
ADVANC ED R EV I EW

Is atypical rhythm a risk factor for developmental speech
and language disorders?

Enik}o Ladányi1 | Valentina Persici1,2,3 | Anna Fiveash4 | Barbara Tillmann4 |

Reyna L. Gordon1,3,5,6

1Department of Otolaryngology,
Vanderbilt University Medical Center,
Nashville, Tennessee
2Department of Psychology, Università
degli Studi di Milano – Bicocca, Milan,
Italy
3Vanderbilt Brain Institute, Vanderbilt
University, Nashville, Tennessee
4Lyon Neuroscience Research Center,
Auditory Cognition and Psychoacoustics
Team, CRNL, INSERM, University of
Lyon 1, U1028, CNRS, UMR5292, Lyon,
France
5Vanderbilt Genetics Institute, Vanderbilt
University, Nashville, Tennessee
6Vanderbilt Kennedy Center, Vanderbilt
University Medical Center, Nashville,
Tennessee

Correspondence
Enik}o Ladányi and Reyna L. Gordon,
Department of Otolaryngology, Vanderbilt
University Medical Center, Nashville, TN.
Email: eniko.ladanyi@vumc.org (E. L.)
and
Email: reyna.gordon@vanderbilt.edu
(R. L. G.)

Funding information
ANR, Grant/Award Numbers: ANR-
10LABX-60, ANRR-16-CE28-0012;
National Institutes of Health, Grant/
Award Numbers: DP2HD098859,
K18DC017383, R01DC016977,
R03DC014802; National Science
Foundation, Grant/Award Number: NSF
1926794

Abstract

Although a growing literature points to substantial variation in speech/language

abilities related to individual differences in musical abilities, mainstreammodels of

communication sciences and disorders have not yet incorporated these individual

differences into childhood speech/language development. This article reviews three

sources of evidence in a comprehensive body of research aligning with three main

themes: (a) associations between musical rhythm and speech/language processing,

(b) musical rhythm in children with developmental speech/language disorders and

common comorbid attentional and motor disorders, and (c) individual differences

inmechanisms underlying rhythm processing in infants and their relationship with

later speech/language development. In light of converging evidence on associations

betweenmusical rhythm and speech/language processing, we propose the Atypical

Rhythm Risk Hypothesis, which posits that individuals with atypical rhythm are at

higher risk for developmental speech/language disorders. The hypothesis is framed

within the larger epidemiological literature in which recent methodological

advances allow for large-scale testing of shared underlying biology across clinically

distinct disorders. A series of predictions for future work testing the Atypical

Rhythm Risk Hypothesis are outlined. We suggest that if a significant body of evi-

dence is found to support this hypothesis, we can envision new risk factor models

that incorporate atypical rhythm to predict the risk of developing speech/language

disorders. Given the high prevalence of speech/language disorders in the popula-

tion and the negative long-term social and economic consequences of gaps in identi-

fying children at-risk, these new lines of research could potentially positively

impact access to early identification and treatment.
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1 | INTRODUCTION

Developmental speech/language disorders have a high prevalence (3–16%) in the population (National Academies of
Sciences, Engineering, and Medicine, 2016) but many of these cases are identified late or are not identified at all. For
example, epidemiological approaches involving screening large numbers of children consistently show prevalence rates
of 7–8% for developmental language disorder (DLD; Tomblin et al., 1997), but only parents of a quarter of these chil-
dren were aware their child had a speech or language problem. These low identification rates are relevant because
speech/language disorders cause life-long difficulties in academic, social, and economic domains (Baker & Ireland,
2007; Beitchman, Nair, Clegg, & Patel, 1986; Cantwell & Baker, 1987; Catts, 1993; Conti-Ramsden, Durkin, Toseeb,
Botting, & Pickles, 2018; Hall & Tomblin, 1978; Hubert-Dibon, Bru, Le Guen, Launay, & Roy, 2016; Law, Rush,
Schoon, & Parsons, 2009; Paul & Cohen, 1984; Rice, Sell, & Hadley, 1991). Children with dyslexia and DLD are also far
more likely to enter into the juvenile justice system (Snow, 2019). Importantly, long-term consequences could be atten-
uated with more efficient and earlier identification of the disorders and earlier intervention (Bowyer-Crane et al., 2008;
Roberts & Kaiser, 2015; Snowling, 2013).

Recent work has highlighted the need to facilitate the identification of speech- and language-related developmental
disorders and improve the design of early intervention by exploring risk factors in population-based samples (Raghavan
et al., 2018). Converging evidence supports comorbidities among different speech/language disorders (e.g., Dyslexia and
DLD; Bishop & Snowling, 2004; Catts, Adlof, Hogan, & Weismer, 2005) and also between speech/language disorders
and motor disorders (e.g., developmental coordination disorder [DCD]; Kaplan, Dewey, Crawford, & Wilson, 2001;
Scabar, Devescovi, Blason, Bravar, & Carrozzi, 2006; Selassie, Jennische, Kyllerman, Viggedal, & Hartelius, 2005;
Zwicker, Missiuna, & Boyd, 2009) or attentional disorders (e.g., attention deficit hyperactivity disorder [ADHD], Box 1;
Donaher & Richels, 2012; Kaplan et al., 2001; Kovac, Garabedian, Du Souich, & Palmour, 2001; Mueller & Tomblin,
2012; Redmond, 2016; Selassie et al., 2005; Westerlund, Bergkvist, Lagerberg, & Sundelin, 2002; Zwicker et al., 2009).
This research suggests that it is unusual to have discrete, categorical developmental disorders, and that it may be more
efficient to search for underlying deficits that can be identified across disorders in large samples of children. In accor-
dance with these results, the possibility of the transdiagnostic approach has arisen in research, diagnosis and treatment
of disorders (Mareva & Holmes, 2019).

In the current paper, we propose that atypical rhythm might be one of the underlying risk factors that has common
biological underpinnings with, and may lead to, co-morbid impairments in speech/language processing. This hypothe-
sis will be referred to as the Atypical Rhythm Risk Hypothesis. For the purpose of the Atypical Rhythm Risk Hypothesis,
we define atypical rhythm as a general construct capturing any/all of the following terms: Impairments in rhythm/beat/
meter sensitivity, significantly weaker than normal rhythm ability/skill, poor dynamic attending, beat deafness
(Sowi�nski & Dalla Bella, 2013), or time-based amusia (Peretz & Vuvan, 2017). Atypical rhythm can be classified by poor
performance on any implicit or explicit perception or production task of rhythm or timing, such as rhythm discrimina-
tion, interval discrimination, rhythm, beat, or meter processing, and synchronization or entrainment. Atypical rhythm
may also be described as a rhythm impairment or a rhythm disorder. While the underlying neural mechanisms giving
rise to different manifestations of typical and atypical rhythm are of great interest (Fiveash, Bedoin, & Tillmann,
submitted), in this article, we will primarily focus on the clinical significance of common biological risk factors across
different manifestations of atypical rhythm.

In light of recent genetic epidemiological approaches showing shared genetic architecture between related, but clini-
cally distinct traits (e.g., common heritability across many different brain disorders; Anttila et al., 2018), new avenues
for the exploration of common risk factors, such as atypical rhythm, can now be pursued and eventually expanded into
the genetic domain. There are several genetic and environmental risk factors proposed for speech/language disorders,
and presumably, there are other risk factors still to be discovered (e.g., for a multifactorial view of language disorders
focusing on dyslexia: Bishop, 2015; focusing on DLD: Bishop et al., 2017). In line with this multifactorial view of lan-
guage disorders, we propose that, within a pool of risk factors, a generalized rhythm/timing deficit may interact with
other genetic or environmental risk factors. We here synthesize evidence linking rhythm to speech/language
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development and propose an overarching theoretical framework as groundwork for testing the Atypical Rhythm Risk
Hypothesis.

