
SPECIAL ISSUE PAPER

High-level synthesis for FPGAs: code optimization strategies
for real-time image processing

Chao Li1,2 • Yanjing Bi3 • Yannick Benezeth2 • Dominique Ginhac2 •

Fan Yang2

Received: 27 December 2016 / Accepted: 19 September 2017 / Published online: 4 October 2017

� Springer-Verlag GmbH Germany 2017

Abstract High-level synthesis (HLS) is a potential solu-

tion to increase the productivity of FPGA-based real-time

image processing development. It allows designers to reap

the benefits of hardware implementation directly from the

algorithm behaviors specified using C-like languages with

high abstraction level. In order to close the performance

gap between the manual and HLS-based FPGA designs,

various code optimization forms are made available in

today’s HLS tools. This paper proposes a HLS source code

and directive manipulation strategy for real-time image

processing by taking into account the applying order of

different optimization forms. Experiment results demon-

strate that our approach can improve more effectively the

test implementations comparing to the other optimization

strategies.

Keywords Code optimization � High-level synthesis �
FPGA � Real-time image processing

1 Introduction

Real-time image processing is an increasingly widely used

computer vision technique in various fields. A signal or

image processing system is considered as ‘‘real-time’’ if it

is a reactive system able to absorb input data and outputs

results within a latency lower than the time between two

successive frames acquired by the image sensor. From the

hardware point of view, the challenge of real-time image

processing is to find the optimal platform satisfying the

requirements of the image processing application among a

large space of potential solutions. Its solution exploration

therefore usually revolves around how to combine the

software implementation with the hardware platform [1–5].

FPGA is one of the frequently used computing device

for real-time image processing for its advantages of high

efficiency-cost ratio. However, the devices of this type

necessitate a configuration in the register-transfer level

(RTL) with low abstraction level, potentially reducing the

research and development productivity. For this issue, an

automatical C-to-RTL synthesis technique, known as high-

level synthesis (HLS), is developed and has made great

progress over the past 20 years [6–10]. Recently, some

robust and mature HLS frameworks have been made

available to engineers, i.e., Vivado_HLS of Xilinx [11] and

Catapult C Synthesis Work Flow [12]. These convenient

tools allow one to specify targeted hardware behavior in

high abstract levels rather than RTL, and then create the

hardware description language (HDL) specification of

desired FPGA implementations from its software proto-

type. This approach can greatly accelerate the

& Yanjing Bi

yanjing.bi@hotmail.com

Chao Li

chao.li.1986@ieee.org

Yannick Benezeth

yannick.benezeth@u-bourgogne.fr

Dominique Ginhac

dginhac@u-bourgogne.fr

Fan Yang

fanyang@u-bourgogne.fr

1 Stat Key Laboratory of Acoustics, Institute of Acoustics,

Chinese Academy of Sciences, Beijing 100190, China

2 LE2I FRE2005 CNRS, Arts et Métiers, Univ. Bourgogne

Franche-Comté, 21000 Dijon, France

3 Laboratory of CPTC, Univ. Bourgogne Franche-Comté,

21000 Dijon, France

123

J Real-Time Image Proc (2018) 14:701–712

https://doi.org/10.1007/s11554-017-0722-3

http://orcid.org/0000-0002-5911-2010
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0722-3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-017-0722-3&amp;domain=pdf
https://doi.org/10.1007/s11554-017-0722-3


developments by freeing the designers from the boring

work of hardware implementing [7]. For example, the case

of Wakabayashi [13] shows that a 1M-gate design usually

requires about 300 K lines RTL code, which cannot be

easily manually handled, while the code density can be

easily reduced by 7–10 9 when moved to high-level

specification in C-like languages, resulting in a much

reduced design complexity. Villarreal et al. [14] present a

Riverside Optimizing Compiler for Configurable Circuits

that achieves considerable improvements in terms of code

intensity and programming time over hand-written VHDL

in evaluation experiments.

However, although HLS tools can offer high-quality

designs for small kernels, many studies demonstrate a

significant performance gap between HLS-based and

manual design for complex applications [15–17]. In the

cases of Rupnow et al. [17] and Liang et al. [15], the

performance difference between the two is up to 40 9

for a high-definition stereo matching implementation.

Thus, various academics proposed different solutions to

this issue. For example, Rodirgues et al. [18] proposes

an execution technique to speedup the overall execution

of successive and data-dependent tasks on a reconfig-

urable architecture. Ziegler et al. [19] develop a set of

compiler analyses that can help to automatically map a

sequential and un-annotated C program into a pipelined

implementation targeted for an FPGA with multiple

external memories. Meanwhile, Cong et al. [20] propose

a new communication synthesis approach targeting sys-

tems with sequential communication media and Li et al.

[21] develop a customized affine-ISS (Index-Set Split-

ting) optimization algorithm that aims at reducing the

Initiation Interval of pipelined inner loops to reduce the

program latency.

Recently, Cong et al. [9] indicate that quality of the

RTLs generated from HLS are influenced by the high-level

description of language. Meanwhile, Huang et al. [22]

minutely studied the effects of different compiler opti-

mizations on HLS-generated hardware. It demonstrates that

the following two factors can help for improving the

quality of generated RTL: the optimizing itself and its

applying ordering. In their work, six optimizing methods

are successively applied into the jpeg benchmark for all 6!

(= 720) orderings, and it is found that the fastest imple-

mentation is nearly 28% more efficient than the slowest

one. This finding offers new benefits to further improve the

HLS tools and its design flows.

