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A B S T R A C T

Multispectral image modalities can offer high accuracy performance to the biometric systems by improving the
discrimination along the spectral dimension. However, its adoptions are usually challenged by low signal to
noise ratio, inter band misalignment, high data volume and computational efficiency. This paper presents a fast
multispectral palmprint biometric technique using partial least square regression model and score-level fusion,
with which an embedded recognition and verification system is implemented for evaluation. Our experiments
are conducted using the PolyU palmprint database, and the results demonstrate that the proposed method can
achieve a higher accuracy and a lower running cost compared to the reference implementations dedicated to the
real-time and/or embedded applications.

1. Introduction

In the past decades, biometric technologies have been widely used
in personal authentication applications, such as access control [1,2], e-
banking [3], vehicle personalization [4], etc. Up to present, various
reliable biometric traits have been utilized and evaluated, including
fingerprint, iris, palmprint, finger-knuckle-print, hand geometry.
Comparing to ID card or password, these biometric characteristics are
not easy to lose and some of them are hard to be copied, which makes
the authentication systems more convenient, effective and secure.

As one of the frequently used biometric features, palmprint has
several advantages [5,6]: low-resolution imaging can be employed; low
cost capture devices can be used; it is very difficult, if not impossible, to
fake a palmprint; the line features of the palmprints are stable, etc. It is
for these reasons that palmprint recognition has attracted an increasing
amount of attention from researchers. Meanwhile, compared to regular
color images, multispectral modalities can provide higher accuracy
performance. This is because a palm has different absorption capacity
for different wavelengths of light and multispectral images capture
more precisely these information, so each band of multispectral images
represents particular features of a palm. That allows to obtain multi-
farious information to improve the distinguishability of palmprint
image features.

Recently, many palmprint based multispectral biometric solutions
have been developed. For example, Xu and Guo [7] represents the

multispectral palmprint images as quaternion features extracted
through the quaternion principal components analysis, and achieve
better performance in recognition applications. Xu et al. [8] improve
the multispectral palmprint recognition method by using digital
shearlet transform and multiclass projection extreme learning machine.
Hong et al. [9] develop a hierarchical approach for multispectral
palmprint recognition by fusing the block dominant orientation code
and block-based histogram of oriented gradient features extracted from
different light bands. According to the reported experiment data ob-
tained within the laboratory environment, today’s multispectral palm-
print biometric algorithms have been able to provide high accuracy
performance: average recognition rates of 99.9% for the IITD palm
database [10] and 99.56% for the PolyU multispectral palmprint da-
tabase [8].

In practical, finding a person of interest from a large candidate
database is far from easy. It usually requires a high performance
hardware platform to manage the candidate database and/or ensure the
execution speed of the system. Furthermore, the efficiency performance
of the systems reduce sharply with the raising of the candidate database
size, until it cannot satisfy the application requirements. For these po-
tential issues, Zhang et al. [6] propose a low-cost multispectral palm-
print system that can operate in real time and acquire high-quality
images. It provides a high recognition accuracy by fusing the multi-
spectral information at score level. However, the hardware device of
this system is based on the CPUs without embeddability. Pudzs et al.
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[11] prototype a multimodal palm biometric system into an Altera DE2-
115 board from Terasic, but it achieves only an EER of 16.65% and a
verification speed of 0.8 s per image, which can hardly satisfy the ac-
curacy performance or real-time requirement of the real-life applica-
tions. Nikisins et al. [12] recently proposed a touch-less palmprint
biometric system capable of real-time accurate person identification.
The algorithm of this system is robust and well implemented with a
series of hardware optimizations. It is stated that its equal error rate
with automatical alignment is 1.82%. Yet, it fuses the palm crease and
vein features on a single RGB image in the sensor level in order to keep
palm illumination constant and to stream images for the processing at
the sensors framerate, potentially preventing the system from bene-
fiting from the multispectral imaging techniques. Consequently, many
opportunities still exist to find a greater embedded solution for high
accuracy multispectral palmprint biometric.