If future research supports the Atypical Rhythm Risk Hypothesis, new possibilities for incorporating rhythm tests
into clinical practice may open up. For example, using atypical rhythm as a risk factor for the development of speech
and language disorders could be beneficial for improving early identification of these disorders. Atypical timing skills
can be measured with tasks targeting musical rhythm perception, which can be assessed earlier in development
(around 7–10 months, see Kalashnikova, Goswami, & Burnham, 2019, or already in 2- to 3-day-old newborns,
see Winkler, Haden, Ladinig, Sziller, & Honing, 2009) than primary symptoms of speech/language disorders
(e.g., atypical reading in dyslexia and atypical expressive grammar in DLD that can be assessed at preschool age at the

BOX 1 Glossary of terms

Attention deficit hyperactivity disorder. Attention deficit hyperactivity disorder involves difficulties
with attention, hyperactivity, and impulsivity (Biederman & Faraone, 2005), and is frequently associated with
language impairment (e.g., Randell, Somerville-Brown, & Chen, 2018).

Developmental coordination disorder. Developmental coordination disorder is characterized by
impaired motor abilities, especially related to postural control, motor learning, and sensorimotor coordination
that affect quality of life (Zwicker et al., 2009). Difficulties with language processing were also reported for
DCD (e.g., Mirabella et al., 2017).

Developmental dyslexia. Dyslexia is a neurodevelopmental disorder affecting word decoding, which in
turn impacts spelling performance and the development of reading fluency (Snowling, 2013).

Developmental language disorder (DLD). DLD is a disorder affecting language comprehension and/or
production, with no known biomedical causes such as brain injury, acquired epileptic aphasia, neurodegenera-
tive disease, cerebral palsy, hearing loss, intellectual disability, or autism spectrum disorder. DLD is likely to
persist in middle childhood and beyond (Bishop et al., 2017). In accordance with recent recommendations
(Bishop et al., 2017) we use the term developmental language disorder for children who were often referred to
as children with specific language impairment in previous studies. Bishop et al. (2017) suggest eliminating the
latter term because it is misleading to state that the impairment is specific to language. In addition, they suggest
using the term disorder instead of impairment to convey greater seriousness and importance, and the naming
consistent with the names of other developmental disorders (Autism spectrum disorder, developmental coordi-
nation disorder, attention deficit hyperactivity disorder) and compatible with the two main diagnostic systems
(DSM-5 [American Psychiatric Association, 2013] and ICD-11 [World Health Organization, 2018]).

Heritability. Heritability is the proportion of phenotypic variation that is due to genetic variation. Herita-
bility analyses also allow for a comparison of the relative importance of genes and environment to the variation
of traits within and across populations (Visscher, Hill, & Wray, 2008).

Mismatch negativity (MMN). MMN appears when a regular feature of a sound sequence is infrequently
omitted (Kujala, Tervaniemi, & Schröger, 2007; Näätänen, Tervaniemi, Sussman, Paavilainen, & Winkler, 2001).

Pleiotropy. Pleiotropy occurs when one genetic locus affects more than one trait (Solovieff et al., 2013).
Rapid auditory processing. The ability to process and categorize fast acoustic changes over a millisecond

time range (e.g., detecting changes in pitch of tones when they are presented with very short [70 ms] inter-
stimulus intervals; Benasich et al., 2006).

Risk factors for language disorders. Risk factors are biological or environmental factors that are statisti-
cally associated with language disorders, but whose causal relationship to the language problem is unclear or
partial (Bishop et al., 2017).

Stuttering. Stuttering is a speech disorder characterized by frequent occurrences of repetitions or prolonga-
tions of sounds, syllables, or words that disrupt the rhythmic flow of speech (World Health Organization,
2010). Language impairments often co-occur with stuttering (Ntourou, Conture, & Lipsey, 2011).

Transdiagnostic approach. The transdiagnostic approach focuses on underlying mechanisms that are rel-
evant across a class of disorders instead of single diagnostic categories in research, diagnosis and treatment of
disorders (see Sauer-Zavala et al., 2017).
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earliest, or atypical speech production in stuttering that can be assessed from age two at the earliest). In addition,
rhythm tasks could be included in the language screening of preschool-age children. To develop the hypothesis of musi-
cal rhythm processing at infancy and early childhood as a risk factor for speech/language disorders, we will synthesize
different lines of research investigating whether (a) musical rhythm and speech/language skills are associated,
(b) rhythm is impaired in speech/language disorders and common comorbid attentional and motor disorders, and
(c) individual differences in mechanisms underlying rhythm processing skills at infancy are related to language devel-
opment and the presence/absence of speech/language disorders in childhood. We will also frame this hypothesis within
the larger epidemiological literature that has recently experienced a series of methodological advances allowing for
large-scale testing of shared underlying biology across clinically distinct disorders. We then outline a series of predic-
tions for future work testing the Atypical Rhythm Risk Hypothesis.

2 | PERCEPTUAL AND NEURAL MECHANISMS OF HUMAN RHYTHM
PROCESSING ABILITY AND THEIR RELATION TO HIGHER-LEVEL
LANGUAGE PROCESSES

Temporal regularities are present at multiple hierarchical levels in both music and speech. In the domain of music, this
regularity is more salient as temporal intervals of the underlying beat are isochronous, whereas in speech there is a
higher variability in intervals (e.g., also referred to as quasi-periodic: Peelle & Davis, 2012). When listening to music, a
basic frequency serves as a temporal organizer; it is referred to as the pulse or beat and typically falls between 1 and
2 Hz (see London, 2004). Strong and weak beats are grouped into a hierarchical metrical structure, which is a cognitive
construct of the listener (Lerdahl & Jackendoff, 1983). In spoken language, the rhythm of speech is carried by the so-
called amplitude envelope, which captures information about duration, rhythm, tempo, and stress of speech (Goswami,
2019; Kotz, Ravignani, & Fitch, 2018; Myers, Lense, & Gordon, 2019). When the amplitude envelope is degraded,
speech can become unintelligible (Ghitza, 2012). Similarly to musical rhythm, groupings of strong and weak accented
speech events (such as stressed and unstressed syllables) form metrical structures. These stress patterns play a role both
in language acquisition (Bernard & Gervain, 2012; de Carvalho, Dautriche, & Christophe, 2016; Dupoux, Pallier,
Sebastian, & Mehler, 1997; Gervain & Werker, 2013; Jusczyk, Cutler, & Redanz, 1993) and speech processing (Bion,
Benavides-Varela, & Nespor, 2011; Dilley & McAuley, 2008). At this point, we would like to emphasize that when we
use the term rhythm processing in the paper both in relation to music and speech, we are also referring to the
processing of beat and metrical structures of the stimuli as an aspect of rhythm processing.

Based on accumulating evidence in recent research (summarized below), several theories have outlined shared under-
lying processes for musical rhythm and speech processing: The dynamic attending theory (DAT; Jones, 1976, 2016;
Jones & Boltz, 1989; Large & Jones, 1999), which inspired many of the later theories; the temporal sampling framework
(TSF; Goswami, 2011, 2018); the sound envelope processing and synchronization and entrainment to pulse hypothesis
(SEP; Fujii & Wan, 2014); the precise auditory timing hypothesis (PATH; Tierney & Kraus, 2014); and the OPERA hypoth-
esis (Patel, 2011, 2012). Fiveash et al. (submitted) highlight three common elements in these theories and propose their
combination as crucial for music rhythm and speech processing. (a) All theories emphasize the role of fine-grained audi-
tory processing (precise, low-level processing of the acoustic signal) in music and speech as a necessary element underlying
perception and transfer effects between domains. (b) Neural oscillations and their entrainment to the auditory stimuli play
a role in structural processing (including hierarchical processing), temporal integration, and prediction of music and
speech signals. According to the DAT (Jones, 2019; Large & Jones, 1999), endogenous brain oscillations synchronize with
external regularities and predictable cues (e.g., beat or stress), help to structure the auditory input, and focus attention to
important elements of the auditory stimulus and its presentation over time (see also Ghitza, 2011; Giraud & Poeppel,
2012; Peelle & Davis, 2012). (c) The role of sensorimotor coupling both in music rhythm and speech/language processing is
included in several of these theories. The involvement of motor functions is not surprising in the case of speaking or when
moving to music, but interestingly, motor areas are consistently found to be activated during the perception of music
(Chen, Penhune, & Zatorre, 2008; Fujioka, Trainor, Large, & Ross, 2012; Gordon, Cobb, & Balasubramaniam, 2018;
Grahn & Brett, 2007; Stephan, Lega, & Penhune, 2018) and speech (Glanz et al., 2018; Möttönen, Dutton, & Watkins,
2013; Wilson, Saygin, Sereno, & Iacoboni, 2004), even in the absence of overt movement.

