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a b s t r a c t 

The newly introduced Kubelka–Munk Genetic Algorithm (KMGA) is a promising technique for the assess- 

ment of skin lesions from multi-spectral images. Using five skin parameter maps such as concentration or 

epidermis/dermis thickness, this method combines the Kubelka–Munk Light–Tissue interaction model and 

Genetic Algorithm optimization process to produce a quantitative measure of cutaneous tissue. Up to the 

present, variant improved KMGA implementations have been successfully realized using the recent paral- 

lel computing techniques. However, all these achievements are based on the multi-core CPUs. This results 

in a quite high cost and low practicability for the hardware equipment of the clinical system. Fortunately, 

Embedded Systems (ES) applications have made great progress in recent years, and many highly effective 

image processing devices, such as DSPs (Digital Signal Processor) and FPGAs (Field Programmable Gate 

Array), have been made available to engineers at a very convenient price. Nevertheless, today’s embed- 

ded devices have as well the advantages of high speed, high embedability, low power consumption, more 

flexibility, etc. Thus, we focus our researches on the embedded KMGA application development. In this 

paper, we realize the CPU-to-FPGA transplantation of KMGA within a special High-Level Synthesis (HLS) 

SW/HW Co-design framework. Moreover, several optimizations are made on the algorithm and source 

code to improve the performances of the final implementation. Compared with CPUs, intensive exper- 

iments demonstrate that the proposed approaches can effectively improve the performances of KMGA 

method both in terms of efficiency and accuracy. 

© 2015 Elsevier B.V. All rights reserved. 
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1. Introduction 

Medical imaging is one of the major research subjects in

Computer-Aided Diagnosis (CAD). With computer-aided medical

imaging, doctors use the computerized analysis results as a “sec-

ond opinion” to make the final decision. This technique can

improve the diagnosis by helping for the diagnostic itself or quan-

tifying the evaluation results, and be used for monitoring the ef-

ficiency of a treatment over time as well. For example, Medical

ultrasound is widely used for non-destructive diagnosis of inter-

nal body structure lesions or guiding the treatment process, while

Molecular Imaging is developed to explore the changing of cells

and molecular level during the disease process. 

Historically, well trained dermatologists analyze the skin color

and interpret the clinical pathologies depending on their knowl-

edge and experience, which often results in the mistakes due to
� Thanks to China Scholarship Council for funding. 
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he subjective judgment. Recently, in order to make the diagno-

is conclusions objective, computer assisted methods for cutaneous

esions assessment increasingly attracts the medical researchers.

ore precisely, some image processing systems are used to min-

mize the usages of the naked eyes and quantify the lesions zone’s

ptimal properties. 

Using the knowledge of the skin absorption and scattering

roperties, a novel Light–Tissue Interaction model based multi-

pectral skin lesion assessment method, Kubelka–Munk Genetic Al-

orithm (KMGA), is proposed by Jolivot et al. [1] . This method

ombines the KM model [2] with Genetic Algorithm (GA) for the

ptimization process. It can analyze both of the most important

ight absorbers (blood and melanin) in the skin according to the

ulti-spectral images which is acquired only by a hand-held

ulti-spectral camera. However, KMGA is a quite resources costly

lgorithm. Its central unit for the data processing is the high per-

ormance multi-core CPUs in personal computers (see Fig. 3.3 in

3] ). This results in a high cost for the hardware equipment and

eriously narrows its advantages in terms of portability. There-

ore, finding a lighter, cheaper and powerful alternative of CPUs for

MGA becomes a new challenge. 

http://dx.doi.org/10.1016/j.sysarc.2015.12.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.12.002&domain=pdf
http://dx.doi.org/10.13039/501100004543
mailto:chao.li.1986@ieee.org
mailto:lichao8601@hotmail.com
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Our work focus on the performance improvement of KMGA skin

esion assessment system by using high performance computing

echnologies. In recent years, Embedded Systems (ES) have made

reat progress, and many highly effective Field Programmable Gate

rray (FPGA) devices have been made available to engineers at a

ery convenient price. These achievements offer nice opportunities

o obtain more performance improvements from a complex design

4–12] . For example, Colodro-Conde et al. [8] propose a FPGA archi-

ecture of area-based algorithms for calculating distance in stereo-

copic vision systems, Sidiropoulos et al. [9] introduce a novel 3-D

PGA architecture for efficient implementation both of compute-

ound and I/O-bound applications and Toledo-Moreo et al. [10]

resent a hardware architecture for the FPGA-based implementa-

ion of 2-D convolution with medium–large kernels. Furthermore,

uo et al. [13] and Kestur et al. [14] point out that in their designs

PGAs performance much better than CPUs or GPUs in terms of

ower-efficient, and another comparative study made by González

t al. [15] further indicates that the cost of FPGAs is significantly

ower than the other computing platforms. Thus, we fix the goal of

he work introduced in this paper on the FPGA implementation of

MGA. 