Up to our knowledge, there is not yet a mature

source-to-source compilation tool specially designed for

HLS, the designers therefore have to borrow from earlier

research achievements on optimizing compiler back-end

for DSP, VLIW (Very Long Instruction World) or

multiple-core processors. This temporary solution partly

frees the users from the code re-writing, but the trans-

formation strategies used in these unspecified compilers

does not solve the problems in nature. Our work focus

on the rapid development framework of HLS-based

FPGA designs for image processing. Basing on the

findings of Huang et al. [22], this paper proposes a novel

code and directive manipulation strategy for HLS, which

can be used in automatical C-to-C compilers. Unlike the

other similar researches, we take into account the effects

of applying ordering of optimizations. For this purpose,

the synthesis constraints of the world-leading HLS tool,

Vivado_HLS, and its potential optimization opportuni-

ties are first carefully studied. Next, we perform a spe-

cial compilation procedure, which sequentially applies

different optimization forms into the design. The pro-

posed approach can reduce the resource consumption of

the final implementation due to the control flow by

simplifying the function or loop hierarchies of the

designs, and provide the schedule process more

pipelining opportunities in the instruction level accord-

ing to the symbolic expression manipulation.

In the experiments, we evaluate the proposed approach

by inserting it into the classical HLS-based image pro-

cessing framework with four benchmarks: 3� 3 Filter,

Matrix Production, Image Segmentation and Stereo

Matching. The evaluation results demonstrated that our

approach can effectively improve the efficiency of source

code. In additional, we compare as well the HLS design

flows improved by our approach with two other ones. The

comparative results show that it substantially improves the

efficiency of the final implementation.

The remainder of this paper is organized as follows:

Sect. 2 reviews the synthesis process of HLS. Section 3

presents the proposed code optimization strategy. Section 4

analyzes the evaluation experiments. Finally, a conclusion

is given in Sect. 5.

2 Description of high-level synthesis

High-level synthesis (HLS) is also known as C synthesis or

electronic system level synthesis (ESL synthesis). It allows

hardware designers to efficiently build and verify their

targeted hardware implementations by giving them better

control over optimization of their design architecture and

allowing one to describe the design in a higher abstract

level. Generally, its overall process consists of control-and-

datapath extraction and RTL generation.

HLS formally represents the source code by using a

control-and-datapath flow graph (CDFG), which is one

of the most widely accepted modeling paradigms.

A CDFG is a directed graph in which every node and

arcs refer to a basic blocks B and control flows,

702 J Real-Time Image Proc (2018) 14:701–712

123



respectively [23]. A basic block is defined as a straight-

line sequence of statements without branches. As shown

at the top of Fig. 1, in this cycle, the data and control

flows are firstly represented by using a Data Flow Graph

(DFG) and a Control Flow Graph (CFG), respectively. In

DFG, every node refers to an operation while arcs the

data assignments. Next, the two graphs are fused into

together as the desired CDFG by assigning the opera-

tions in DFG into the basic blocks of CFG. In this way,

the order of execution of the process elements can be

determined as well as its architecture.

The extracted CDFG can be represented by using a

Finite State Machine (FSM) with datapath as shown at the

lower left of Fig. 1. This model is one of the most popular

methods for digital system specification at RTL. The

generated FSM divides the elements of CDFG into a set of

states S and control steps for synthesis. Meanwhile, it

should be noted that the overall process of this transfor-

mation can be automated or user-driven.

Now we can start to generate the desired RTL. To do

this, three interdependent tasks are needed, including

scheduling, allocation and binding. Scheduling task

schedules the operations represented in CDFG into cycles.

More precisely, for every operation, its operands must be

read from either storage or functional unit components, and

the results must be assigned to its destinations (another

operation, storage or functional unit). These operations

need to be scheduled within a single clock or over several

cycles one by one.

Allocation and binding processes come after scheduling.

In allocation, the type and quantity of hardware resources,

i.e., functional units, storage or connectivity components,

are determined first depending on the scheduled CDFG.

Next, the desired hardware resources are selected from the

given intellectual property (IP) library that contains all the

necessary information for every component, such as area,

delay, power and metrics to be used by other synthesis

tasks as well. Finally, binding is done to generate the RTL

with the following tasks:

(a) Functional binding: bind all the arithmetic or logic

operations to the functional units allocated from the

IP library;

(b) Storage binding: each variable that carries values

across cycles must be bound to a storage unit like

register;

(c) Connectivity binding: bind data transfers to the

connective units, such as assignments and buses. In

additional, if the interconnects are shared by multi-

ple data transfers, a multiplexer will be needed

between the sources and destinations.

In parallel computing, variant parallelism forms, i.e.,

instruction-level parallelism, data-level parallelism and

loop-level parallelism [24, 25], are usually made in order to

achieve high efficiency implementations. For HLS, its

source code can be divided into function level, loop level

and instruction level, which provide different opportunities

to improve the throughout and efficiency performance of

RTL implementations:

1. Function-Level Parallelism (FLP). The subfunctions of

the source code for HLS are specified as subentities in

RTL and interconnected according to the extracted

control behavior. Despite of the sequential nature of C,

these entities can be scheduled in parallel as shown in

Fig. 2a. Furthermore, the generated subentities can be

reused to reduce the area consummation if there is no

scheduling conflict.

2. Loop-Level Parallelism (LLP). LLP is one of the

popular parallelization methods in the scientific com-

puting community. In this form of parallelization,

Source code

Input: pixel_in
Output: pixel_out

temp := pixel_in * λ

if (temp>255) then do
temp := 255

pixel_out := temp

B1
B2

B3

Control flow graph

Data flow graph

pi
xe
l_
in

>×

λ 255

=

255

pi
xe
l_
ou

t

B1
pixel_in

> 255 ?

B2

λ

255

×

=

B3
pixel_out

S0

S1

S2

Control-and-data flow
graph

S0 S1 S2
Finite State Machine

model

0

1

Fig. 1 Control-and-datapath

extraction

J Real-Time Image Proc (2018) 14:701–712 703

123



independent iterations of the same loop are executed in

parallel (see Fig. 2b). Although the acceleration ratio

is constrained by memory access conflicts and data

dependency existing at the iterations in the same loop,

this method offer often significant speedup gains to the

designs with DOALL loops.1

3. Instruction-Level Manipulation (ILM). This form of

parallelization consists of Instruction-level parallelism

(ILP) and Binding Control (BC). The motivation of

ILP is to improve the performance of the designs by

simultaneously executing multiple independent ele-

ments, even in an order different from the program

(out-of-order execution). However, its DOP2 is con-

strained by the available IP core numbers. In order to

achieve more potential efficiency improvement, the

operations can be bound to high efficiency operators.