In line with the central role of these three processes, several studies have shown overlapping brain activations in auditory
and motor cortices for both musical rhythm and speech/language processing (Chen, Zatorre, & Penhune, 2006; Grahn &
Brett, 2007; Keitel, Benwell, Thut, & Gross, 2018; Kotz et al., 2018). Kotz, Schwartze, and Schmidt-Kassow (2009) outlined a
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network involving frontal (dorsolateral prefrontal cortex), supplementary motor area (SMA) and basal ganglia regions (the
pre-SMA-basal ganglia circuit). They suggest that this circuitry is involved in the processing of predictable sensory cues, such
as beat in music or word stress/linguistic meter in speech. The authors also emphasize the role of neural oscillations and pro-
pose that the pre-SMA-basal ganglia circuit regulates the synchronization of neural oscillations with auditory stimuli and
therefore plays a crucial role in predicting when the next event will occur in a sequence. Although cortical oscillations can
be reliably measured in humans, oscillatory activity originating from subcortical structures, such as the basal ganglia, cannot
be easily isolated. However, primate research has provided evidence that oscillations in the beta frequency band (which have
been shown to play a crucial role in rhythm processing: Zanto, Large, Fuchs, & Kelso, 2005) originate from the basal ganglia,
suggesting a similar function in humans (Merchant & Bartolo, 2018).

Another line of research emphasizes the shared nature of structural and hierarchical processing in language and
music—including rhythm processing. According to Lashley (1951), language and music are both made up of sub-
elements that need to be correctly ordered in the temporal domain. The organization of the sub-elements can be
described by hierarchical, tree-like structures, in which lower levels are incorporated by higher levels, and are ordered
according to specific rules (Fitch, 2017). Fitch and Martins (2014) proposed that the emergence of tree-like syntax in
the grammatical structure of language in early humans was an evolutionary turning point that might also have coin-
cided with the emergence of the metrical structure of rhythm in human musicality. In line with this proposal, hierarchi-
cal structures in language and music seem to be processed using similar cognitive and neural mechanisms (Patel, 2003,
2008). Although most of the studies investigating shared structural processing between music and language have
focused on harmonic syntax or music processing in general (Fiveash, McArthur, & Thompson, 2018; Fiveash & Pam-
mer, 2014; Herdener et al., 2014; Hoch, Poulin-Charronnat, & Tillmann, 2011; Jentschke & Koelsch, 2009; Jentschke,
Koelsch, Sallat, & Friederici, 2008; Koelsch, Gunter, Wittfoth, & Sammler, 2005; Kunert, Willems, & Hagoort, 2016;
Slevc, Rosenberg, & Patel, 2009; Steinbeis & Koelsch, 2008), recent evidence suggests some associations between lin-
guistic and rhythmic syntax as well (Sun, Liu, Zhou, & Jiang, 2018).

Hierarchically organized neural oscillations, emphasized by several theories of musical rhythm and speech processing,
might play a crucial role in the processing of hierarchically organized syntactic structures as well. According to the Metric
Binding Theory by Jones (2019), it is the internal entrainment of multiple nested neural oscillators and their binding that
support meter processing and enhances temporal predictions. It is possible that the same process might extend to lan-
guage and allow for higher-level structure learning and processing. This hypothesis is supported by studies showing that
neural oscillations entrain not only to physically marked beats and stressed syllables, but also to higher-level structures
both in music (e.g., the metrical structure; Nozaradan, Peretz, Missal, & Mouraux, 2011) and language (e.g., syntactic
structure; Ding, Melloni, Zhang, Tian, & Poeppel, 2015), which are not necessarily physically present in the signal
(Fiveash et al., 2020; Tal et al., 2017). Efficient entrainment, defined here as the precise phase-locking of neural oscilla-
tions at the appropriate frequency, to higher-level structures in musical rhythm and language may also lead to improved
prediction skills, possibly through attention allocation (e.g., Large & Jones, 1999; Schmidt-Kassow & Kotz, 2009). Entrain-
ment and increased attention to important parts of the signal may not only facilitate temporal predictions (e.g., predicting
when something will happen; predictive timing, Friston, 2005), but also lead to better predictions of what will happen next
(predictive coding, Friston, 2005; Jones & Boltz, 1989; Koelsch, Vuust, & Friston, 2019). The predictions developed for what
and when of incoming input allow for faster and more efficient processing of these events and their underlying structures,
whether musical or linguistic. The possibility of such a link between predictive skills in rhythm and language is supported
by preliminary evidence showing that children who are impaired in tapping tasks are also worse at making structure-
based morpho-syntactic predictions in language (Persici, Stucchi, & Arosio, 2019).

The research findings reviewed above suggest that a shared network underlies musical rhythm and speech/language
processing that supports the processing of surface-level features of musical rhythm and speech as well as the processing
of syntactic structures in musical rhythm and language (Figure 1). In the following sections, we summarize evidence
for associations between musical rhythm and speech/language processing in typical and atypical populations.

3 | INDIVIDUAL DIFFERENCES: A SYNTHESIS OF RESEARCH
INVESTIGATING ASSOCIATIONS BETWEEN RHYTHM AND SPEECH/
LANGUAGE IN TYPICALLY DEVELOPING INDIVIDUALS

Overlapping neural processes underlying musical rhythm and speech/language abilities are supported by a large body
of literature showing associations between individual differences in language and rhythm skills (Anvari, Trainor,
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Woodside, & Levy, 2002; Degé, Kubicek, & Schwarzer, 2015; Douglas & Willatts, 1994; Gordon et al., 2015; Grube,
Kumar, Cooper, Turton, & Griffiths, 2012; Holliman, Wood, & Sheehy, 2010; Magne, Jordan, & Gordon, 2016; Moritz,
Yampolsky, Papadelis, Thomson, & Wolf, 2013; Ozernov-Palchik, Wolf, & Patel, 2018; Strait, Hornickel, & Kraus,
2011). For instance, beat synchronization and early literacy as well as spoken language skills are strongly linked (see
Figure 2 showing data from Woodruff Carr et al., 2014). In addition, there is ample evidence of better performance on
various language tasks after rhythm/music training in the typically developing population (Degé & Schwarzer, 2011;
Linnavalli, Putkinen, Lipsanen, Huotilainen, & Tervaniemi, 2018; Patscheke, Degé, & Schwarzer, 2016; Rautenberg,
2015; Taub & Lazarus, 2012; Zhao & Kuhl, 2016). Moreover, several studies have found a short-term facilitating effect
of regular rhythm on subsequent grammar task performance in typically developing children (Ladányi, Lukács, &
Gervain, submitted; Bedoin, Brisseau, Molinier, Roch, & Tillmann, 2016; Canette et al., 2020; Chern, Tillmann,
Vaughan, & Gordon, 2018; Przybylski et al., 2013). In addition, better speech/language skills, such as more efficient
speech processing and word segmentation, have been reported for musicians compared to non-musicians (Brod &
Opitz, 2012; François, Jaillet, Takerkart, & Schön, 2014; Marie, Magne, & Besson, 2011; Musacchia, Sams, Skoe, &
Kraus, 2007; Sares, Foster, Allen, & Hyde, 2018; Zuk et al., 2013), although this advantage could originate from other
differences between musicians and non-musicians beyond differences in rhythm skills. It is also important to note that
individual differences in musical ability or aptitude in adults predict speech perception task performance beyond musi-
cal training (Mankel & Bidelman, 2018). Interestingly, evidence extends beyond surface-level auditory characteristics of
speech and to deeper, hierarchically structured syntactic processing of language (Gordon, Jacobs, Schuele, & McAuley,
2015; Politimou, Dalla Bella, Farrugia, & Franco, 2019; Woodruff Carr et al., 2014). A complete review of correlations
between rhythm and speech/language skills in typical development is beyond the scope of the present paper
(see Fiveash et al., submitted).