Within the conventional development framework, the develop-

ent languages of FPGA, i.e. VHDL or Verilog, usually have a low

bstract level, which allows the hardware configurations in RTL

Register-Transfer Level). Therefore, the complex algorithms are dif-

cult to be specified within such languages. Recently, Cong et al.

16] and Liang et al. [17] introduce a novel High-Level Synthesis

HLS) procedure that can automatically synthesize the specification

f algorithm from C like languages into RTL. Nevertheless, its C-to-

TL synthesis process can be configured by using directives for im-

lementation optimizations. We therefore base our work on a HLS

ased SW/HW Co-design framework. 

In this paper, we successfully realize the FPGA implementa-

ion of a High-Convergence-Ratio KMGA (HCR-KMGA) skin lesion

ssessment method improved from the prototype of KMGA. Dur-

ng the development, several optimizations are made in order to

mprove the performances of the generated RTL implementation,

ncluding optical function rewriting, function optimizer improving

nd memory optimizing. The proposed implementations is eval-

ated by comparing with its CPU implementations optimized by

arallel computing techniques. Intensive experiments demonstrate

hat our approaches can effectively accelerate the KMGA skin le-

ion assessment system, while improving its accuracy as well. 

The remainder of this paper is organized as follows: Section 2

escribes the fundamental principles of the KMGA method and

ts algorithm-level improvements. Section 3 presents the develop-

ent process of HCR-KMGA and its hardware level optimizations.

ection 4 analyzes the experimental results and evaluates our de-

ign’s performances. Finally, a conclusion is given in Section 5 . 

. Algorithm description 

In order to retrieve the different skin physical or biologi-

al properties, several skin models have been developed [18–20] .

ubelka–Munk Genetic Algorithm is one of the latest Light–Tissue

nteraction skin lesions assessment approaches. It retrieves the

nterested skin biological properties by inverting the KM model

ith the GA procedure. Firstly, the reflectance spectrum of the le-

ions’ zone, defined as a set of total reflectance values with differ-

nt wavelengths, is measured with an acquisition system. Mean-

hile, a population composed of numbers of candidate solutions

called individuals) is initialized as the search space of the selec-

ion procedure. Each individual carries the information for the se-

ection procedure, including the simulated optical properties (re-

ectance spectrum), the biological properties and the fitness value.

n the KMGA prototype, the reflectance spectrums are performed
ccording to the KM model, while the biological properties are ran-

omly generated within the reasonable bounds. The fitness value

efers to the spectrum similarity between the simulated spectrum

nd the measured spectrum. Then, the population is repeatedly se-

ected through the selection process until a predefined number of

terations. Finally, the best candidate is selected. 

KMGA could effectively retrieve the skin parameter maps via a

election process, however, this task is running-costly [18] even for

 powerful processor. Thus, we propose a novel High-Convergence-

ate KMGA (HCR-KMGA) method in this section. Comparing with

ts prototype implemented by Jolivot et al. [3] , our implementation

an make more acceleration gains according to the following three

pproaches: 

- HCR-KMGA re-specifies the KM function in order to reduce the

redundant operations down to minimum. 

- A Predictive Function Optimization Algorithm (PFOA) is de-

signed to accelerate the convergence of function optimization

process. 

- HCR-KMGA’s individuals’ parameters are optimized depending

on the data dependency, some unnecessary data are removed

in order to save memory space. 

- Multiple different termination conditions are performed in

HCR-KMGA in order to avoid the redundant iterations. 

.1. Kubelka–Munk model 

KMGA-based skin lesion assessment system treats the cuta-

eous system as an epidermis and dermis based 2-layers KM

odel with five principal parameters that affect the light’s re-

ectance and transmittance: melanin concentration, epidermis

hickness, blood concentration, blood oxygen saturation and der-

is thickness. This algorithm consists mainly in population initial-

zation, generation, and evolution. Experimental results show that

he population initialization and generation takes up to 96% of the

otal execution time, population evolution takes 3% and other oper-

tions only 1%. The optical model of KM is the key technique used

uring the time consuming process of population initialization and

eneration. Thus, we use a reduced KM function previously devel-

ped for running accelerating [21] . 