In this paper, we focus the work on the real-time embedded mul-
tispectral palmprint biometric applications. Our work is conducted by
the Algorithm-Architecture Adequation (AAA) methodology, in-
troduced by the AOSTE team of INRIA (French National Institute for
computer science and applied mathematics) [13]. The key feature of
AAA is to rapidly prototype complex real-time embedded applications
based on automatic code generation. The concerned algorithm and its
hardware architecture are studied simultaneous within a Software/
Hardware co-design framework, which allows an embedded im-
plementation optimized both in algorithm and hardware level.

Firstly, we applied this AAA methodology on the algorithm aspect.
With multispectral imaging, the information presented at multiple
wavelengths is usually consolidated to perform the final decision by
using the data fusion technique [14]. Generally, there are four levels of
fusion in the multispectral biometric methods: image/pixel level, fea-
ture level, matching score level and decision level. For example, Wang
et al. [15] fused palmprint and palm vein images by using a novel edge-
preserving and contrast-enhancing wavelet fusion method in their
personal recognition system. This method provides a high accuracy
performance, but the image registration procedure takes 9 s, which
hinders it from real-time implementation. Hao et al. [16] evaluated
several well-known image-level fusion schemes for multispectral palm
images with a data set of 84 images, and then extended their work to a
larger database and proposed a new feature-level registration method
for image fusion [17]. The results by image- and feature-level fusions
are improved, but the required registration procedure is time-con-
suming [15]. For score-level fusion and decision-level fusion, Ross et al.
[18] found that the former works better than the later because match
scores contain more pattern information. Furthermore, in the point of
view algorithm-architecture adequation, fusing data in score-level often
has smaller data intensity, which may potentially improve the perfor-
mance of the system. For the reasons above, the score level fusion
technique is used in our work. That is, the dissimilarities of the band
maps of the input multispectral images are measured first within their
own bands, and then the results are fused in the score level.

Meanwhile, since the biometric information at different light band
contribute differently to the palm recognition or verification, we base
the dissimilarity measurement on the partial least squares regression.
Partial least squares has received a great amount of attention in the
field of chemometrics. The algorithm has become a standard tool for
processing a wide spectrum of chemical data problems. The success of
partial least squares in chemometrics resulted in a lot of applications in
other scientific areas including bioinformatics [19], food research [20],
medicine [21], pharmacology [22], social sciences [23], etc. Recently,
the regression method is successfully used in a hyperspectral face re-
cognition application in the biometric field [24], which effectively
improve the test accuracy by modeling the relations between training
and prediction matrices. The use of partial least squares regression in
palmprint biometric authentication allows us to weight the components
of sample vectors through a statistical analysis, further raising the ac-
curacy of the system.

Multispectral images acquire images at different wavelengths, al-
lowing more color channels than regular color images, resulting a high
computation intensity and low speed efficiency. In recent years, em-
bedded systems have made great progress. Many highly effective em-
bedded devices have been made available to engineers at a very con-
venient price and widely used in various signal processing and
communication systems for their significant advantages in terms of
running-cost, embeddability, power consumption or flexibility [25–31].
Moreover, many comparative studies indicate that Field Programmable
Gate Arrays (FPGAs) can often achieve better comprehensive properties
than other platforms in most cases. For example, in the work of Zou
et al. [32], the running speed of the FPGA implementation of the
Smith–Waterman Algorithm is 3.4× compared to the Graphics Pro-
cessing Unit (GPU) and over 40× compared to the Central Processing
Unit (CPU), while Kestur et al. [33] demonstrated that FPGA has similar
performance at higher energy efficiency compared to the CPU and GPU
platforms. In order to satisfy the processing speed and embeddability
constraints of real-life palmprint authentification applications, we se-
lect FPGA as the target device for its benefits of high efficiency-cost
ratio.

Since conventional FPGA design flow cannot provide a software-
friendly environment for the algorithm development and verification,
we implement the design through a High-Level Synthesis (HLS) tech-
nique [34]. It can effectively accelerate the design cycles by automating
the C-to-RTL synthesis, even for the users with fewer register-transfer
language programming experiences, as well as improve the maintain-
ability of the design by facilitating the algorithm description. Further-
more, a series of optimizations are made in the C code level to improve
the design performances for the purpose of high running speed.