In the example of Fig. 2c, 2-level pipeline multipliers

are used to execute 4 multiplications in parallel with a

limitation of 2 cores.

3 The proposed code and directives manipulation
strategy

This section describes the proposed code and directive

manipulation strategy for HLS. Depending on the charac-

teristics of HLS presented in Sect. 2, we select four opti-

mization forms from the frequently used candidates in

parallel computing field, including function inline, loop

fusion, symbolic expression manipulation and loop

unwinding. But unlike the existing code optimization

methods presented in the literature, as shown in Fig. 3, they

are applied on the input source code in a proper order in

order to enable each optimization method to make a

maximum effectiveness.

3.1 Function inline

Historically, well using custom function is invariably

encouraged as one of the most basic necessary abilities for

programmers. However, this coding habits seriously dis-

rupt the optimizations in the instruction level in HLS.

Despite of the ability to parallelize the subfunctions, HLS

has to separately process each function in order to map

them to the subentities, which are interconnected via

assignments interfaces. The shortcoming of this approach

a = func_A (x)

b = func_B (y)

c = func_C (b)

b = func_B (z)

d = func_D (b)

Source Code

func_A

func_B

func_B

func_C

f unc_D

Processing
elements

i =
0
:2N

- 1
...

...

i =
0
:N

-1

...
...

i=
N
: 2N

-1

a = 2 x din

b = 3 x din

c = 4 x din

d = 5 x din

Source Code Processing elements

Read din 2 x din & 3 x din

4 x din & 5 x din

Write a

Write b

Write c

Write d

(a) (b) (c)

cycles

Cycles

Fig. 2 Forms of parallelism: a function-level parallelism, b loop-level parallelism and c instruction-level manipulation

Fig. 3 The proposed code

optimization process

1 DOALL loop: the loops with independent iterations.
2 Degree of parallelism of an operation: a variable that indicates how

many times an operation can be or are being simultaneously executed

in maximum for an implementation.

704 J Real-Time Image Proc (2018) 14:701–712

123



is that all the operations in deeper-level entities can not be

executed until the higher-level entities finish the jobs even

if some of the former’s operations could be parallelized

with the latter’s.

In order to offer more optimization opportunities in loop

and instruction level, we first flatten the hierarchical

algorithm description into a single level. Figure 4 shows an

instance to compare the affects from the code sources

before and after function inline. In Code 1, func_A and

func_B are mapped into two separate entities, so all the

operations of func_B are activated after the termination of

func_A. Meanwhile, function inline assembles all the

operations into a single RTL entity; therefore, opt_3 could

be scheduled at the beginning of the clock sequence with

other operations, which put the execution of the opt_1 in

terminal 1 cycle ahead of schedule. Thus, inlining func-

tions can simplify the hierarchical architecture of designs

and enable HLS to effect optimizations on the independent

objects isolated by subfunction customizations, such as

loop fusion and instruction pipeline.

Supposing subfunctions of the top level have the same

interval latency, for a top behavior consisted of Mfunc

dependent subfunctions with a latency of Linterval, its

latency acceleration ratio, Rfi, can be estimated as follow:

Rfi ¼
PMfunc

i¼1 Li þ ðMfunc � 1Þ � Linterval þ Lother

Lfi
ð1Þ

where Li is the latency of the ith subfunction, Linterval is the

interval between the subfunctions, Lother is the latency due

to other instruction-level operations in top function, and Lfi
is the latency of the top function after function inline. Since

different operations scheduling constraints may result in

different execution cost, it is hard to give a universal for-

mulation to compute Li or Lfi. In practical applications, the

latency cost of a single subfunction/function can be

estimated with the help of HLS tools, Vivado_HLS [26] for

instance, when the scheduling constraints are defined.

3.2 Loop manipulation

Function Inline puts all the loops in the same function

hierarchy. This allows a more comprehensive loop-level

optimization. However, HLS processes loop-bodies as

separate states during the control-and-datapath extraction,

so successive loops have to be sequentially executed rather

than in a parallel way, even if they are independent with

each other. Nevertheless, separate states prevent the

designs from operation pipelining or data sharing. In order

to potentially greater optimize the loop-body logic, we

manipulate the source code in loop-level using loop flat-

tening and loop merging (see Fig. 5).

Given that only the same-hierarchy loops can be merged

together, we first flattens nested loops into simple loops,

respectively. Next, all the simple loops are merged into a

single one. In this cycle, the largest loop bound of all the

original loops is selected as the bound of the new generated

loop, and their bodies are controlled and optionally exe-

cuted according to if statements. By this means separate

loop-bodies are fused into a single state. This simplifies the

hierarchical architecture of the design and offers nice

opportunities to potentially greater optimize the loop-body

logic. In our studies, the total state transition number is

defined to estimate the complexity of the FSM to be

implemented. As shown in Fig. 5, Code 3 requires only N2

state transitions while 2N þ N2 for Code 1.

3.3 Symbolic expression manipulation

In the third step, we manipulate symbolic expressions.

Table 1 lists the strategies applied in the symbolic

Fig. 4 Comparison between the code sources before and after function inline

J Real-Time Image Proc (2018) 14:701–712 705

123



manipulation for HLS. Folding, division, short-circuit eval-

uation and normalization reduce designs’ hardware or time

consumption by simplifying computations mathematically.