In KM function, the total light reflectance R tot and transmittance

 tot are expressed as: 

 tot = R 1 , 2 = R 1 + 

T 2 1 R 2 

1 − R 1 R 2 

(1)

 tot = T 1 , 2 = 

T 1 T 2 
1 − R 1 R 2 

(2) 

The reflectance R n and transmittance T n for a single layer n can

e expressed as a function of the thickness of the layer d n , the

bsorption coefficient μa, n and the scattering coefficient μs, n . In

rder to simplify the computation, KM function are re-specified as

ollows: 

 n = 

μs.n × (E − 1) 

(μa + s + K n ) × E − (μa + s − K n ) 
(3) 

 n = 

2 K n ε

(μa + s + K n ) × E − (μa + s − K n ) 
(4) 

here 

 n = 

√ 

μa,n (μa,n + 2 μs,n ) 

a + s = μa,n + μs,n 

 = ε2 = e 2 K n d n 

(5) 

The optical absorption and scattering coefficients in the epider-

is and dermis layers, μa.epidermis , μa.dermis , μs.epidermis and μs.dermis ,
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Table 1 

Equation symbol definitions for Eq. (6) –(8) (top) and the 

five interested skin parameters (bottom). 

Symbol Definition 

μa.mel Melanin absorption coefficient 

μa.baseline Baseline absorption coefficient 

μa.oxy Oxy-haemoglobin absorption coefficient 

μa.deoxy Deoxy-haemoglobin absorption coefficient 

μs.Mie Mie scattering coefficient 

μs.Rayleigh Rayleigh scattering coefficient 

f mel Melanin concentration 

D epi Epidermis thickness 

f blood Volume blood fraction 

C oxy Oxygen saturation 

D derm Dermis thickness 
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1 This value is estimated according to the range of the five skin parameters 

shown in Table 5.1 of [9] and the precision of the floating-point numbers. 
are computed as follows: 

μa.epidermis = f mel μa.mel + (1 − f mel ) μa.baseline (6)

μa.dermis = f blood (C oxy μa.oxy ) + f blood (1 − C oxy ) μa.deoxy 

+(1 − f blood ) μa.baseline (7)

μs.epidermis = μs.dermis = μs.Mie + μs.Rayleigh (8)

where 

μa.mel = 6 . 6 × 10 

11 λ−3 . 33 

μa.baseline = 0 . 244 + 85 . 3 × e −(λ−164) / 66 . 2 

μa.oxy = ln 10 × HbO 2 (λ) × G/M 

μa.deoxy = ln 10 × Hb(λ) × G/M 

μs.Mie = 2 × 10 

5 × λ−1 . 5 

μs.Rayleigh = 2 × 10 

12 × λ−4 

(9)

The definitions of the symbols in Eqs. (6) –(8) and the five in-

terested parameters are shown in Table 1 . In Eq. (9) , λ is the

light’s wavelength, HbO 2 and Hb are the oxy-haemoglobin and

deoxy-haemoglobin content in cm 

−1 , G is the haemoglobin’s

weight in gram per liter and M is the gram molecular weight of

haemoglobin. 

Reducing KM function is a simple but effective approach to ac-

celerate the execution of design. The improved algorithm required

less computational operations as the redundant instructions are

avoided by arithmetical reducing. For example, the power oper-

ations appear 13 times in the conventional prototype but only 3

times in the reduced formulas. 

2.2. Function optimizer 

According to Eqs. (1) –(9) , the total reflectance of the incident

light can be expressed as a function of the five interested skin pa-

rameters with a fixed wavelength: 

R tot = f KM 

( f mel , D epi , f blood ,C oxy , D dermis ) (10)

It is obvious that Eq. (10) is a complex non-linear function with

five arguments which is impossible to inverse by mathematical

methods. KMGA optimizes this function according to a standard

genetic algorithm. This optimization process is a search heuristic

that mimics the process of natural selection. It generates solutions

to optimization problems using techniques inspired by natural

evolution, such as inheritance, mutation, selection, and crossover.

More precisely, the algorithm first generate a random population

space for selection. Next, crossover process select multiple couples

of individuals (parents) from the population to create two new in-

dividuals (offsprings) by swapping a part of their genes. Finally,
utation process randomly changes some old genes for the intro-

uction of new genes. These processes are repeated until a pre-

efined number of iterations and finally, the best candidate is se-

ected. This algorithm is also proved effective in the applications of

ioinformatics, phylogenetics, computational science, engineering,

conomics, chemistry, manufacturing, mathematics, physics, phar-

acometrics, etc. However, the evolution process of a pure natural-

imulated genetic algorithm is time consuming, and can easily get

rapped into a local optima. This is because GA always generates

he new populations in a random way firstly, and then selects the

est individual according to the fitness function, which enormously

educes the chance to find a better individual in the next itera-

ion which results in a very low convergence rate. Thus, within

CR-KMGA, we perform a PFOA optimization process, which can

aise the convergence rate by predicting the possible evolution di-

ections. 