4 | ATYPICAL RHYTHM IN CHILDREN WITH ATYPICAL SPEECH/
LANGUAGE DEVELOPMENT

Associations between rhythm and speech/language processing are strongly supported by recent research demonstrating
that children with speech/language developmental disorders (e.g., dyslexia, DLD, stuttering), as well as children with

FIGURE 1 Shared underlying mechanisms for musical rhythm and speech/language processing. (a) Models of underlying

mechanisms for musical rhythm and speech/language processing emphasize the role of fine-grained auditory processing, oscillatory brain

networks and sensorimotor coupling (Fiveash et al., submitted). (b) Another line of literature emphasizes the shared role of processing of

hierarchical structures in both musical rhythm and syntactic processing (e.g., Fitch & Martins, 2014; bottom figure is adapted from

Heard & Lee, 2020)
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speech/language impairments as co-morbid deficits in other developmental disorders (e.g., DCD, ADHD), often exhibit
underlying timing deficits that could be contributing to the symptomatology within each pathology. In each of these
disorders, research has revealed some evidence for associated timing impairments, even though specifics of these
impairments differ (see a summary of this research in Table 1). Considering that there are high levels of comorbidity
between disorders (Bishop & Snowling, 2004; Catts et al., 2005; Donaher & Richels, 2012; Kaplan et al., 2001; Kovac
et al., 2001; Mueller & Tomblin, 2012; Redmond, 2016; Scabar et al., 2006; Selassie et al., 2005; Westerlund et al., 2002;
Zwicker et al., 2009), it is likely that there are shared impairments in underlying neural mechanisms across different
pathologies. We will return to possible etiologies of co-morbidities across these disorders in Section 6; here we focus on
atypical rhythm in several highly prevalent developmental speech/language disorders. Together with Fiveash et al.
(submitted), we suggest that common deficits in timing may be largely related to impaired fine-grained auditory
processing, impaired tracking of rhythms via neural oscillations, and impaired sensorimotor coupling in the brain. We
further propose that impaired hierarchical processing could result in both impaired processing of rhythmic structures
and syntactic processing of language. Impairment in one or more of these underlying mechanisms appears to be associ-
ated with atypical speech/language processing, rhythm processing and/or motor impairments. In addition, we need to
consider environmental factors and genetic family history, as further discussed below.

FIGURE 2 Rhythm production ability and early literacy skills. Convergent evidence across data acquired with various methods, in

support of associations between rhythm skills and language in preschool-aged children (Reprinted with permission from Woodruff Carr,

White-Schwoch, Tierney, Strait, and Kraus (2014)). Children that performed well on a musical beat synchronization task (here called

synchronizers, in red, shown on the rose plots on left to have better drumming accuracy) encoded speech more efficiently (top right) and

show significantly better phonological awareness than their non-synchronizer peers (bottom right). Synchronizers also performed better on a

sentence repetition task (it is important to note that sentence repetition/imitation tasks not only require auditory perception and short-term

memory but also reflect deeper access to the grammatical structure of language: see Klem et al., 2015)
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TABLE 1 Summary of current literature investigating rhythm in children with atypical speech–language development

Age Task
Evidence for atypical
rhythm?

Dyslexia Colling, Noble, and
Goswami (2017)

9–10 years Beat perception
Tapping task

Yes

Cutini, Szucs, Mead, Huss,
and Goswami (2016)

12 years Neural entrainment to
amplitude-modulated noise

Yes (2 Hz)

Frey, François, Chobert,
Besson, and Ziegler (2019)

10 years Neural processing of speech
sounds in silence, noise, and
envelope conditions

Yes

Goswami et al. (2002) 11 years Beat detection in amplitude-
modulated sounds

Yes

Goswami, Gerson, and
Astruc (2010)

7–13 years Amplitude envelope onset (rise
time) discrimination

Yes

Goswami, Huss, Mead,
Fosker, and Verney (2013)

8–14 years Beat perception Yes

Goswami et al. (2013) 9 years Syllable stress discrimination Yes

Goswami et al. (2016) Discrimination of amplitude
rise time

Temporal modulations of
nursery rhymes

Yes

No but impaired acoustic
learning during the
experiment from low-
pass filtered targets

Hämäläinen, Rupp, Soltész,
Szücs, and Goswami (2012)

19–29 years Amplitude-modulated white
noise

Yes at 2 Hz

Huss, Verney, Fosker, Mead,
and Goswami (2011)

8–13 years Amplitude envelope rise time
perception

Yes

Lee, Sie, Chen, and
Cheng (2015)

9–12 years Rhythmic imitation Yes

Leong and Goswami (2014) <40 years,
mean:
22 years

Rhythmic detection to identify
amplitude-modulated
nursery rhyme sentences

Yes

Leong, Hämäläinen, Soltész,
and Goswami (2011)

17–41 years Amplitude envelope onset (rise
time) perception and syllable
stress detection

Yes

Lizarazu et al. (2015) Children:
8–14 years;
adults:
17–44 years

Auditory neural
synchronization

Yes

Molinaro, Lizarazu, Lallier,
Bourguignon, and
Carreiras (2016)

Children:
8–14 years;
adults:
22–37 years

Neural synchronization to
spoken sentences (MEG)

Yes

Muneaux, Ziegler, Truc,
Thomson, and
Goswami (2004)

11 years Beat perception (slope) Yes

Overy (2000) 6–7 years Rhythm discrimination
Tempo discrimination
Meter reproduction

Yes, especially in meter
reproduction

Overy, Nicolson, Fawcett, and
Clarke (2003)

7–11 years Tests of timing skills (rhythm
copying, rhythm
discrimination, song rhythm,
tempo copying, tempo
discrimination, song beat)

Yes
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TABLE 1 (Continued)

Age Task
Evidence for atypical
rhythm?

Pasquini, Corriveau, and
Goswami (2007)

19–27 years Rise time perception and
temporal order judgment

Yes

Persici et al. (2019) 9–11 years Tapping Yes

Power, Colling, Mead, Barnes,
and Goswami (2016)

12–14 years Neural entrainment to speech
syllables

Yes

Soltész, Szűcs, Leong, White,
and Goswami (2013)

Mean:
25.8 years

Neural entrainment to tones
presented at 2 or 1.5 Hz

Yes

Surányi et al. (2009) 8–9 years Amplitude envelope rise time
discrimination

Yes

Thomson, Fryer, Maltby,
and Goswami (2006)

18–31 years Basic auditory processing tasks
(rise time, duration, and
intensity discrimination)

Tempo discrimination
Tapping (unimanual and
bimanual)

Yes

No
Yes but only in the inter-
tap-interval variability

Thomson and Goswami
(2008)

10 years Rhythmic discrimination
Paced and unpaced finger
tapping

No
Yes

Wang, Huss, Hämäläinen,
and Goswami (2012)

9–10 years Basic auditory processing tasks
(rise time, duration, and
intensity discrimination)

Yes

Zuk et al. (2017) 18–36 years Speech syllable discrimination Yes

DLD Bedoin et al. (2016) 9–11 years Rhythm discrimination Yes

Corriveau and Goswami (2009) 7–11 years Paced and unpaced tapping Yes in the paced
condition

Corriveau, Pasquini, and
Goswami (2007)

7–11 years Amplitude envelope rise time
and sound duration
perception

Yes

Cumming, Wilson, Leong,
Colling, and Goswami (2015)

