaches are able to

Fig. 8 Multispectral image measured by ASCLEPIOS and simulation results of KMGA and PO-KMGA

Table 6 Similarity evaluation between Matlab-KMGA and PO-

KMGA.

Skin parameter maps RMSE

Melanin concentration 0.013

Epidermis thickness 0.00503

Volume blood fraction 0.0019

Oxygen saturation 0.0306

Dermis thickness 0.0113
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Fig. 9 Comparison between the fitness values of KMGA and PO-

KMGA with a 328 � 270 multispectral image: a 2-threads imple-

mentation is tested for P6200 and a 4-threads implementation is tested

for Q6600
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greatly improve the assessment efficiency of KMGA-based

medical device. Moreover, according to the comparison

between its CPU and FPGA implementations, it is found

that CPU offers a much better efficiency performance.

With PO-KMGA, the patients will not have to wait for

several days for the diagnosis.

In the comparison between the two methods’ accuracy

performances, it is found that KMGA has a better average

fitness value than PO-KMGA. But this difference is so tiny

(\10�4) that it is able to be ignored. Considering PO-

KMGA’s enormous advantage in running speed, two

methods’ distinction in accuracy is insignificant in practical

application.

In additional, our evaluation results demonstrate also

that the optimization approaches used are very effective

to accelerate the complex image processing prototype’s

speed. The achievements of our work further make pos-

sible real-time applications of the conventional KMGA

method. We hope that these achievements can bring help

to the other relative performance optimizations

researches.

In future works, we will try to improve the performance

of KMGA by developing data level optimization strategies.

Since FPGA has different memory optimization strategies,

a comparative study related to the optimization process or

the memory hierarchy is required to find out new ways to

map this problem. Meanwhile, a SW/HW co-design de-

velopment framework for the complex real-time image

processing algorithm will be studied to accelerate the de-

velopment procedure.
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in 2009. He also received an

engineer degree from the ENSI

de Bourges and the MS degree

from the University of Ver-

sailles-Saint-Quentin-en-Yveli-

nes in 2006. His research

interests include multispectral

image analysis applied to health

and video content analysis

(people detection, object track-

ing and scene understanding).

J Real-Time Image Proc (2018) 15:407–420 419

123

http://dx.doi.org/10.1109/WHISPERS.2010.5594917
http://dx.doi.org/10.1109/WHISPERS.2010.5594917
http://dl.acm.org/citation.cfm?id=645512.657265
http://dl.acm.org/citation.cfm?id=645512.657265
http://dx.doi.org/10.1145/882262.882344
http://dx.doi.org/10.1049/iet-ipr.2012.0657
http://dx.doi.org/10.1046/j.0022-202x.2001.01577.x


Franck Marzani received his

M.Sc. in computer science from

the University of Rennes,

France in 1989. He obtained his

Ph.D. in computer vision and

image processing from the

University of Burgundy, Dijon,

France in 1998. His PhD dis-

sertation dealt with 3D acquisi-

tion and processing of human

motion. Since then he has

worked in the LE2I laboratory

(Laboratoire d’Electronique,

d’Informatique et Image), which

is a CNRS affiliated institute of

research (UMR CNRS 6306) at the University of Burgundy. He re-

ceived his ‘‘Habilitation Diriger les Recherches’’ in 2007 and he is a

full professor since 2009. His research interests include both acqui-

sition and analysis of multispectral images and 3D imaging. He has

been developing an activity on feature extraction from multispectral

images based on light–matter interaction models and texture mapping

of such non-conventional image modalities on 3D meshes. These

methodologies have been applied to cultural heritage and health with

a focus on dermatology.

Fan Yang received the B.S.

degree in electrical engineering

from the University of Lanzhou,

China, in 1982 and the M.S.

(D.E.A.) (computer science) and

Ph.D. degrees (image process-

ing) from the University of

Burgundy, France, in 1994 and

1998, respectively. She is cur-

rently a full professor and

member of LE2I CNRS-UMR,

Laboratory of Electronic, Com-

puting, and Imaging Sciences at

the University of Burgundy,

France. Her research interests

are in the areas of patterns recognition, neural network, motion esti-

mation based on spatio-temporal Gabor filters, parallelism and real-

time implementation, and, more specifically, automatic face image

processing algorithms and architectures. Pr. Yang is member of the

french research group ISIS (Information, Signal, Images and Vision),

she livens up the theme C: Algorithm Architecture Adequation.

420 J Real-Time Image Proc (2018) 15:407–420

123


	Design and evaluation of a parallel and optimized light--tissue interaction-based method for fast skin lesion assessment
	Abstract
	Introduction
	KMGA algorithm description
	Kubelka--Munk model for light skin interaction
	Model inversion procedure with Genetic Algorithm

	Parallel and optimized KMGA design
	KM model analysis and optimization for computation complexity reduction
	Multi-threads KMGA parallelization
	Parameters configuration of GA
	Supplementary optimizations in PO-KMGA

	Parallel and optimized KMGA evaluation experiments
	Individual optimization methods evaluations
	Performance comparisons of final implementations
	Running-time comparison
	Accuracy comparison

	CPU vs FPGA

	Conclusions and perspectives
	Acknowledgments
	References