Fig. 1 illustrates the over-all architecture of PFOA. Like the con-

entional GA, the system first initializes randomly the population.

owever, in the evolution process, only best-individual selection

rocess are kept, while crossover-mutation and random selection

re replaced by predictive evolution and random evolution. After

ach iteration, the best individuals are directly copied from the last

eneration into the next one for the purpose of fast convergence.

eanwhile, some of the individuals evolute depending on a pre-

iction strategy, which can greatly further raise the convergence

ate of population evaluation. Finally, the rest individuals are re-

erformed randomly in order to reduce the possibility of falling

own to the local optima. 

Depending on different fitness functions, designers can cus-

omize different prediction strategies. In our case, an individual

as five skin tissue parameters. Their value ranges are displayed

n Table 2 . In KMGA, the size of population consist of a few

undred individuals, and in each iteration, several new genes are

enerated via crossover-mutation process. However, with the

oating-point number, which is one of the most frequently used

ata format in computer science, KMGA has more than 6E27 can-

idates, 1 which may result in a long running time and a very low

onvergence rate. 

For the purpose of accelerating the convergence speed of algo-

ithm, a prediction strategy that can reduce each iteration’s search

pace by predicting the evaluation direction is performed as shown

n the right of Fig. 1 . Firstly, the best individuals of the last two

enerations are compared, and depending on the comparison re-

ult, the algorithm takes different steps to adjust the search space.

e base the prediction strategy on the assumption that higher

arameter values had better fitness while x n −1 > x n −2 , and lower

arameter values had better fitness while x n −1 < x n −2 , where x n 
efers to the parameter value of the best individual of the n th gen-

ration. As shown in Fig. 2 (a) and (b), PFOA locks the search space

 onto the scope of x > x n −1 with x n −1 > x n −2 , while the scope of

 < x n −1 with x n −1 < x n −2 . Meanwhile, we note that this method is

ffective only for the situations that the present best individual is

nough far away from the optima. Once it has been very closed

o the optima, a much smaller search space may be required to

nable the algorithm to find a better individual with as few iter-

tions as possible. This situation is abstracted as x n −1 = x n −2 and

f (x n −1 ) = f (x n −2 ) in PFOA. It means that no better individuals are

ound in the last two iterations. Therefore, the search space of the

 th iteration will be locked within the scope around x n −1 in order

o enhance the chance of evolution (see Fig. 2 (c)). 

Since the optimization function is unknown, it is impossible to

orrectly predict the position of the global optima always. But this
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Fig. 1. Over-all architecture of PFOA. 

Table 2 

Size of search spaces for skin parameters. 

Skin parameter Symbol Range 

Melanin concentration f mel 1.3–43% 

Epidermis thickness D epi 0.01–0.15 mm 

Volume blood fraction f blood 0.2–7% 

Oxygen saturation C oxy 25–90% 

Dermis thickness D derm 0.6–3 mm 
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istake can be quickly corrected in the next iterations. For exam-

le, the predicting scope does not include the optima in Fig. 2 (b),

nd within this scope no better individual can be found. However,

his makes the algorithm restricts its search space around x n −1 in

he following iterations, within which a new best individual can be

asily found in the right of x n −1 . 

In our case, KM model has five parameters to be figured out

see Table 1 ). Considering that these parameters have different ef-

ects to the final fitness, their analysis must be independent with

ach other. Thus, HCR-KMGA applies PFOA to all of them respec-

ively. That is, after the fitness comparison, the search space of
ig. 2. Search space prediction of PFOA: x n and f n are the parameter and fitness value 

lobal optima of the optimization function. 
ach parameter is defined independently via the proposed predic-

ion strategy. 

It should also note that sometimes this method may also lead

he evolution down to a local optima. Thus, after prediction evo-

ution, some random individuals are performed in order to avoid

t. Unlike GA, PFOA completely regenerates all the individuals in

 random way instead of crossovers or mutations. This method

reatly enriches the sample types of genes, so the risks of miss-

ng the optima is reduced. 

.3. Individual information storage optimization 

In KMGA, the information of an individual consists of fitness

alue, chemical properties (the five skin parameters mentioned in

able 1 ) and optical properties (simulated spectrum). These data

eed to be saved in the memory of the processing device perma-

ently through the whole processing, and it results that conven-

ional KMGA prototype has to consume a lot of hardware resources

o store all the population information, especially for embedded

evices. Thus, an approach that can reduce memory consumptions

s required. 
of the n th iterations best individual, ( x ′ o , f ′ o ) is the local optima and ( x o , f o ) is the 
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Fig. 3. Relationships of individual data: RMSE refers to Root Mean Squared Error. 
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According to the algorithm analysis, it is found that each piece

of individual information is not isolated, but rather has internal

relations with the others. Fig. 3 displays the relationships among

them, and it demonstrates that both the simulated optical proper-

ties and the fitness value are calculated from the chemical proper-

ties. That provides a nice opportunity to compress the data size by

removing out the data that could be computed immediately and

keeping only the necessaries. 