6–12 years Beat detection Tapping
Speech/music task

Yes, especially in tapping

Goswami et al. (2016) 9 years Discrimination of amplitude
rise time

Temporal modulations of
nursery rhymes

Yes

Richards and Goswami (2015) 8–12 years Stress perception task Yes

Richards and Goswami (2019) 6–11 years Stress pattern disruptions Yes

Sabisch, Hahne, Glass, von
Suchodoletz, and
Friederici (2009)

8–10 years Syntactic processing with
prosody disruptions

Yes

Sallat and Jentschke (2015) 4–5 years Rhythmic–melodic perception
task

Yes

Vuolo, Goffman, and
Zelaznik (2017)

4–5 years Tapping and bimanual
clapping

Yes, but only in the
bimanual clapping task

Weinert (1992) 5–8 years Rhythmic discrimination Yes

Wells and Peppé (2003) 8 years Prosody perception Yes

Zelaznik and Goffman (2010) 6–8 years Tapping and drawing to a
metronome

Yes (but no in the timing skill
in themanual domain)

(Continues)
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4.1 | Atypical rhythm in dyslexia

Recent research has shown that children with dyslexia are impaired in comparison to typically developing children in
rhythm perception and production tasks. According to the Temporal Sampling Framework (TSF; Goswami, 2011),
many of the processing deficits observed in dyslexia may be accounted for by inefficient entrainment of brain oscilla-
tions to sensory input, which in turn is theorized to affect not only rhythm processing but also phonological processing
as well as other aspects of language processing. Studies investigating neural entrainment in individuals with dyslexia
support this hypothesis by showing deficits in synchronization to the speech envelope (Leong & Goswami, 2014;
Molinaro et al., 2016; Power et al., 2016) regardless of the language spoken (e.g., English: Goswami et al., 2010; English
and Hungarian: Surányi et al., 2009; Chinese: Wang et al., 2012) and atypical neural entrainment to nonspeech stimuli
compared to controls (Cutini et al., 2016; Frey et al., 2019). Further studies have shown impaired beat synchronization
in individuals with dyslexia (Colling et al., 2017; Overy et al., 2003; Thomson & Goswami, 2008). Relatedly, rhythm,
language, and reading skills are correlated: Individuals with dyslexia who show weaker performance in rhythm percep-
tion and production tasks also show weaker phonological awareness (Flaugnacco et al., 2014; Forgeard, Winner,
Norton, & Schlaug, 2008; Goswami et al., 2010; Huss et al., 2011; Lee et al., 2015; Thomson & Goswami, 2008) and read-
ing skills (Dellatolas, Watier, Le Normand, Lubart, & Chevrie-Muller, 2009; Flaugnacco et al., 2014; Goswami et al.,

TABLE 1 (Continued)

Age Task
Evidence for atypical
rhythm?

Stuttering Chang, Chow, Wieland,
and McAuley (2016)

6–11 years Auditory rhythm
discrimination task

Yes

Falk, Müller, and Dalla
Bella (2015)

8–16 years Finger tapping Yes

Olander, Smith, and
Zelaznik (2010)

4–6 years Metronome clapping Yes

Toyomura, Fujii, and
Kuriki (2011)

18–55 years Metronome-timed speech No (yes in the normal
speech condition)

Wieland, McAuley, Dilley,
and Chang (2015)

6–11 years Simple and complex rhythms
discrimination

Yes

DCD Puyjarinet, Bégel, Lopez,
Dellacherie, and Dalla
Bella (2017)

Children:
6–12 years;

adults:
19–50 years

Duration and beat perception
Tapping

Yes

Rosenblum and Regev (2013) 7–12 years Metronome synchronization Yes

Trainor, Chang, Cairney,
and Li (2018)

6–7 years Auditory duration and rhythm
discrimination

Oddball ERP paradigm

Yes

ADHD Carrer (2015) 6–14 years Rhythmic discrimination Yes

Hove, Gravel, Spencer,
and Valera (2017)

20 years Paced and unpaced finger
tapping

Yes (in the standard task,
not in the one with
time shifts)

Puyjarinet et al. (2017) Children:
6–12 years;

adults:
19–50 years

Duration and beat perception
Tapping

Yes

Valera et al. (2010) 10 years Paced and unpaced tapping Yes—greater within-
subject variability

Zelaznik et al. (2012) 9 years Spacebar press following a
metronome

Yes

Abbreviations: ADHD, attention deficit hyperactivity disorder; DCD, developmental coordination disorder; DLD, developmental language disorder.
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2002, 2010; Goswami, Huss, et al., 2013; Goswami, Mead, et al., 2013; Huss et al., 2011; Muneaux et al., 2004; Thom-
son & Goswami, 2008). Individuals with dyslexia also show impaired processing of rise-time information, and this defi-
cit has been linked to inefficient entrainment of neural oscillations to the speech stream (Goswami et al., 2016; Huss
et al., 2011; Leong, Hämäläinen, Soltész, & Goswami, 2011; Thomson et al., 2006). Deficits in neural entrainment to
higher-level structures throughout development may also result in impaired hierarchical processing skills. Interestingly,
recent research suggests that children with dyslexia perform below age-matched peers in tasks that require the use of
morphological information to predict incoming material (Persici et al., 2019).

These phonological and rhythmic deficits do not appear to fully recover later in development, though some studies
suggest that deficits in the adult population may be constrained to the type of measure used (Leong & Goswami, 2014).
Adults with dyslexia show significantly weaker synchronization and beat perception skills as compared to adults with
typical development (Pasquini et al., 2007; Thomson et al., 2006), and exhibit impaired low-frequency neural entrain-
ment, regardless of whether speech (Molinaro et al., 2016) or nonspeech (Hämäläinen et al., 2012; Lizarazu et al., 2015)
stimuli were used. As in children, this temporal processing deficit in keeping time with an external stimulus is particu-
larly disrupted at 2 Hz (Soltész et al., 2013), a frequency that is also important for speech perception, as it corresponds
to the accented syllabic rate. Musical training may reduce these processing deficits in individuals with dyslexia, as it
has been shown that musicians with dyslexia have better auditory temporal processing than nondyslexics (Bishop-
Liebler, Welch, Huss, Thomson, & Goswami, 2014) and better amplitude information processing skills than nonmusi-
cians with dyslexia (Zuk et al., 2017).

Building on these observed connections, a few studies have aimed to apply rhythm training approaches in children
with dyslexia and found improved language- and reading-related skills after training (Bonacina, Cancer, Lanzi,
Lorusso, & Antonietti, 2015; Flaugnacco et al., 2015; Habib et al., 2016; Overy, 2000; Thomson, Leong, & Goswami,
2013). Interestingly, even a short presentation of rhythmic musical primes improves grammatical processing of subse-
quently presented sentences in children (Przybylski et al., 2013) and adults (Canette et al., 2019) with dyslexia. These
results further support the hypothesis that rhythm and language processing are related, and show that music rhythm
training in the long-term and rhythm stimulation in the short-term may be useful approaches to improve language
skills in addition to more traditional language-centered therapeutic methods (Schön & Tillmann, 2015).

4.2 | Atypical rhythm in developmental language disorder

Children with DLD show difficulties in both speech and music rhythm processing (Bedoin et al., 2016; Cumming et al.,
2015; Sallat & Jentschke, 2015; Weinert, 1992). They have weaker synchronization skills than controls when asked to
tap with the beat (Corriveau & Goswami, 2009; Cumming et al., 2015), though synchronization deficits are not observed
in all studies (Zelaznik & Goffman, 2010), or for all types of tapping tasks (Vuolo et al., 2017, in which differences in
synchronization skills between typically developing and children with DLD were only found when participants were
asked to use both hands in a clapping task compared to just one hand). Recent studies have demonstrated the presence
of deficits in amplitude envelope and rise-time information processing for children with DLD (Corriveau et al., 2007;
Goswami et al., 2016; Richards & Goswami, 2015). Impaired sensitivity to amplitude rise-time has been associated with
poor performance on language and literacy measures (such as vocabulary attainment, phonological awareness, and
reading; Corriveau et al., 2007) and speech stress processing (Cumming et al., 2015; Richards & Goswami, 2015). Simi-
lar patterns in children with DLD and dyslexia led Goswami to extend the TSF to DLD, suggesting shared underlying
impairments across disorders (Goswami et al., 2016).