Furthermore, normalization is also an optimization aimed to

the comparison operations. It re-performs the irregularly

expression by locating the unknown variables and the con-

stant on the different sides of the comparison operator, and

then simplifies them by other strategies, respectively.

Obviously, the equivalent expression consumes less hard-

ware and cycles than the former.

Segmentation is a transformation that enhances HLS’s

detection ability in terms of instruction-level parallelism.

For polymerization, the existing HLS tools can only

pipeline different terms while scheduling the operations in

a single long term in sequence. This is because ‘‘term’’ is

the minimum parallelizable elements in HLS procedure.

Table 1 Symbolic expression

manipulation strategies
Strategies Original expressions Equivalent expressions

Folding 1þ 2aþ 3� 4a 4� 2a

Division ð2� aÞ=ð4� bÞ a/ð2� bÞ
Short-circuit evaluation a && 0 && b 0

Normalization if (1þ a\b� 2) if (a� b\� 3)

Segmentation return a� b� c� d tmp1 ¼ a� b

tmp2 ¼ c� d

return tmp1� tmp2

Fig. 5 Loop manipulation

706 J Real-Time Image Proc (2018) 14:701–712

123



Thus, we re-perform the long terms that have more than 3

multiplication/division operators via Segmentation to make

these independent operations detectable to HLS.

3.4 Loop unwinding

Unwinding the loops in the code can multiply the running

speed of implementations by parallelizing the independent

iterations in the same loop. Let the unrolling times of this

transformation be n, then the theoretical value of the

acceleration ratio R should have been 2n �. However,

sometimes the efficiency improvement achieved by this

optimization is lower than this expected value. This is

because loop iterations share always a single top interface

and the reading/writing operation of the ðiþ 1Þth iteration

have to be delayed certain cycles relative to the ith itera-

tion. The value of R can be formulated as follows:

RðnÞ ¼ L

LluðnÞ
ð2Þ

where

LluðnÞ ¼ 2�n � Lþ ð2n � 1Þ � Dac ð3Þ
Dac ¼ maxfDrd;Dwrg ð4Þ

In Eqs. 2, 3 and 4, L and Llu are the loop latencies before

and after unwinding, and Dac, Drd and Dwr are the delays

due to the access conflicts, reading operations and writing

operations. Equation 4 indicates that the maximum of Drd

and Dwr is selected as Dac, this is because both reading and

writing produce access conflicts, but what ever the cause,

loop unwinding delays the entire iteration. Thus, Dac only

needs to exceed the maximum value between Drd and Dwr.

The area of the implementation optimized by loop

unwinding, Alu, can be estimated as follow:

Alu ¼
XK

k¼1

ðDOPk � akÞ þ Acontrol ð5Þ

where K is the number of the operation types, DOPk is the

degree of parallelism of the kth operation, ak is the area of

the kth component and Acontrol is the area of control circuit.

It should be noted that hardware resources constrain the

maximum degree of parallelism of the implementations in

practice. According to Eq. 5, this constraint can be for-

mulated as:

Alu\A

)
XK

k¼1

ðDOPkðnÞ � akÞ\A� Acontrol

ð6Þ

where Alu and A are the area of the implementation opti-

mized by loop unwinding and the target device.

4 Experiments and evaluations

In this section, we evaluate the proposed code optimization

strategy with multiple different benchmarks using Auto-

ESL, which has been acquired by Xilinx and is now part of

Vivado_HLS. These benchmarks are tested using 8� 8

arrays with float, int and short data formats. A 2-ports

128-bits memory interface is set as the I/O protocol of the

top behavior. In order to obtain an unbiased conclusion, the

versions of the proposed method of these benchmarks are

further compared with those optimized using the Polyhe-

dral Framework and Vivado_HLS design suite only. All

the experiments are made on the xc7a200tfbg676-2 of

Xilinx.

4.1 Performance improvement evaluation

For the first step of the evaluation, four different algorithms

are implemented and functionally verified by using C

language, including 3� 3 filter for RGB images, matrix

product (MatPro), Image Segmentation using Sobel oper-

ator (ImSeg) and Stereo Matching using sum of squared

difference (StMatch). Next, we transform the source code

via our code optimization strategy. During this transfor-

mation procedure, the code generated within each step is

synthesised with AutoESL to evaluate the performance

improvement related to the previous phase.

Table 2 describes the clock cycle and resource con-

sumptions of the four implementations. Compared to the

original versions which are transformed from their C ver-

sions through HLS without any optimizations, the targeted

RTL implementations are greatly improved in terms of

cycle consumption within the hardware constraints of the

evaluation board. This demonstrates that with the proposed

approach, HLS tools can effectively use additional FPGA

resources.

As discussed in Sect. 3, the performance improvement

is the integrated result of an optimization procedure with

multiple steps. First, the control architectures of the pro-

totypes are well simplified according to function inline and

loop manipulation. This allows to avoid the unnecessary

cycle and resource consumptions due to the control flow.

For example, float_32 FI versions of ImSeg achieves a 1.05

9 speedup relative to its original version but consumes

only 90.12% hardware resources in average, while the

float_32 LM versions of MatPro consumes a hardware

resource of 97.7% in average for a 1.026 9 speedup rela-

tive to its function inline version. Additionally, simplifying

the control architecture can also greatly accelerate the

design by reducing the state transition numbers and creat-

ing more parallel computation opportunities. This can be

proved by the LM versions of 3� 3 Filter and ImSeg,

J Real-Time Image Proc (2018) 14:701–712 707

123



T
a
b
le

2
P
er
fo
rm

an
ce

an
d
re
so
u
rc
e
co
n
su
m
p
ti
o
n
ev
al
u
at
io
n
u
si
n
g
th
e
p
ro
p
o
se
d
o
p
ti
m
iz
at
io
n
ap
p
ly
in
g
o
rd
er

Im
p
le
m
en
ta
ti
o
n
s

P
ro
ce
d
u
re
s

3
2
-b
it
fl
o
at
in
g
p
o
in
t
n
u
m
b
er
s
(fl
o
at
_
3
2
)