The individuals of HCR-KMGA are performed by chemical prop-

erties and fitness values, while the information of its simulated

optical properties is removed. In the over-all algorithm, the sim-

ulated spectrum of the skin lesion zone is used only once in or-

der to compute the fitness values for the best individual selection

at the beginning of each iteration (see Fig. 1 ), it is therefore un-

necessary to allocate a certain memory to store them. Meanwhile,

a single fitness value takes up only several octets, while its com-

puting has to call the KM models, which has a very long running

time. Nevertheless, this data is required not only in the best indi-

vidual selection process, but also in the prediction evolution pro-

cess. Thus, this number is stored as part of the individual informa-

tion in HCR-KMGA in order to accelerate the design by reducing

the operations number. The data size comparison between KMGA

and HCR-KMGA’s individual could be expressed as follow: 

L KMGA 

L HCR - KMGA 

= 

6 + N spectrum 

6 

(11)

where L KMGA and L HCR - KMGA are the total data length of the two

algorithms’ individuals and N spectrum 

is the bands number of the

spectral image. Obviously, HCR-KMGA consumes much less mem-

ory space than KMGA, and its total length is permanently 6 times

of the defined number length. That is, the algorithm will not take

any more hardware resources for the population information stor-

age even for the spectral images with high band numbers. 

2.4. Termination conditions 

The evolution process of Genetic Algorithm is terminated af-

ter a number of iterations according to the termination condi-

tions customized by designers. A main issue that always affects

the selection of termination conditions is that: defining a condition

easy to reach consumes fewer hardware resources but may reduce

the accuracy performances of designs, while a hard condition may

lead to extensive computational time, the algorithm can even be

trapped into an infinite loop. 

KMGA terminates the evolution process by defining an iteration

number which corresponds to the convergence of the population.

That is, the evolution stops when the iterations number reaches
he default value. This approach could provide an acceptable aver-

ge fitness value for the processing of a standard skin lesion multi-

pectral image. However, the computations of GA is full of all kinds

f possibilities, so such a simple termination condition may lead

o redundant iterations or unpredictable results. For example, the

volution process will not be terminated until it reaches the de-

ault iterations number even if the global optima has been found,

hile the evolution process may have been terminated before the

tness reaches the required level. Thus, instead of forcing the algo-

ithm to end by setting a default iterations limitation, HCR-KMGA

ombines multiple termination conditions together, including max

ontinuous invalid iteration level θ invalid.iter , fitness level θfitness and

otal iteration level θ total.iter . 

In our works, an iteration in which a new best individual is

ound is called a valid iteration, otherwise an invalid one. Once

 large number of continuous invalid iterations appear, it means

hat the present best individual has been very closed to the op-

ima, and it is difficult or time-consuming to find an other one for

he algorithm. So in order to save the hardware resources, a max

ontinuous invalid iteration level is defined to break the evolution

oop while no new best individual is found during θ invalid.iter itera-

ions. 

Normally, the goal of evolution is not to exactly figure out the

ptima. That is, a fitness error could be accepted in each process-

ng. In HCR-KMGA, a fitness level refers to the acceptable fitness

rror. Once the fitness value of the present best individual is lower

han θfitness , the evolution loop could be broken as well. 

Finally, in order to avoid that the algorithm trap into an infi-

ite loop, a total iteration level is defined. It should note that these

hree termination conditions effects simultaneously on the algo-

ithm, so no matter which one is reached, the iterations will be

nded. This method can save as many hardware resources as pos-

ible, and meet the accuracy requirements of the design as well. 

. Implementation and optimizations 

As one of the most popular computation platforms, FPGAs

ave been used in a wide variety of real-time image process-

ng applications. For example, Yonghong [22] discusses an effi-

ient FPGA-based intellectual property (IP) core designing method-

logy to implement real-time image processing application such

s normalized product correlation (NProd) image matching algo-

ithm, Bodereau et al. [23] proposes a new non-conventional tech-

ique based on fuzzy deconvolution for scattering center detection

F-SCD) and its FPGA implementation for real-time deployment

n automotive collision avoidance application and Komuro et al.
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Fig. 4. Development process for the KMGA’s FPGA implementation. 
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Table 3 

Population parameters configurations for KMGA and HCR- 

KMGA. 