This paper presents our study related to the design, implementation
and evaluation of an embedded real-time multispectral palmprint bio-
metric system. Its accuracy performance for recognition and verifica-
tion is measured using the Region Of Interest (ROI) version of the PolyU
multispectral palmprint database [35]. The experiment results de-
monstrate a very high recognition rate, nearly 100%, as well as a very
low average Equal Error Rate (EER), lower than 0.1‰. Meanwhile, its
running efficiency performance is also estimated through a FPGA based
palmprint authentication implementation. The final implementation
achieves a recognition speed of 1.37 frames per millisecond (with a
multispectral image resized into 13-by-13 and including normalization,
feature matching, score fusion and decision), which allows to perform
more complex pre- and post- processing in real-time, such as hand
image segmentation, gesture analysis, hand language interpretation,
etc.

The remainder of this paper is organized as follows: Section 2 de-
scribes the proposed palmprint authentication algorithm; Section 3
presents the hardware design and optimization cycles; Section 4 ana-
lyzes the experiment results of its hardware embedded design; finally, a
conclusion is given in Section 5.

2. Algorithm description

Partial least square (PLS) is a wide class of methods for modeling
relations between sets of observed variables by means of latent vari-
ables. It comprises of regression and classification tasks as well as di-
mension reduction techniques and modeling tools. Projections of the
observed data to its latent structure by means of PLS was developed by
Herman Wold and coworkers [36–38]. The underlying assumption of
all PLS methods is that the observed data is generated by a system or
process which is driven by a small number of latent (not directly ob-
served or measured) variables. Its goal is to maximize the covariance
between the two parts of a paired data set even though those two parts
are in different spaces.

This work pre-process the original multispectral images through a 2-
D average filter:
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where Iin is one of the frames of the input multispectral image, Iout is the
output of the filter, and L is the filter size. Next, the filtered images are
assigned to the proposed algorithm.

Fig. 1 shows the overall flowchart of the implemented palmprint
recognition/verification algorithm using PLS regression. In this case,
the input images are organized as N multispectral H-by-W-by-B cube
arrays, where H and W refer to the height and width of the images
respectively, B is the band number and N is the number of multispectral
palmprint images (known also as observed samples). Next, the set of
multispectral image arrays are reshaped into the form of �∈ × ×X N D B

with = ×D H W . Let �∈ ×Xb
N D be the bth frame of X in the B direc-

tion, so the rows and columns of Xb respectively correspond to the
samples and vectorized reflectance map (feature variable vector) within
the bth band.

In our case, every band of the input multispectral images has an
independent matching process and scores are fused in order to perform
the final decision. The matching process is based on the Partial Least
Squares (PLS) regression, which necessitates a testing and a training
datasets, we therefore treat every sub matrix Xb as a testing matrix
assigned to the concerned matching channel. We define the combina-
tion of each regression model and its pre- and post-process cycles as a
matching channel. Within each channel, the input matrix Xb is first
normalised:

=
−

X
X μ

σb
b b

b (2)

where �∈ ×Xb
N D is the normalized input matrix in the bth band, μb and

σb are the mean and standard deviation of the training matrix
�∈ ×X ,train b

N D
. t where Nt is the number of training samples. Finally,

different regression coefficients and decision strategies are used de-
pending on the intended applications (recognition or verification).

2.1. Training process of PLS regression

In the case of this paper, we project the two normalisation matrices
(Xtrain b. and Yr) of Xtrain.b and its response variables Yr onto two separate
directions specified by unit vectors wx and wy, to obtain two random
variables X wtrain b x. and Y wr y that are again univariate and hence whose
covariance can be computed. In this way we can assess the relation
assuming between Xtrain b. and Yr . Given two directions wx and wy, their
covariance can be measured as:
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Let Cxy be the sample covariance matrix � X Y[ ]train b
T

r. between X and Y,
where X and Y are two feature matrices whose ith rows corresponds to
the sample X i( )train b. and Yr(i), we can write:

�

∑

=

=

=

=

C X Y

N
X i Y i

N
X Y

[ ]

1 ( ) ( )

1

xy train b
T

r

t i

N

train b r
T

t

T

.