3
2
-b
it
si
g
n
ed

in
te
g
er

n
u
m
b
er
s
(i
n
t_
3
2
)

1
6
-b
it
si
g
n
ed

in
te
g
er

n
u
m
b
er
s
(i
n
t_
1
6
)

C
y
cl
es

B
R
A
M

D
S
P

F
F

L
U
T

C
y
cl
es

B
R
A
M

D
S
P

F
F

L
U
T

C
y
cl
es

B
R
A
M

D
S
P

F
F

L
U
T

3
�
3
fi
lt
er

O
ri
g
in
al

1
0
,6
1
1

0
2

1
2
3
7

1
2
4
1

2
3
5
5

0
1
2

9
1
2

1
4
4
6

1
7
7
9

0
6

4
9
7

8
8
2

F
I

1
0
,6
1
1

0
2

1
2
3
7

1
2
4
1

2
3
5
5

0
1
2

9
1
2

1
4
4
6

1
7
7
9

0
6

4
9
7

8
8
2

L
M

3
5
2
1

0
6

2
7
1
8

3
2
8
4

9
6
1

0
1
2

1
1
1
1

1
3
8
2

5
7
7

0
3

3
7
6

6
4
4

S
E
M

2
4
3
3

0
6

3
5
8
2

3
2
8
4

9
6
1

0
1
2

1
1
1
1

1
3
8
2

5
7
7

0
3

3
7
6

6
4
4

L
U

7
4

0
9
8

2
8
,5
4
0

3
4
,4
0
9

7
1

0
3
8
4

2
4
,7
2
4

3
9
,8
0
1

4
4

0
1
9
2

1
8
,3
9
4

3
5
,9
2
0

M
at
P
ro

O
ri
g
in
al

5
7
7
7

0
5

5
3
4

3
8
7

4
2
4
1

0
4

1
1
8

1
0
8

1
6
8
1

0
1

5
6

5
5

F
I

5
7
7
7

0
5

5
3
4

3
8
7

4
2
4
1

0
4

1
1
8

1
0
8

1
6
8
1

0
1

5
6

5
5

L
M

5
6
3
3

0
5

5
2
3

3
6
8

4
0
9
7

0
4

1
0
7

8
9

1
5
3
7

0
1

4
1

3
6

S
E
M

5
6
3
3

0
5

5
2
3

3
6
8

4
0
9
7

0
4

1
0
7

8
9

1
5
3
7

0
1

4
1

3
6

L
U

3
2
8

0
7

1
3
7
9

8
1
1

1
5

0
8

1
0
2
1

1
7
8
4

1
1

0
5

3
5
5

4
5
0

Im
S
eg

O
ri
g
in
al

1
6
,6
4
4

3
1
2

4
9
0
0

4
7
8
6

1
0
,8
4
4

3
1
2

3
9
8
1

4
1
7
5

9
6
0
4

3
3

3
3
5
6

3
6
7
7

F
I

1
5
,8
7
6

3
1
0

4
2
6
7

4
2
9
5

1
0
,5
0
0

3
2
8

4
0
6
5

4
7
7
1

9
2
2
0

3
7

3
3
3
0

3
9
3
3

L
M

6
2
7
3

0
3
0

7
9
4
5

8
0
3
3

3
8
4
1

0
2
8

9
1
2
7

1
0
,0
4
6

3
2
0
1

0
7

8
3
5
7

9
2
0
8

S
E
M

5
6
3
3

0
4
2

9
4
6
3

9
6
3
5

3
8
4
1

0
2
8

9
1
2
7

1
0
,0
4
6

3
2
0
1

0
7

8
3
5
7

9
2
0
8

L
U

1
3
1

0
2
1
3

6
6
,5
4
0

8
6
,8
8
9

3
0
1

0
4
4
8

3
5
,9
4
3

4
1
,1
1
7

9
4

0
4
4
8

7
2
,4
8
6

8
1
,1
6
2

S
tM

at
ch

O
ri
g
in
al

3
7
,7
1
3

0
1
5

5
3
5
0

5
2
4
7

2
0
,5
6
1

0
3
6

4
0
6
5

4
0
7
1

F
I

3
6
,1
7
7

0
1
0

4
5
0
0

4
8
1
0

2
0
,5
6
1

0
3
6

4
0
6
5

4
0
7
1

L
M

3
4
,7
0
5

0
1
0

4
5
1
7

4
8
1
3

2
0
,4
9
7

0
3
6

3
8
4
6

3
8
4
9

S
E
M

3
4
,7
0
5

0
1
0

4
5
1
7

4
8
1
3

2
0
,4
9
7

0
3
6

3
8
4
6

3
8
4
9

L
U

3
2
5

0
1
9
7

8
3
,7
4
8

1
0
5
,9
3
7

2
7
7

0
5
1
6

4
8
,8
4
4

5
3
,8
2
0

F
I
fu
n
ct
io
n
in
li
n
e,

L
M

lo
o
p
m
an
ip
u
la
ti
o
n
,
S
E
M

sy
m
b
o
li
c
ex
p
re
ss
io
n
m
an
ip
u
la
ti
o
n
,
L
U

lo
o
p
u
n
w
in
d
in
g

708 J Real-Time Image Proc (2018) 14:701–712

123



which, respectively, achieve a 2.85 9 and a 2.83 9

speedups in the average of the three different data formats.

Next, according to our tests, symbol expression manip-

ulation achieves a 1.447 9 speedup at most in all the

implementations versions. This demonstrates that it can

effectively improve the computing efficiency of the design.