Parameters KMGA HCR-KMGA 

Population size 100 100 

Best individuals 10 1 

Random selection individuals 30 –

Crossing individuals 30 pairs –

Mutation individuals 3 –

Prediction individuals – 49 

Random individuals – 50 

Maximum fitness plateau – 6 

Minimum satisfies fitness level – 2E −4 

Max generation number 25 80 

Spectrum size 34 34 
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24] develops an architecture of embedded systems for high-frame-

ate real-time vision on the order of 10 0 0 f/s, which achieved

oth hardware reconfigurability and easy algorithm implementa-

ion while fulfilling performance demands. In additional, many re-

earches point out that FPGAs have demonstrable superiorities in

erms of power-efficient compared with the other parallel and dis-

ribute platforms, such as multi-core CPUs or GPUs [15,25–27] .

epending on the proposed HCR-KMGA, a FPGA-based embedded

kin lesion assessment system is implemented in Section 3 . 

.1. Development framework 

It is well known that FPGA is a reconfigurable device which has

 quite different hardware architecture than the others. It needs

o be configured in RTL before each use rather than run programs

tored in the memories. This results that the achievements re-

ated to the other parallel and distribute platforms cannot be di-

ectly transplanted to it or even be referenced. For each design,

oftware engineers have to transplant the desired algorithms from

he original software environment (i.e. Matlab, C/C++ or OpenCV)

nto RTL or directly prototype the target implementations within

TL. Since RTL is a low-abstract development environment, both of

hese methods are very effort-consuming. 
Fig. 5. Software implementation of HCR-K
After a series of effort s related to the SW/HW Co-design frame-

ork for FPGAs, a novel HLS procedure, which is also known as C

ynthesis, is used in our case. HLS is a source-to-source compila-

ion method that can synthesize the C-like languages into the tex-

ual description of a circuit diagram or schematic for FPGA devices

16] . It provides a software-friendly hardware development envi-

onment, which keeps the coding restriction due to the hardware

onstraints down to minimum. Moreover, experienced C language
MGA algorithm for the FPGA device. 
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Fig. 6. Experimental results of KMGA vs. HCR-KMGA with different termination 

conditions: the definition of multi-spectral image is 36 × 30, and the fitness val- 

ues mentioned here are the average value of the pixels in it. 

 

 

 

 

 

 

Fig. 7. Convergence rate comparison between KMGA and HCR-KMGA with a max 

continuous invalid iteration level of 4. 
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users only need to avoid to use the expressions unsupported by

HLS tools in the source codes rather than learn a new tool. 

Fig. 4 illustrates the HLS based development process used for

our implementation. After a careful algorithm analysis, we first re-

alize a synthesizable KMGA prototype in C language. Next, the pro-

totype is optimized by using the approaches discussed in Section 2

and simulated through a common C compiler, i.e. Intel C++
ompiler (ICC). Thirdly, the functionally verified source code is im-

orted into the HLS tool for C-to-RTL synthesis. During this pro-

ess, the synthesis directives are carefully configured in order to

ffectively use the hardware resources of the target device. Finally,

he IP block of HCR-KMGA is automatically performed for top be-

avior. 

.2. Implementation 

The over-all architecture of HCR-KMGA is shown in Fig. 5 . Its

nitial population is generated according to the skin parameters’

alue range presented in Table 2 . Giving that the experimental

ata acquirement devices is ASCLEPIOS (Analysis of Skin Charac-

eristics by Light Emission and Processing of Image of Spectrum),

hose waveband varies from 450 to 780 nm with the step of 10

m, we replace the calculation of μa.mel , μa.baseline , μa.oxy , μa.deoxy 

nd μs.epidermis with different wavelengths by a coefficient table

recalculated using the Takatani–Graham table [28] . As there is

o golden rule to define the values of evolution process parame-

ers, we base HCR-KMGA’s parameters configuration on the results

f intensive tests. Table 3 illustrates the evolution parameters of

MGA implemented by Jolivot et al. [1,3] and the proposed imple-

entation. In the fitness computation, Root Mean Squared Error

RMSE) is applied as the metric scale to compare the candidates’

imulated optical properties with the reference reflectance spec-

rum and express the fitness values. PFOA’s evolution process con-

ist of best-individual selection, prediction evolution and random

volution process. Moreover, in order to make the routine synthe-

izable, the standard C function rand () which is not supported by

ur HLS tool due to the use of static variable is replaced by a linear

ongruential random number generator coded manual. 

Within the process of directive configuration, variant opera-

ion scheduling strategies could be effected in different hierarchies

17] , such as function-level, loop-level and instruction-level par-

llelism strategies that the most frequently used for high perfor-

ance computing. Nevertheless, this process can be kept repeat-

ng until the most optimal solution is found. In our case, we com-

letely pipeline the fitness computation and the random number

enerator, while the function optimizer is partly pipelined due to

he hardware constrains. 

. Experiments and analysis 

.1. Algorithm evaluation 

In this experiment, we evaluate the convergence rate of HCR-

MGA by comparing it with KMGA. Fig. 6 displays the experi-

ental results of KMGA vs. HCR-KMGA with different termination
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Table 4 

Specifications of different KMGA implementations: ‘ ∗’ refers to the implementation proposed by this 

paper. 