1
.

t

(4)

The directions wx and wy can therefore be found as follows:
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The directions that solve the maximal covariance optimization are the
first singular vectors =w ux 1 and =w vy 1 of the singular value decom-
position of Cxy
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=C U VΣxy
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where the value of the covariance is given by the corresponding sin-
gular value σ1. In this paper, more than one direction is wanted. Let the
direction number be k, we deflate Xk by projecting its columns into the
space orthogonal to − −X u ,k k1 1 where Xk is the feature matrix of the kth
direction and uk is its first singular vector. The deflation of X can be
written as:
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The PLS regression algorithm is shown in Algorithm 1. The repeat loop
computes the first singular value by the iterative method. This results in
ui converging to the first right singular vector YTXj. Next, the deflation
of Xj is computed. Finally, the regression coefficients θb is given by [36]:

= −θ u p u c( )b
t T1 (9)

where c is a matrix with columns

=c
Y X u

u X X uj

T
j j

j
T

j
T

j j (10)

2.2. Recognition

Palmprint recognition identifies the candidate palmprint having the
highest matching score with a given palmprint image. For a palmprint
recognition system having Nr palm candidates, its matching score row
vector of the bth band,  �∈Y ,rec

b Nr is obtained by multiplying the nor-
malized bth band of the input image, X ,b by its PLS regression coeffi-
cients �∈ ×θrec

b D Nr:

 = ×Y X θrec
b

b rec
b (11)

We denote the prediction matrix for the training process of palm-
print recognition by �∈ ×Yrec

p N Nt r. Y m n( , ),rec
p with = …m N1, 2, , t and

= …n N1, 2, , ,r is 1 if the mth training sample is acquired from the nth
palm candidate and 0 otherwise. For a training matrix having =N 4r
and two training samples per class, Yrec

p is as follows:
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The regression coefficients of the b-channel, θ ,rec
b is computed by

assigning Yrec
p to the input argument Yr of Algorithm 1. The matching

scores of each channel Yrec
b

are then fused:

 ∑=
=

Y Yrec
b

B

rec
b

1 (13)

We estimated the weight of each band using the Mont Carol method,
and find that there is no any weight vectors can provide a recognition
rate greater than equal weights. All the spectral bands are therefore
considered contribute equally to the matching process.

In the recognition matching score vector, its nth element, Y n( ),rec
b

is
expected to be maximal when the input sample matches with the nth
palm candidate and close to 0 otherwise. Finally, the index of the
maximum of Y ,rec noted as drec, gives the estimated class of the input
sample.

2.3. Verification

Palmprint verification is used to determine whether the input image
matches with a given candidate palmprint image ( =N 1r ). Its regression
coefficient matrix within the bth channel is defined as �∈ ×θ ,ver

b D 1 and
its matching score Yver

b
can be computed by replacing θrec

b in Eq. (11)
using θver

b .
θver

b is a coefficient column, representing the regression coefficient
vector of the given palm candidate. Its prediction element Yver

p is a
binary vector whose element is 1 when the training sample matches
with the palmprint candidate and otherwise 0. For example, for a
training matrix having =N 6,t if two of the training samples are ac-
quired from the first palm candidate, the prediction vector Yver

p will be
[1, 1, 0, 0, 0, 0]T. The training of θver

b is realized by assigning Yver
p to the

input argument Yr of Algorithm 1.
After the fusion of matching scores, the elements of verification

decision dver is computed using a threshold value ϑ:

Algorithm 1. Pseudocode of PLS regression algorithm.
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dver is the verification result between the input sample and the palm
candidate, in which one for acceptance and zero for rejection. The
threshold value ϑ is selected when the equal error rate of the verifica-
tion system is obtained.