However, it is also found that this optimization is not

effective in some cases. This is mainly caused by two

reasons: (a) the input code has been in the simplest form

(i.e., the SEM versions of MatPro and StMatch), and (b)

the latencies of the operation components are too tiny to

effect the performance improvement. The second reason

can be observed according to the comparison between the

float and int SEM versions of 3� 3 Filter and ImSeg. Since

the latency of 32-bit floating point number adders is 4

cycles, while the 32-bit integer number adders do not

consume any cycles in our experiments, so simplifying

these two implementations’ computation can only accel-

erate the execution speed in the case of float_32 versions,

but does not effect for the int_32 or int_16 versions, even if

the symbolic expressions of the new generated code are

simpler than their previous versions.

Finally, as discussed in Sect. 3.4, the execution speed of

all the four implementations is multiplied by unwinding the

loops. According to our test, the loop unwinding optimized

code, respectively, achieves 19.84 9, 143.34 9, 29.94 9

and 90.39 9 speedups in average for the four implemen-

tations. However, it should be noted that the resource

consumption is multiplied as well after this transformation.

This results that the surface of the target implementation

probably exceeds the hardware constraints. For example,

the efficiency of the int_32 LU version of 3� 3 Filter

could have reached to 50 cycles if its loops are completely

unrolled, but due to the limitation of the DSP number (768

required vs. 740 in maximum), they can be only partly

parallelized in order to make the surface of the desired

implementation available to the target board.

4.2 Comparison experiment

In this subsection, we compare the proposed approach with

other two functionally similar design flows using the source

code of the four benchmarks mentioned in the preceding

subsection (see Fig. 6). We base the first reference design

flow on two improved conventional source-to-source

C/C?? compilers: an improved PoCC polyhedral frame-

work [21, 27, 28] and the Generic Compiler Suite (GeCoS)

[29–31] (defined as PolyComp), while the other one on the

Vivado_HLS Design Suite [32] (defined as Vivado_HLS).

In order to obtain an unbiased conclusion, all the source

codes are synthesized using AutoESL and their data for-

mats are normalized to 32-bit integer numbers. Table 3

lists the optimizations made by reference design flows. In

Fig. 6 Implementing flow with

different code optimization

methods, including PolyComp,

manual directive configuration

within Vivado_HLS and the

proposed code optimization

strategy

Table 3 Optimization forms of reference design flows

Implementations PolyComp Vivado_HLS

3� 3 Filter FI, PT FI, LF, LU

MatPro PT LU

ImgSeg FI, PT FI, LU

StMatch FI, PT FI, LU

PT polyhedral transformation, FI function inline, LF loop flatten, LU

loop unroll

J Real-Time Image Proc (2018) 14:701–712 709

123



additional, the instructions are pipelined by default during

the synthesis process by the AutoESL to all the three flows.

Considering that PolyComp does not have the ability of I/O

interface manipulation, we set the I/O protocol of the target

implementations as the default of the HLS tool used.

The latency speedups of the three design flows with

different algorithms are compared in Fig. 7. The int_32

original versions of the related algorithms are set as the

reference standard. These three approaches, respectively,

achieve an average of 19.01 9, 22.19 9 and 106.54 9

speedups. This demonstrates that out method can gain more

performance improvements in terms of latency consump-

tion. Compared with the other designs, the proposed

approach has the ability to manipulate the source code in a

lower instructions level, which provide more optimization

opportunities to HLS tools. Furthermore, our method can

effectively reduce the transition number of the FSM

behaviors of the target implementations. For example, the

transition number of the MatPro optimized by it is only half

as many as PolyComp and Vivado_HLS, respectively.

Therefore, the method of this paper and Vivado_HLS may

speedup the implementations more effectively than Poly-

Comp. However, it is noted that the hardware resource

consumptions of the optimized implementations using the

reference design frameworks are lower than the proposed

approach. Theoretically, the resource consumptions

increase with the degree of parallelism of operations. Our

method can parallelize more efficiently the implementa-

tion, so it is bound to result in more consumption. In the

experiments of this paper, a hardware device large enough

is selected, allowing completely unwinding/unrolling the

loops. If the area of hardware is not enough for full loop

unwinding, users can reduce the unrolling times in order to

satisfy the resource constraint. The advantage of this

strategy is to make good use of the area of FPGA.

5 Discussion and conclusion

This paper presents a study of code optimization forms for

HLS-based real-time image processing designs. We first

explore the HLS process and the optimization forms

available for it, then a code optimization strategy is pro-

posed. In the experiments, the proposed approach is eval-

uated using four basic image processing test benches and

compared with two other similar design flows: PolyComp

and Vivado_HLS.

The experiment results demonstrate that the optimiza-

tion method of this paper can more effectively speedup the

design than the reference design flows. Since PolyComp is

actually a transcompiler for general-purposed processor, its

key technique is to improve the loop-level parallelism of

the algorithm behaviors by reducing the data dependency

between the loop iterations through polyhedral transfor-

mation. However, today’s HLS tools are usually capable of

parallelizing the design in the instruction level during the

scheduling process depending on the given CDFGs [33], so

polyhedral transformation will not bring additional effi-

cient improvement comparing to the optimization form of

loop unroll. Meanwhile, for Vivado_HLS, we can see that

the built-in optimization directives have many use condi-

tions. For example, loop_merge directive can fuse the

Fig. 7 Latency speedup

comparison

710 J Real-Time Image Proc (2018) 14:701–712

123



consecutive loops to reduce the overall latency, increase

sharing and improve logic optimization, but the code

between the loops to be merged cannot have side effects. In

our case, these use conditions seriously prevent the

implementations from benefiting from the optimization

forms that are available in either architecture or data

dependency aspect.

Within the proposed optimization strategy, the applying

ordering of optimization forms is taken into account.

Table 2 illustrates that the first three optimization steps do

not effectively improve the design, and the main contrib-

utor of the efficiency improvement is loop unroll. How-

ever, it should be noted that function inline and loop

manipulation improve the loop nest and operation sharing

by simplifying the function and control architecture, and

symbol expression manipulation creates a more efficient

operation scheduling. These transformations make much

more potential optimization opportunities for the final loop

unroll step. According to Table 3, we can see that although

the loop nests are unrolled, Vivado_HLS does not provide

a higher efficiency to the design than the proposed method.