Implementations Algorithms Environments Tools Devices Optimizations 

KMGA KMGA C/C++ ICC CPU Q6600 POSIX Threads 

HCR-KMGA HCR-KMGA C/C++ ICC CPU Q6600 POSIX Threads 

FPGA-KMGA KMGA C/C++ Vivado_HLS Virtex7 HLS directives 

FPGA-HCR-KMGA ∗ HCR-KMGA C/C++ Vivado_HLS Virtex7 HLS directives 

Fig. 8. Multi-spectral image measured by ASCLEPIOS and simulation results of KMGA and HCR-KMGA. 
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Fig. 9. Efficiency comparison: the clock frequencies of CPU and FPGA are respec- 

tively 2.4 GHz and 50 MHz ( θin v alid.iter = 6 , θ f itness = 2 × 10 −4 and θtotal.iter = 80 ). 

Table 5 

Hardware estimation of FPGA-KMGA and FPGA-HCR- 

KMGA on Virtex7-XC7VX1140T of Xilinx. 

Components FPGA-KMGA FPGA-HCR-KMGA 

BRAM_18K 192 32 

DSP48E 2352 2431 

FF 467264 493177 

LUT 668784 712894 
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conditions. First of all, this result demonstrates that HCR-KMGA

has a higher convergence rate than KMGA no matter with which

termination condition (lower fitness values are better). This is be-

cause PFOA could effectively increase the chance to find a bet-

ter individual and avoid to trap into a local optimal by reducing

the search space according to the prediction strategies proposed

in Section 2.2 , while KMGA requires more iterations to reach the

same fitness level. 

On the other hand, what is interesting is that HCR-KMGA con-

sumes more times than KMGA with the max continuous invalid

iterations, while the other two sub figure indicate that the for-

mer should have a better efficiency performance. Indeed, if we as-

sume that the two algorithms consume the same time for a sin-

gle iteration, then HCR-KMGA should have been more efficiency

in theory because it converges faster. However, actually higher

convergence rate does not necessarily lead to lower running-time

for all the three termination conditions. Fig. 7 displays a con-

vergence rate comparison between KMGA and HCR-KMGA with a

max continuous invalid iteration level of 4. It indicates that KMGA

reaches the termination condition in the 23 th iteration, while HCR-

KMGA terminates in the 32 th. It is known that once a new valid

iteration appears, the algorithm has to reset its continuous invalid

iterations count. Because of high convergence rate, HCR-KMGA

could create a valid iteration more easily than KMGA before the al-

gorithm reach the termination condition. That is, the former is able

to play a longer evolution than the latter with the same θ invalid.iter 

and retrieve a set of skin parameters more exact. 

It should note that in the test of Fig. 6 (c), in order to prevent

the evolution from trapping into an infinite loop, a fixed total iter-

ation level of 200 is defined as well as the fitness level according

to Fig. 6 (a), in which the fitness values of the both algorithms don’t

vary a lot after one hundred and twenty iterations. 

Unlike the function reducing method used in our previous

work, PFOA is more universal, because it optimizes the design by

its nature instead of merely reducing the operation numbers with-

out algorithm optimizing. It should be noted as well that PFOA

is an artificial variety of evolutionary algorithm, and the potential

pitfalls of human intervention to such applications are still open is-

sues in the circle of science. Up to our knowledge, it does not exist

yet a theoretically effective solution for them. In our case, half of

the individuals are set as random individuals to prevent the evolu-

tion from falling into local optimal, while the medically-measured

skin parameter ranges are applied to ensure the rationality of as-

sessment results. Intensive experiments (328 × 270 multi-spectral

image pixel samples) demonstrate that the simulated skin parame-

ters retrieved through PFOA have lower fitness values from whole,

and the maps generated from them have a better visual effect than

the ones evolved according to the pure GA. Therefore, it is reason-

able to consider this new proposed method feasible to the target

issue by far. 

4.2. Comparison experiment 

This subsection evaluates proposed KMGA skin lesion assess-

ment by comparing four different KMGA based skin lesion assess-

ment implementations (specified in Table 4 ). In order to obtain an

unbias conclusion, the optical models of all the implementations

perform the rewritten KM model introduced in Section 2.1 . Fur-

thermore, the algorithms are specified all in C/C++ language. That

is, these implementations are developed from the same prototype.