3. Embedded hardware design and optimization

This section presents our study on real-time embedded palmprint
recognition. We first describe the behavior of the algorithm im-
plemented into the register-transfer level through the high-level
synthesis process, then a series of optimizations are made for efficiency
improvement.

3.1. Original FPGA design

High-Level Synthesis (HLS) is a promising technique to improve
FPGA development productivity and the maintainability of the products
by automating the C-to-RTL synthesis [39–42]. We use hereby a world’s
leading HLS tool Vivado_HLS (formerly AutoPilot from AutoESL) [43].
This tool is selected for its significant ability to generate high quality
RTL implementations [44].

We base the desired FPGA design on a classical master-slave ar-
chitecture, which consists of an external memory (slave) and a pro-
cessor (master) customized depending on the given algorithm. The two
blocks are typically interconnected through a memory interface, which
allows random accesses to the memory address locations of X and θrec.
Since this implementation has only a single input sample ( =N 1), the
output argument (decision) is an integer number representing the label
of the matched palm candidate. Its corresponding output interface
drec_vld is therefore performed by using a data bus with a valid signal.
Additionally, in order to raise the throughout of the design, two
memory port interfaces are implemented for each input argument. For
example, both of the ports X_mem1 and X_mem2 are for the argument X.
Within Vivado_HLS, the synthesis of different interfaces can be easily
controlled by the INTERFACE directive or by using a configuration
setting [43].

Algorithm 2 shows the C pseudocode of the algorithm to be syn-
thesized, with which a 4-band framework is implemented, including
red, green, blue and NIR for instance. Its inputs include the filtered
multispectral palmprint cube X and the regression coefficients θrec, and
the return is the decision variable drec. As shown in Fig. 1, we first
reshape the input multispectral cube during the initialization process,
then normalize the test samples. The recognition matching score matrix
of each channel is computed by the PLS regression model with the given
coefficient matrix, and fused by using equal weight sum. Finally the
decision is made. In this original version, PLS regression model and
decision function (Line 14–17 and 21) are packaged into the sub
functions to add to its readability.

3.2. Design optimization

Despite of many benefits in terms of complexity, maintainability,
development productivity, etc., it exists still a significant performance
gap between HLS-based and manual register-transfer level im-
plementations for some applications in terms of time control, execution
speed, consumption, etc.[40,45]. Consequently, we made a series of
code-level optimizations to improve the performance of the original
implementation.

Generally speaking, the quality of the HLS based FPGA im-
plementations are impacted by the following three factors: high-level
description of language, optimization forms and applying orders of
optimization forms [46,47]. As shown in Fig. 2, in this case, multiple
optimization forms are made successively in different hierarchies,

include function inline, loop manipulation, pipeline and symbol ex-
pression manipulation.

In order to manipulate the loops in different function levels, the
function hierarchy is first flattened by function inline. This transfor-
mation enables logic optimization across function boundaries and im-
prove latency/interval by reducing function call overhead. Next, we
manipulate the loops of the source code by using loop fusion and un-
rolling. HLS abstracts the input source code as a control and datapath
flow graph, in which a sequence of successive operations is processed as
a control step. Fig. 3(a) shows the diagram of the control flow extracted
from the function inline version of the proposed algorithm. In order to
reduce the state and transit number, the loops of normalization com-
putations (Lines 2, 5, 8 and 11) and loops containing in the PLS re-
gression models (Line 14,15,16 and 17) are fused into a single one re-
spectively due to the same loop boundary and independent bodies
(Fig. 3(b)). Furthermore, the initialization operations in S11 is moved to
the beginning of the input code and fused into the initialization step S0.
Finally, the loop of S2 in Fig. 3(b) is unrolled completely to parallelize
its iterations (see Fig. 3(c)). In our case, the transformation of loop
manipulation can reduce the hardware consumption of logical control
and add to the instruction level parallelism by centering the operations
into a single control step.