Finally, we note that many code transformations men-

tioned in this paper are manually made, which may poten-

tially increase the effort-cost of the development.

Fortunately, our research demonstrates also that a source-to-

source transcompiler, PoCC for example, is capable of

handling this problem if the right compilation strategies are

provided. In the future work, we will focus on the automa-

tization of the code optimization process for HLS with the

challenges of adopting the proposed optimization strategies

into a c-to-c transcompiler. Meanwhile, somemore complex

real-time image processing algorithmswill be used to further

evaluate our method. Especially, the implementations opti-

mized by our method and the FPGA experts will be com-

pared in order to estimate the performance gap between the

machine- and manually made optimizations.

Acknowledgements The authors would like to thank the China

Scholarship Council, the CAS Pioneer Hundred Talents Program and

the Conseil Régional de Bourgogne Franche-Comté for their funding

of our studies.

References

1. Wang, H., Zhang, N., Crput, J.C., Moreau, J., Ruichek, Y.: Par-

allel structured mesh generation with disparity maps by gpu

implementation. IEEE Trans. Visual Comput. Graph. 21(9),
1045–1057 (2015)

2. Wang, H.: Cellular matrix for parallel k-means and local search

to Euclidean grid matching. Theses, Université de Technologie

de Belfort-Montbéliard. https://tel.archives-ouvertes.fr/tel-

01265951 (December 2015)

3. Li, C., Brost, V., Benezeth, Y., Marzani, F., Yang, F.: Design and

evaluation of a parallel and optimized light-tissue interaction-

based method for fast skin lesion assessment. J Real Time Image

Process. 1–14 (2015). doi:10.1007/s11554-015-0494-6

4. Li, C., Balla-Arabé, S., Yang, F.: Embedded multi-spectral image

processing for real-time medical application. J. Syst. Archit. 64,
26–36. (2015). http://www.sciencedirect.com/science/article/pii/

S1383762115001526

5. Li, C., Balla-Arabé, S., Ginhac, D., Yang, F.: Embedded imple-

mentation of vhr satellite image segmentation. Sensors 16(6), 771
(2016). http://www.mdpi.com/1424-8220/16/6/771

6. Wakabayashi, K.: Use of high-level synthesis to generate hard-

ware from software. IEICE ESS Fundam. Rev. 6(1), 37–50

(2012)

7. Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K.,

Zhang, Z.: High-level synthesis for FPGAS: from prototyping to

deployment. IEEE Trans. Comput. Aided Des. Integr. Circuits

Syst. 30(4), 473–491 (2011)

8. Koichi, F., Kazushi, K., Shin-ya, A., Masao, Y., Togawa, N.: A

floorplan-driven high-level synthesis algorithm for multiplexer

reduction targeting fpga designs. IEICE Trans. Fundam. Electron.

Commun. Comput. Sci. E98.A(7), 1392–1405 (2015)

9. Cong, J., Liu, B., Prabhakar, R., Zhang, P.: A study on the impact

of compiler optimizations on high-level synthesis. In: Kasahara,

H., Kimura, K. (eds.) Languages and Compilers for Parallel

Computing, Series Lecture Notes in Computer Science, vol.

7760, pp. 143–157. Springer, Berlin (2013). doi:10.1007/978-3-

642-37658-0_10

10. Keisuke, I., Mineo, K.: Dual-edge-triggered flip-flop-based high-

level synthesis with programmable duty cycle. IEICE Trans.

Fundam. Electron. Commun. Comput. Sci. E96.A(12),
2689–2697 (2013)

11. Vivado Design Suite User Guide, Ug902 (2012.2) ed., XILINX,

(July 2012)

12. Wang, G.: Catapult C Synthesis Work Flow Tutorial, Version

1.3 ed., ECE Department, Rice University (October 2010)

13. Wakabayashi, K.: C-based behavioral synthesis and verification

analysis on industrial design examples. In: Proceedings of the

2004 Asia and South Pacific Design Automation Conference,

Series ASP-DAC ’04, pp. 344–348. IEEE Press, Piscataway

(2004). http://dl.acm.org/citation.cfm?id=1015090.1015177

14. Villarreal, J., Park, A., Najjar, W., Halstead, R.: Designing

modular hardware accelerators in c with ROCCC 2.0. In: 2010

18th IEEE Annual International Symposium on Field-Pro-

grammable Custom Computing Machines (FCCM), pp. 127–134

(May 2010)

15. Liang, Y., Rupnow, K., Li, Y., Min, D., Do, M.N., Chen, D.:

High-level synthesis: productivity, performance, and software

constraints. J. Electr. Comput. Eng., 2012, 14 (2012), article ID

649057. doi:10.1155/2012/649057

16. Cong, J., Huang, M., Zou, Y.: Accelerating fluid registration

algorithm on multi-FPGA platforms. In: 2011 International

Conference on Field Programmable Logic and Applications

(FPL), pp. 50–57 (September 2011)

17. Rupnow, K., Liang, Y., Li, Y., Min, D., Do, M., Chen, D.: High

level synthesis of stereo matching: productivity, performance,

and software constraints. In: 2011 International Conference on

Field-Programmable Technology (FPT). IEEE (2011)

18. Rodrigues, R., Cardoso, J., Diniz, P.: A data-driven approach for

pipelining sequences of data-dependent loops. In: 15th Annual

IEEE Symposium on Field-Programmable Custom Computing

Machines, 2007. FCCM 2007, pp. 219–228 (April 2007)

19. Ziegler, H., Hall, M. W., Diniz, P.: Compiler-generated com-

munication for pipelined FPGA applications. In: Design

Automation Conference, 2003. Proceedings, pp. 610–615 (June

2003)