Several studies also reported difficulties in prosody processing in children with DLD compared to TD children
(Fisher, Plante, Vance, Gerken, & Glattke, 2007; Richards & Goswami, 2019; Sabisch et al., 2009; Wells & Peppé, 2003),
whereas others report intact prosody perception in DLD (Goffman, 2004). Weinert (1992) found that the ability to take
advantage of prosodic information in children with DLD was associated with their performance on a rhythm discrimi-
nation task, suggesting that impaired processing of prosody and rhythm may be caused by an underlying impairment
in the processing of temporal cues.

Similarly to dyslexia, the presentation of a regular rhythmic prime enhances subsequent grammatical sentence judg-
ments in children with DLD compared to both irregular primes (Ladányi et al., submitted; Przybylski et al., 2013) and
neutral non-musical auditory primes (Bedoin et al., 2016), supporting the hypothesis that rhythm and language
processing are related and suggested that using rhythm in the therapy of children with DLD might facilitate speech/lan-
guage therapy.
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4.3 | Atypical rhythm in stuttering

Recent research has suggested that speech dysfluency in stuttering is associated with impaired sensorimotor coupling
(Chang et al., 2016; Hickok, Houde, & Rong, 2011) and a disruption to the production of timing cues from the basal
ganglia (Alm, 2004; Toyomura et al., 2011). Individuals who stutter tend to be impaired in several types of rhythmic
tasks, including unpaced tapping, which relies on internal time keeping (Olander et al., 2010). In addition, they show
weaker synchronization to an external stimulus (Falk et al., 2015), and poorer rhythm discrimination (Wieland
et al., 2015; see Figure 3) than typically developing peers. Impaired predictive timing via sensorimotor coupling has
been suggested as the underlying cause of the rhythm deficits reported for individuals who stutter (Hickok et al.,
2011). Interestingly, it has been shown that the addition of external auditory stimulation can attenuate stuttering,
potentially because it provides an external rhythmic cue to compensate for the impaired internal time keeping
(Toyomura et al., 2011). Singing also enhances fluency in speech, likely by regulating the temporal structure of the
words (Falk, Maslow, Thum, & Hoole, 2016; Glover, Kalinowski, Rastatter, & Stuart, 1996; Wan, Rüber, Hohmann, &
Schlaug, 2010).

4.4 | Atypical rhythm in other speech disorders

Although several speech disorders are differentiated in the literature beyond stuttering (speech-sound disorders
including articulation/phonological disorder, dysarthria, and childhood apraxia of speech, and voice disorders),
most have a known physiological cause (e.g., cleft palate, impaired laryngeal structures, or brain trauma). At the
same time, the underlying cause of some forms of articulation/phonological disorder and childhood apraxia is
unknown, and they may have partly shared etiology and comorbidities with the other speech/language disorders
discussed here. Articulation and phonological sequencing, which requires timing and motor skills, are often
impaired in these children. Given the timing demands of sequencing, we believe it would be of great interest to
investigate atypical rhythm in these populations. We are aware of one study that explored rhythm processing in
individuals with speech difficulties (Alcock, Passingham, Watkins, & Vargha-Khadem, 2000). The authors investi-
gated nine individuals (children and adults) belonging to the same family (KE family) showing both expressive and
receptive speech and language impairments together with difficulties with nonverbal oral movements, linked to rare
variants in the gene FOXP2. Affected family members performed worse both on rhythm perception and production
tasks compared to control participants. Future work is needed to explore rhythm across different motor speech
disorders.

4.5 | Atypical rhythm in developmental coordination disorder

In contrast to numerous studies investigating the motor circuitry involved in musical rhythm processing in typi-
cally developing individuals (Merchant, Grahn, Trainor, Rohrmeier, & Fitch, 2015), and atypical rhythm
processing in individuals with Parkinson's Disease (Grahn & Brett, 2009; Harrington, Haaland, & Hermanowitz,
1998; O'Boyle, Freeman, & Cody, 1996),1 only a few studies have examined rhythm processing in children with
DCD, a disorder characterized by impaired motor abilities, especially related to postural control, motor learning,
and sensorimotor coordination that affect quality of life (Zwicker et al., 2009). Children with DCD show poorer
synchronization to an external beat compared to typically developing children in synchronization tasks
(Rosenblum & Regev, 2013), and children with both ADHD and DCD show even poorer synchronization compared
to children with just ADHD or matched controls (Puyjarinet et al., 2017). However, all of these studies investigated
performance in rhythm production tasks, which may be easily affected by inherent motor coordination deficits.
Only Trainor et al. (2018) have investigated auditory timing with perceptual tasks in DCD; their first behavioral
and neuroimaging evidence suggest that auditory perceptual timing (measured with duration and rhythmic dis-
crimination tasks) may also be impaired in this population. Interestingly, motor impairments in children with
DCD have also been associated with difficulties in language processing (Mirabella et al., 2017). Future research
should now investigate more specifically the potential timing and/or perception deficits in DCD as well as whether
and how the impairments in timing might be related to language processing skills in cases of DCD with atypical
language development.
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4.6 | Atypical rhythm in attention deficit hyperactivity disorder

Recent work suggests that both children and adults with ADHD show poorer performance in paced and unpaced tap-
ping and body movement synchronization tasks compared to controls (Amrani & Golumbic, 2019; Carrer, 2015; Hove
et al., 2017; Noreika, Falter, & Rubia, 2013; Slater & Tate, 2018; Valera et al., 2010; Zelaznik et al., 2012), especially
when synchronization requires beat extraction (Puyjarinet et al., 2017). Though it is difficult to disentangle the role of
more generalized attentional deficits from deficits in temporal processing (and in particular, temporal attention and
dynamic attending), this emerging literature points to difficulties with both synchronization and internal time-keeping
in ADHD (see Falter & Noreika, 2014, for a review). Future work in larger ADHD samples with a variety of rhythm
tasks is needed to tease apart various dimensions of rhythm processing, their potential deficits in ADHD, and how they
relate to domain-general attentional deficits.

5 | CAN ATYPICAL RHYTHM AT INFANCY PREDICT ATYPICAL SPEECH/
LANGUAGE DEVELOPMENT?

The reported associations between rhythm and speech/language processing as well as atypical rhythm processing in
speech/language disorders lead to the hypothesis that atypical musical rhythm processing skills at infancy could be
used as a risk factor for speech/language disorders. This type of approach has been employed by Kalashnikova et al.
(2019), who showed longitudinal evidence for a predictive relationship between temporal processing (measured with
amplitude rise time) at infancy and oral language development. Infants’ performance on an amplitude envelope rise
time discrimination task at 7–10 months of age-predicted children's performance on vocabulary tests at three years of
age. To examine this potential predictive relationship between temporal processing and language development further,
we first summarize research about rhythm processing in infants to explore whether infants reliably process rhythm and
whether it can be measured experimentally. Then, we discuss work exploring individual differences in underlying
rhythm processing mechanisms and their relationship with later language development.