The pseudocode of the optimized implementation is shown in
Algorithm 3, in which two optimization directives (#pragma AP pipe-
line) are placed under the loops to perform iteration pipeline optimi-
zation. Since the loop control, iteration count and dependent operations
will result in some delays, a initiation interval is required between the
iterations. This value can be estimated through the operation sche-
duling generated by using HLS tools automatically. With the pipeline
directives, the factor II is used to specify the desired initiation interval
for the pipeline. Additionally, the expression of score level fusion (Line
19 in Algorithm 2) is segmented into short expressions (Line 12 and 13
in Algorithm 3). This transformation can enhance the detection ability
of HLS tools in terms of Instruction-Level Parallelism.

4. Algorithm implementations and experiments

This section presents proposed algorithm implementations using
multiples configurations and analyzes the evaluation experiments. We
first determine its parameters, then estimate the accuracy performance
of the palmprint recognition and verification algorithms respectively.
All experiments have been achieved in the environment of MATLAB.

4.1. Palmprint database description

We conduct all of the experiments by using the ROI version of the
PolyU multispectral palmprint database provided by Hong Kong
Polytechnic University [6]. This database is captured with NIR and
visible light (red, green and blue color). Fig. 4 shows a typical multi-
spectral palmprint sample in the a) Blue, b) Green, c) Red and d) NIR
bands. It can be observed that the line features are clearer in the blue
and green bands than in the red and NIR bands. While the Red band can
reveal some vein structure, the NIR band can show the palm vein
structures as well as partial line information [6].

All the images are divided into two sessions, whose average time
interval was about 9 days. For each session, 6 samples are acquired, so
we have 6000 samples (6 samples× 2 sessions× 500 persons) of
128× 128 pixels in total.

4.2. Parameter configuration

The subject of this experiment is to determine the following two
parameters of the proposed algorithm: the dimension of the average-
filtered multispectral framesW/H ( =W H ) and the number of principal
components of PLS regression k. To do this, the images of the first
session are used to perform the test sample matrix, and one of the six
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images of the second session is selected at random to train the regres-
sion coefficients. Next, the given multispectral images are fused into 2D
images by using the spatiospectral covariance based band fusion
method recently proposed by Uzair et al. [24]. This band fusion method
incorporates local spatial information as well as efficiently removes
noise by averaging both the spectral and spatial dimensions. Moreover,
it enables to handle small misalignment (see Section 3A of Ref.[24] for
more details). Finally, the fused images are assigned to a regression
channel for accuracy and efficiency estimations. All the experiment
results are calculated with the average value of ten independent mea-
surements.

Fig. 5 shows the 3-D plot of recognition rate over the image size and
number of principal components of PLS regression. Fig. 6 plots the re-
cognition rates and the running time of the MATLAB recognition im-
plementation over the dimension of input multispectral cubes. We can
see that the curve of recognition rate shows a flattening circa =W 13,
but the running time raises linearly. In order to obtain a high accuracy-
cost ratio, the dimension of the input multispectral images is defined as

= =W H 13, which provides an average recognition ratio of 92.4%
with a running speed of 1.26 images per second in this test.

Fig. 7 shows the measurement results of recognition rate and run-
ning time over the principal component number of PLS regression. Si-
milarly, it is found that the accuracy curve starts to trend to flattening
at =k 44 and the running time raises permanently. Consequently, k is
set as 44, which results in an average recognition rate of 93.2% with a
running speed of 2.84 images per second in this test.

4.3. Recognition accuracy

The recognition accuracy of the proposed algorithm is evaluated by
using recognition rate with the smallest training set. The training set is
created by choosing a single sample from the six samples of one session
at random, then the other session or all of the rest samples for testing.

First of all, the average recognition rates of the proposed algorithm
is measured. The experiment is repeated 10 times in order to obtain an
unbias result, in which the two sessions are used for training and testing
alternately. Table 1 compares the recognition accuracy of the proposed
method with other two reference implementations, which are based on
the Multiclass Projection Extreme Learning Machine (MPELM) [8] and
Quaternion Principal Component Analysis (QPCA) [7].

Algorithm 2. Pseudocode of the original palmprint recognition algorithm behavior.