20. Cong, J., Fan, Y., Han, G., Jiang, W., Zhang, Z.: Behavior and

communication co-optimization for systems with sequential

J Real-Time Image Proc (2018) 14:701–712 711

123

https://tel.archives-ouvertes.fr/tel-01265951
https://tel.archives-ouvertes.fr/tel-01265951
http://dx.doi.org/10.1007/s11554-015-0494-6
http://www.sciencedirect.com/science/article/pii/S1383762115001526
http://www.sciencedirect.com/science/article/pii/S1383762115001526
http://www.mdpi.com/1424-8220/16/6/771
http://dx.doi.org/10.1007/978-3-642-37658-0_10
http://dx.doi.org/10.1007/978-3-642-37658-0_10
http://dl.acm.org/citation.cfm?id=1015090.1015177
http://dx.doi.org/10.1155/2012/649057


communication media. In Design Automation Conference, 2006

43rd ACM/IEEE, pp. 675–678 (2006)

21. Li, P., Pouchet, L.-N., Cong, J.: Throughput optimization for

high-level synthesis using resource constraints. In: IMPACT

2014. Fourth International Workshop on Polyhedral Compilation

Techniques. In conjunction with HiPEAC 2014, Vienna, Austria

(January 20, 2014)

22. Huang, Q., Lian, R., Canis, A., Choi, J., Xi, R., Calagar, N.,

Brown, S., Anderson, J.: The effect of compiler optimizations on

high-level synthesis-generated hardware. ACM Trans. Reconfig-

urable Technol. Syst. 8(3), 14:1–14:26 (2015). doi:10.1145/

2629547

23. Gajski, D.D., Dutt, N.D., Wu, A.C.H., Lin, S.Y.L.: High-Level

Synthesis: Introduction to Chip and System Design. Springer,

New York (1992)

24. Mehrara, M., Jablin, T., Upton, D., August, D., Hazelwood, K.,

Mahlke, S.: Multicore compilation strategies and challenges. Sig.

Process. Mag. IEEE 26(6), 55–63 (2009)

25. Ahn, J.H., Erez, M., Dally, W.J.: Tradeoff between data-,

instruction-, and thread-level parallelism in stream processors. In:

Proceedings of the 21st Annual International Conference on

Supercomputing, Series ICS ’07, pp. 126–137. ACM, New York

(2007). doi:10.1145/1274971.1274991

26. Xilinx: Introduction to FPGA design with vivado high-level

synthesis. Xilinx, Technical Report UG998 (v1.0) (July 2013)

27. Zuo, W., Liang, Y., Li, P., Rupnow, K., Chen, D., Cong, J.:

Improving high level synthesis optimization opportunity through

polyhedral transformations. In: Proceedings of the ACM/SIGDA

International Symposium on Field Programmable Gate Arrays,

Series FPGA ’13, pp. 9–18. ACM, New York (2013). doi:10.

1145/2435264.2435271

28. Pouchet, L.-N.: PoCC. The Polyhedral Compiler Collection.,

version 1.2 ed., on line, Computer Science Department, Univer-

sity of California Los Angeles, 4731L Boelter Hall, Los Angeles,

CA 90095. http://www.cs.ucla.edu/pouchet/software/pocc/

29. Steven Derrien, A.M., Kumar, A.: S2s4hls-sp1 progress report.

INRIA—University of Rennes 1, INRIA—ENS Cachan and

INRIA—LIP, Technical Report (2008)

30. Morvan, A., Derrien, S., Quinton, P.: Efficient nested loop

pipelining in high level synthesis using polyhedral bubble

insertion. In: 2011 International Conference on Field-Pro-

grammable Technology (FPT), pp. 1–10 (December 2011)

31. Alle, M., Morvan, A., Derrien, S.: Runtime dependency analysis

for loop pipelining in high-level synthesis. In: Design Automa-

tion Conference (DAC), 2013 50th ACM/EDAC/IEEE, pp. 1–10

(May 2013)

32. Vivado Design Suite Tutorial, Ug871(v2012.2) ed., XILINX

(February 2012)

33. Lee, J.-H., Hsu, Y.-C., Lin, Y.-L.: A new integer linear pro-

gramming formulation for the scheduling problem in data path

synthesis. In: 1989 IEEE International Conference on Computer-

Aided Design, 1989. ICCAD-89. Digest of Technical Papers,

pp. 20–23 (November 1989)

Dominique Ginhac received

his Master’s Degree in Engi-

neering (1995) followed by a

Ph.D. in Computer Vision

(1999) from the Blaise Pascal

University (France). He then

joined the University of Bur-

gundy as an assistant professor

(2000) and became member of

Le2i UMR CNRS 6306 (Labo-

ratory of Electronic, Computing

and Imaging Sciences). In 2009,

he was promoted Professor. He

is currently director of the Le2i

laboratory. His research activi-

ties were first in the field of rapid prototyping of real-time image

processing on dedicated parallel architectures. More recently, he has

developed an expertize in the field of image acquisition, hardware

design of smart vision systems and implementation of real-time image

processing applications

712 J Real-Time Image Proc (2018) 14:701–712

123

http://dx.doi.org/10.1145/2629547
http://dx.doi.org/10.1145/2629547
http://dx.doi.org/10.1145/1274971.1274991
http://dx.doi.org/10.1145/2435264.2435271
http://dx.doi.org/10.1145/2435264.2435271
http://www.cs.ucla.edu/pouchet/software/pocc/

	High-level synthesis for FPGAs: code optimization strategies for real-time image processing
	Abstract
	Introduction
	Description of high-level synthesis
	The proposed code and directives manipulation strategy
	Function inline
	Loop manipulation
	Symbolic expression manipulation
	Loop unwinding

	Experiments and evaluations
	Performance improvement evaluation
	Comparison experiment

	Discussion and conclusion
	Acknowledgements
	References