Experimental evidence suggests that rhythm processing starts to develop very early in life. A few infant studies showing
behavioral (Hannon & Trehub, 2005; Phillips-Silver & Trainor, 2007; Zentner & Eerola, 2010) and electrophysiological
(Cirelli, Spinelli, Nozaradan, & Trainor, 2016) evidence indicate that infants and newborns (Winkler et al., 2009) process
rhythmic regularities (i.e., beat, meter) in musical stimuli. Infants are also sensitive to the rhythmic cues of speech. New-
borns can discriminate between languages from different rhythmic categories (Mehler et al., 1988; Nazzi, Bertoncini, &
Mehler, 1998; Ramus, 2000) and discriminate words with different patterns of lexical stress (Sansavini, Bertoncini, &
Giovanelli, 1997). Further, infants exploit lexical stress for word segmentation (Dupoux et al., 1997; Jusczyk, 1999) and
phrasal level prosody for grammar acquisition (Bernard & Gervain, 2012; de Carvalho, Dautriche, Lin, & Christophe, 2017;
de Carvalho et al., 2016; Gervain, 2018; Gervain & Werker, 2013; see electrophysiological data for infant's sensitivity to

FIGURE 3 Rhythm perception and production difficulties in children with stuttering. (a) Children who stutter show impaired rhythm

perception performance compared to TD children on a task requiring discrimination of simple and complex musical rhythmic sequences

(Wieland et al., 2015). (b) Children and adolescents who stutter are less accurate than TD peers on synchronization tests, both tapping to a

metronome at certain rates and tapping to the beat in music (Falk et al., 2015). Both figures are reprinted with permission from the original papers
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speech rhythm in Kalashnikova, Peter, Di Liberto, Lalor, & Burnham, 2018), suggesting an important role of speech rhythm
in language development. Based on the research reviewed thus far, we suggest that infants may use the same mechanisms
for processing rhythm in the two domains. Future research is needed to compare the benefits of measuring the processing
of music rhythm versus speech rhythm in infants in order to predict speech/language development, as each domain has a
unique set of constraints and advantages. However, the temporal regularity of music rhythm makes it a useful tool to mea-
sure neural entrainment in infants, especially under noisy testing conditions.

Taken together, these studies suggest that rhythm processing is functional from birth, and rhythm skills can be mea-
sured both behaviorally and physiologically. Aiming to use atypical rhythm as a risk factor for speech/language disor-
ders also requires knowledge of whether infants show individual differences in rhythm processing and importantly,
whether these differences might be related to later speech/language development as well as the presence/absence of
speech/language disorders. Although we did not find any studies exploring these questions by measuring musical
rhythm processing, numerous studies have investigated infants’ abilities related to fine-grained auditory processing—
one of the shared fundamental aspects of rhythm sensitivity that we outlined in the Introduction based on Fiveash et al.
(submitted). Neural entrainment of oscillations and sensorimotor coupling has been investigated by some studies, but
to the best of our knowledge, no studies have investigated the relationship between rhythm and hierarchical processing
of syntactic structures in infants. We are only aware of studies exploring rhythm-related mechanisms at infancy in rela-
tion to dyslexia or DLD; therefore, we discuss these results below. While we do not cover stuttering, DCD or ADHD in
the remainder of this section, similar logic could be applied to testing the developmental precursors of rhythm
processing and their predictive strength for language development in these populations.

5.1 | Fine-grained auditory processing

The majority of studies exploring fine-grained auditory processing and its relationship to later speech/language develop-
ment have investigated infants with a family history of language disorders (i.e., dyslexia and/or DLD). Several
studies have shown altered neural responses to auditory stimuli in infants with a family history of dyslexia both for ver-
bal stimuli (Leppanen, Pihko, Eklund, & Lyytinen, 1999; Lohvansuu, Hämäläinen, Ervast, Lyytinen, & Leppänen,
2018; Richardson, Leppänen, Leiwo, & Lyytinen, 2003; Thiede et al., 2019; van Herten et al., 2008; van Leeuwen et al.,
2006) and nonverbal stimuli (Leppänen et al., 2010; Plakas, van Zuijen, van Leeuwen, Thomson, & van der Leij, 2013;
van Zuijen et al., 2012), in comparison to infants without family history of dyslexia. Infants with a family history of lan-
guage or reading difficulties showed less efficient rapid auditory processing according to both behavioral and electro-
physiological measures compared to children without a family history of such difficulties (Benasich & Tallal, 2002;
Benasich, Thomas, Choudhury, & Leppänen, 2002; Cantiani et al., 2016; Cantiani et al., 2019; Choudhury & Benasich,
2011; Choudhury, Leppanen, Leevers, & Benasich, 2007; Raschle, Stering, Meissner, & Gaab, 2014). Multiple measures
of fine-grained auditory processing at infancy were also associated with individual differences in later language and
literacy development (Benasich et al., 2002; Cantiani et al., 2016, 2019; Choudhury & Benasich, 2011; Guttorm et al.,
2005; Guttorm, Leppänen, Hämäläinen, Eklund, & Lyytinen, 2010; Kalashnikova et al., 2019; Leppänen et al., 2010;
Lohvansuu et al., 2018; van Zuijen, Plakas, Maassen, Maurits, & van der Leij, 2013).

In light of the studies reported above, consistent differences in fine-grained auditory processing between infants
with and without a family history of language disorders suggest a shared underlying biology for fine-grained auditory
processing and a family history of language disorders. Phenotypic associations occur as a result of a combination of
shared genetics and shared environment. Auditory processing shows a moderate to high heritability (32–74%),
depending on the exact mechanism measured (Brewer et al., 2016), suggesting a strong genetic component in the
phenotypic association between family history of speech/language disorders and fine-grained auditory processing.
These results suggest that fine-grained auditory processing is one of the risk factors that may increase risk of language
disorder depending on the interplay between this and other risk factors, such as maternal education level or perinatal
circumstances (Leppänen et al., 2010; Leppänen et al., 2011).

5.2 | Oscillatory brain networks

We are aware of only one study investigating oscillatory brain activity in infants and its relationship to later speech/lan-
guage development (Cantiani et al., 2019). In this study, oscillatory activity was measured in 6-month-old infants with
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or without a family history of language or reading impairment in a rapid auditory processing paradigm. The authors
found a reduction in gamma power in infants with versus without a family history of language or reading difficulties,
and concluded that atypical oscillatory activity might explain inefficient rapid auditory processing in infants
(Heim, Friedman, Keil, & Benasich, 2011, for gamma oscillations with reduced power and attenuated phase-locking in
children with impaired language or reading impairment). In addition, oscillatory measures were associated with expres-
sive vocabulary at 20 months. These results suggest that (a) there is a phenotypic association between inefficient
speech/language-related oscillatory activity and familial risk of language and reading disorders, and (b) the efficiency of
oscillatory activity during auditory processing is associated with language development, although further research is
needed to explore these associations. The relationship of oscillatory activity at infancy with language disorders later in
school-aged children has not been investigated up to now.

5.3 | Sensorimotor coupling

The third shared element underlying rhythm and speech/language processing proposed by Fiveash et al. (submitted) is
sensorimotor coupling. We are not aware of any studies measuring the relationship between sensorimotor coupling and
language development in infants, but a few studies have explored associations between the role of motor functions in
general in infants and their relationship with speech/language disorders. Atypical motor development could also serve
as a risk factor for speech/language disorders, as studies show impaired fine motor skills (e.g., in a peg moving task
where small pegs are placed as fast as possible from a matrix to a vertical line of target holes) in children with dyslexia
(Capellini, Coppede, & Valle, 2010; Gooch, Hulme, Nash, & Snowling, 2014) and DLD (DiDonato Brumbach &
Goffman, 2014; Finlay & McPhillips, 2013; Flapper & Schoemaker, 2013; Hill, 2001; Jäncke, Siegenthaler, Preis, &
Steinmetz, 2007). We are aware of two studies investigating the associations between motor skills at infancy and later
speech/language disorders in the same group of children. Viholainen, Ahonen, Cantell, Lyytinen, and Lyytinen (2002)
did not find a difference between motor development (measured by parent questionnaires about reaching developmen-
tal milestones) of infants with and without a family history of dyslexia. However, children with both a family history of
dyslexia and slow motor development at infancy showed weaker language skills at 18 months (Viholainen et al., 2002)
as well as slower reading at 7 years of age (Viholainen et al., 2006) than infants without a family history of dyslexia or
with a family history of dyslexia but with fast motor development. Taken together, there is mixed evidence for motor
impairments in individuals who develop speech/language disorders; further studies in larger samples are needed to dis-
entangle these factors.