Fig. 2. Optimization strategy of the palmprint recognition design.
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We can see that our method provides a similar accuracy perfor-
mance compared to the other methods by using only two bands and a
single sample for training. When all the four bands are applied, a very
high recognition rate, nearly 100%, is achieved.

What is interesting is that when a lager test sample set is used, the
recognition rate raises instead of decreasing, which seems abnormal. In
our opinion, this is caused by the following two reasons:

a. During each session, the palms are will fixed for all of the six cap-
tures, the ROI misalignment between the samples from the same

session is therefore lower than the ones between the different ses-
sions;

b. There is an interval between the two capturing sessions (around 9
days in average), the palms texture and veins may vary physiolo-
gically more or less, even if they are considered highly stable.

Consequently, using the samples from different session for training
and test respectively is a more objective method to evaluate the bio-
metric systems. The experiments demonstrate that our algorithm pro-
vides the best accuracy performance within the most challenging

Fig. 3. Diagram of the finite state machine extracted from the proposed algorithm: S* is the state identification, L* is the line number of the operations in Algorithm 2,
and fmul, fadd, cmp, r and w are the multiplication, addition, comparison, reading and writing operators.

Algorithm 3. Pseudocode of the optimized palmprint recognition algorithm behavior.
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conditions among all the references.

4.4. Verification accuracy

The EER of the proposed verification algorithm is analyzed quali-
tatively for accuracy estimation. Fig. 8 plots the DET (Detection Error
Tradeoff) curves of the palmprint verification implementations with
different band channel schemes, including single-, double-, triple- and
overall-bands. As expected, the more bands the scheme covers, the
lower EER is achieved. Eventually, as shown in Fig. 8(d), a very low
EER is obtained with only fewer images accepted/rejected falsely. The
orders of magnitude of the EERs of the four schemes vary from 10
down to −10 4 with the increasing of the number of channels. Mean-
while, it should be noted that the DET curves of Fig. 8(d) is the result of
one measurement. When repeating the measurement experiment with
the overall-band schemes, there is often no any falsely accepted/

rejected samples. That is, the matching score matrix obtained by it
demonstrates a high dissimilarity, allowing a threshold value that can
classify all the input samples perfectly.

Finally, the verification accuracy of the different palmprint ver-
ification schemes are quantitatively analyzed by comparing to the other
high accuracy palmprint biometric designs evaluated by using the same
database. The average EERs calculated from 6 independent repetitive
experiments are used for the proposed algorithm. Tab. 2 shows the
EERs of the proposed algorithm and the other three palmprint ver-
ification designs. We can see that for the double- and triple-band
schemes, it is the method of Hong et al. [9] that achieves the lowest
EER, whereas our method is the worst. However, when using full-band
scheme, our method provides a very low EER, and the other methods do
not effectively reduce their EERs comparing to the double- and triple-
band schemes.

4.5. Hardware evaluation

We first functionally verified the embedded implementation of the

Fig. 4. Example of the PolyU multispectral palmprint database.

Fig. 5. 3-D plot of recognition rate over the image size and number of principal
components of PLS regression.

Fig. 6. Plot of recognition rate and running time over multispectral cube di-
mension: =W H .

Fig. 7. Plot of recognition rate and running time over the principal component
number of PLS regression: = =W H 13.

Table 1
Comparison of recognition rate.

Methods Bands Sample number (train vs.
test)

Average recognition
rate

MPELM [8] NIR+red 1 vs. 11 97.33%
NIR+red 3 vs. 9 99.56%

QPCA [7] All 6 vs. 6 98.13%
Proposed NIR+green 1 vs. 6 98.23%

NIR+green 1 vs. 11 99.98%
All 1 vs. 6 99.96%
All 1 vs. 11 99.99%
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palmprint recognition system. The testbench is established by using
System Generator of Xilinx. The Matlab prototype of the same re-
cognition algorithm is used as the reference. Thanks to the powerful IP
core library of Xilinx, the high-precision and complex mathematical
operations in Matlab are also available in FPGAs. Experiments de-
monstrate that the two implementations have the same classification
results.