Since the target CPU device is a quad-core processor, we optimize

the CPU implementations within a POSIX Thread framework. This

method allows to multiply designs’ efficiency by simultaneously

running multiple threads depending on the core number of the tar-

get device [29] . 
Fig. 8 (b) and (c) display the skin parameter maps retrieved

y KMGA and HCR-KMGA from a standard multi-spectral image

hown in Fig. 8 (a). Obviously, the latter makes less noise from

he visual effects and appears a clearer skin lesion zone for di-

gnostics. The accuracy performances of the designs is quan-

itatively evaluated using the fitness value. We calculate the

ccuracy performance data of the CPU implementations from

he matrixes of the retrieved skin parameter maps, and the

PGAs’ are obtained through a test bench implemented using

imulink/SysGen. According to the test results, we can find that

oth the HCR-KMGA implementations has lower fitness values

han the KMGA ones ( 2 . 6 × 10 −4 vs. 3 . 4 × 10 −4 and lower is bet-

er). Therefore, it could be concluded that the proposed algorithm

erforms better in term of accuracy no matter what hardware plat-

orm is used. Meanwhile, it is also found that the fitness values

re almost identical to the FPGA and CPU implementations. This

s because the HLS based SW/HW Co-design framework that we

ollowed can well transplant an algorithm specified in C-like lan-

uages onto FPGAs almost without any omissions of functions. 

The efficiency performances of our implementations are as well

ompared in Fig. 9 . Thanks to the prediction evolution strategy,

CR-KMGA offers an acceleration gain of 2.28 × relative to KMGA,

hile a gain of 2.13 × for FPGA-HCR-KMGA vs. FPGA-KMGA. Never-

heless, the loop-level and instruction-level parallelism enable FP-

As to appear a much better hardware performances than CPUs,

lthough it has a lower clock frequency. The speed gains due to

he platform are 5.84 × and 5.45 × for FPGA-KMGA vs. KMGA and

PGA-HCR-KMGA vs. HCR-KMGA respectively. 

Finally, we compare the hardware resources consummation of

he two FPGA implementations in Table 5 . This comparison indi-

ates that HCR-KMGA consumes much less RAM than KMGA. This

s because the data size of population are well reduced accord-

ng to the approach presented in Section 2.3 , it need not there-

ore to allocate as much storage space as before. In contrast, HCR-

MGA consumes more other components relative to RAM. This is

ecause POFA has a more complex architecture than GA, HLS has
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o spend more resources for the operation control flew. However,

his difference is very tiny, it can almost be ignored in practical

pplications. 

. Conclusion 

This paper presents a real-time embedded application of multi-

pectral medical image processing technique. The conventional im-

lementation is improved both in terms of software and hardware

sing multiple approaches. 

Firstly, the new-proposed implementation is developed basing

n a reduced optical model, which offers a high speed gain by re-

ucing the necessary operations numbers during the computations.

hen, the evolution process for this model is redesigned according

o a prediction evolution strategy. This method greatly accelerates

he algorithm by raising its convergence rate. Finally, the data re-

ationships of individuals are re-analyzed in order to compress the

ndividual information storage. 

In additional, our design is implemented and evaluated within

 High-Level Synthesis SW/HW Co-design framework. This method

nable us to synthesize the C-specification of the algorithms di-

ectly into RTL for FPGAs. Thus, all the experiment analysis of

his paper effect in a software-friendly environment rather than

 hardware-friendly one, which could free the software engineers

rom the boring and insignificant hardware specifications, and put

ore effort in the algorithm improvement. Our work demonstrates

hat this framework could greatly accelerate the period of SW/HW

o-designs. 

The design improvement of this work is based on a reduced KM

unction previously developed in [21] . The new proposed imple-

entation is further accelerated in both algorithm and hardware

spects. According to the experiments discussed in Section 4 , the

mproved algorithm has a higher convergence rate than its con-

entional prototype and a better accuracy as well. This achieves a

peedup of about 2 × in algorithm aspect. Meanwhile, the compar-

son between CPU and FPGA implementations demonstrates that

he latter can accelerate the design by about 6 × in hardware as-

ect. Totally, the proposed embedded design provides a speed gain

f around 12 ×. 

In the future works, we plan to further optimize the proposed

esign’s performance from two aspects: 

(a) Attempt to transplant KMGA onto GPUs. Many compara-

tive research point out GPUs may achieve more poten-

tial efficiency improvements. However, our pre-experiments

demonstrate that KMGA is not amenable to the currently-

available GPUs, i.e. TESLA C2050 of NVIDIA, due to the con-

strains of local memory capacity. Therefore, the over-all ar-

chitecture of the algorithm may be re-designed probably for

this purpose. 

(b) Finding a more efficient operations scheduling strategy

within the C-to-RTL synthesis process. After the effort of this

paper, its experiment results and the ones obtained during

the other related work will be analyzed. The final goal is to

find a general fast FPGA development flow for real-time im-

age processing designs. We believe that it still exists many

interesting challenges and opportunities that may offer more

potential performance optimizations to the embedded real-

time image processing designs, 

Finally, we hope that the achievements of this work can bring

ome new enlightenments to the related researches. 
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