The running speed performance of the hardware design is evaluated
using the device xc5vfx70tff1136-1 of Xilinx with a clock cycle period of
8.34 ns, which is estimated by Vivado_HLS. Its measurements cover the
initializing, matching, fusion and decision cycles. Table 3 compares our
methods to other four reference implementations based on the same
database.

We can see that all of the reference implementations require a
feature extraction or band fusion cycle before feature matching, which
results in a high running time cost. Our method is based directly on the

pixel values of the input multispectral images, so either the original or
the optimized version of our implementation provides a much higher
efficiency performance. Meanwhile, Table 3 demonstrates also that the
optimizations made accelerates the implementation of the proposed
algorithm from × −1.58 10 2 seconds upto × −7.3 10 4 s, achieving a
speedup around 21.67× .

Table 4 presents the consumption of different components of the
optimized implementation. Comparing to the original version, its
average hardware utilization rate increases by around 5.88× , which is
much lower than the acceleration ratio. That demonstrates that the
applied optimization methods can effectively improve the im-
plementation performance by using the additional area of the target
device, and provide a high efficiency-area ratio. In additional, our im-
plementation requires an external memory to save the test data and
regression coefficients. For a N-to-Nr system, its size can be estimated as
follow: + × ×N D S(1 ) ,r where D is the number of the feature vari-
ables, and S is the size of data type.

5. Conclusion

This paper presents an embedded system for fast multispectral
palmprint biometric applications. Comparing to the reference designs,
experiments demonstrate that the implementation with the proposed
approach has a higher recognition/verification accuracy (99.96% vs.
99.56%), and a lower running time (0.73 ms vs. 66.62 ms). Its ad-
vantages include:

- It does not require high resolution input samples. As demonstrated
in Section 4.2, the dimension of the input multispectral images used
in this work is 13-by-13, which is much lower that the resolutions

Fig. 8. DET curve of the palmprint verification implementation with different band channel schemes.

Table 2
Comparison of EER.

Methods Band schemes EERs (%)

Hong et al. [9] Green+red 0.0074
All 0.0079

Zhang et al. [6] Blue+red 0.0121
Blue+red+NIR 0.0121
All 0.0121

Han et al. [48] All 0.0396
Proposed Green+red 0.41

Blue+red 0.63
Blue+red+NIR 0.096
All × −7.33 10 4
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provided by the database, 128-by-128.
- It is very appropriate for the multispectral image based biometric
applications. We base the proposed algorithm on the PLS regression
and score fusion framework. Table 2 shows that the reference de-
signs can hardly further improve the accuracy performance when
the number of light bands increases, whereas the accuracy of our
method raises sharply with it, so the proposed method can better
benefit the palmprint biometric applications from the multispectral
modalities.

- It has the ability of real-time processing. Comparing to the solutions
based on the platforms of other types, it achieves a much higher
running speed. Unlike the other methods, the proposed algorithm
does not need feature extraction or band fusion before matching
cycle, so it greatly simplifies the processing framework, resulting in
a much lower running cost potentially. According to the efficiency
estimation, the running speed is around 1.37 samples per milli-
second, satisfying the requirements of real-time processing.

- It is very easy to be transplanted to the other hardware platforms for
different using purposes. The matching process of the proposed al-
gorithm is actually an operation of matrix production, which can be
easily implemented and optimized by using any currently-available
computing platforms.

Meanwhile, some issues exist still. Firstly, it is well known that ROI
misalignment impact considerably to the precision of recognition,
which is not discussed in this paper. Secondly, the training process of
the proposed algorithm is implemented in a personal computer, making
the updata of system and data set inconvenient. How to transplant the
training algorithm into FPGA is challenged by the complex operations
involved in it, such as singular value decomposition, etc. For the first
issue, many robust palmprint ROI extraction and alignment methods
have been proposed, allowing us to further complete our system. In the
future work, we will further improve the methods presented in this
paper by transplanting the training cycle of the proposed algorithm into
FPGAs and making more simulations and evaluations in deep in order
to realize an autonomous, adaptative and portable biometric system.
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