The research on infants reviewed here also suggests that the three mechanisms outlined above (fine-grained
auditory processing, neural entrainment, and sensorimotor development) are related to speech/language
development. Research still needs to determine whether hierarchical processing in infants is related to later
speech/language disorders. Even though an impairment in a single domain does not seem to have a discrete one-
to-one mapping to specific disorders, we believe that these findings are promising for the use of musical rhythm
processing as a potential risk factor, in part because it involves each of the three mechanisms (and potentially other
processes shared by musical rhythm and language processing, e.g., precision, emotion, repetition, and attention,
see Patel, 2011). Therefore, it is possible that musical rhythm has a stronger association with speech/language dis-
orders than the three mechanisms independently.

6 | THE ATYPICAL RHYTHM RISK HYPOTHESIS

In light of the evidence reviewed thus far, we propose the Atypical Rhythm Risk Hypothesis, which posits that individ-
uals with atypical rhythm processing are at higher risk for developmental speech/language disorders. We would like to
emphasize that we do not assume that infants with impaired musical rhythm processing will definitively develop a
speech/language disorder. Rather, we believe that impaired timing skills measured through music rhythm processing
can serve as one risk factor in the prediction of speech/language disorders, in combination with other risk factors both
known and still to be determined (Smoller et al., 2019). In practical clinical situations, early screening of rhythm
processing with nonverbal, musical material might allow for referral to appropriate speech therapy services for addi-
tional testing if atypical rhythm is detected. Broad-based screening of rhythm as a risk factor could offer multiple
advantages. First, rhythm skills are likely less affected by the language environment, thus eliminating false positives
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often occurring in the case of bilingual children when language screeners are used. Second, atypical rhythm may be an
indicator of risk for several different speech and language disorders, whereas currently available speech/language
screenings tend to be geared toward separate disorders (and thus a child screened for speech difficulties may have an
undetected language problem). Third, simple computer-based rhythm assessments could be administered to pre-
schoolers and school-aged children by various professionals (teachers, nurses, school counselors, pediatricians) who do
not have specialized Speech–Language Pathology expertise, and then a much smaller number of the children showing
atypical rhythm could be referred for SLP assessment, thus optimizing the use of resources. Therefore, our Hypothesis
could affect clinical practice first in the screening of preschool-aged and school-aged children, and then could
be extended to infant screening when more research and reliable rhythm tests will be available for infants. There are
multiple existing behavioral paradigms for measuring rhythm abilities in older children and in adults that could poten-
tially be used for screening. For instance, in rhythm discrimination paradigms (e.g., Gordon, 1979; Law & Zentner,
2012), participants are presented with rhythmic excerpts and asked to decide whether they are the same or different.
Tasks from the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA; Dalla Bella et al.,
2017) such as tapping in synchrony with the beat of music or deciding whether a beat superimposed onto music is
aligned with the beat of the music (see also the Beat Alignment Test, Iversen & Patel, 2008, and the child extension in
Einarson & Trainor, 2016) could also inspire screening tasks. Future research should aim to develop rhythm tests with
high test–retest reliability for even younger children and for infants.

Recent advances in population genetics analysis methods have highlighted the challenges and opportunities in iden-
tifying underlying causal biology that can account for clinically co-morbid conditions of complex traits, such as ADHD,
depression, and many other psychiatric disorders (Demontis et al., 2019; Smoller et al., 2019; Tylee et al., 2018).
Language and music phenotypes are complex traits, meaning they do not follow a Mendelian pattern of inheritance
(Ruiz-Narváez, 2011). The heritability of complex traits is polygenic, that is, involving common genetic variants widely
distributed across the genome (Wray et al., 2014), and very large sample sizes are needed to investigate the genetic basis
of these traits (Deriziotis & Fisher, 2017; Niarchou et al., 2019). Cross-trait genetic correlation approaches in particular
(see Bulik-Sullivan et al., 2015; Turley et al., 2018; Yang, Lee, Goddard, & Visscher, 2011) have revealed a surprising
amount of shared underlying genetic architecture (pleiotropy; Solovieff, Cotsapas, Lee, Purcell, & Smoller, 2013) across
a spectrum of neurodevelopmental and other health disorders (Anttila et al., 2018; Okbay et al., 2016; Watanabe et al.,
2005). Recent findings of pleiotropy between ADHD and literacy development (Gialluisi, Andlauer, Mirza-Schreiber,
et al., 2019; Verhoef et al., 2019) align with epidemiological evidence of comorbidity (Mueller & Tomblin, 2012), and
pave the way for testing the presence and function of underlying shared deficits, such as atypical rhythm processing.
The likelihood and feasibility of examining pleiotropy between rhythm and speech/language traits is demonstrated by
recent reports of genetic correlations between rhythm and other cognitive and motor traits (i.e., processing speed and
grip strength; Niarchou et al., 2019).

Family-based studies have shown that musical rhythm skills are moderately heritable (50%; Ullén, Mosing, Holm,
Eriksson, & Madison, 2014), and our ongoing work with genome-wide approaches in a large sample now point to
highly polygenic genetic architecture of musical rhythm (Niarchou et al., 2019). While the heritability of musicality
traits is a relatively recent area of inquiry (see Gingras, Honing, Peretz, Trainor, & Fisher, 2015, for a review), more is
known about the heritability of speech and language abilities. Family history of speech/language disorders has been
identified as one of the strongest risk factors for speech/language disorders in offspring. In particular, the literature con-
verges to show moderate to high heritability of speech and language abilities and in particular, of speech and language
disorders (dyslexia: Friend, DeFries, & Olson, 2008; Harlaar, Spinath, Dale, & Plomin, 2005; Kirkpatrick, Legrand,
Iacono, & McGue, 2011; DLD: Bishop & Hayiou-Thomas, 2008; Conti-Ramsden, Falcaro, Simkin, & Pickles, 2007;
Hayiou-Thomas, 2008; stuttering: Dworzynski, Remington, Rijsdijk, Howell, & Plomin, 2007; van Beijsterveldt,
Felsenfeld, & Boomsma, 2010; see Deriziotis & Fisher, 2017, for a review). Importantly, different developmental
speech/language disorders as well as speech/language disorders and ADHD tend to co-occur in families (e.g., Carroll &
Myers, 2010; Flax et al., 2003; Kovac et al., 2001; Lahey & Edwards, 1995; Mueller & Tomblin, 2012).

As reviewed in earlier sections, there is also converging evidence across approaches and populations for phenotypic
correlations between rhythm and speech/language development. Given that phenotypic correlations are generally
shown to be driven by some underlying genetic correlation or pleiotropy (Sodini, Kemper, Wray, & Trzaskowski, 2018),
it is entirely possible that rhythm and speech/language development share some of their genetic architecture and are
mediated through some degree of shared neural architecture. Genetically driven relationships between musical rhythm
and speech/language phenotypes might be driven by pleiotropy, such that a common set of causal genes affects both
phenotypes directly (Figure 4a), or mediated genetic pleiotropy (Figure 4b, c). In the case of biological pleiotropy, the
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same set of genes would affect the development of cortical and subcortical structures underlying musical rhythm
processing and speech/language processing. Mediated genetic pleiotropy could occur in both directions: Genes
might directly affect rhythm phenotypes, and then those phenotypes affect individual differences in acquisition of
speech/language during development (i.e., via enhanced rhythm skills; Figure 4b), or genes could affect speech and
language development, which affects the development of musical rhythm skills (Figure 4c); however, we believe this
latter case is unlikely given the evidence from training studies reviewed in this article, and the more precise timing nec-
essary for music rhythm processing (see Patel, 2011; Tierney & Kraus, 2014). Future research should investigate the
genetic architecture of phenotypic associations between musical rhythm and speech/language processing.

It will also be important to investigate neural endophenotypes (corresponding to overlapping brain networks/mech-
anisms recruited by both music and speech), that could mediate the relationship between genes, brain, and behavior: A
common set of genes may give rise to endophenotypic variation in the brain, that then in turn affects individual varia-
tion in both rhythm and language phenotypes (Figure 4d). It is also possible that individual variation in rhythm and
language is driven by separate sets of genes, and that phenotypic correlations arise solely due to overlapping brain net-
works (separate genetic architecture, shown in Figure 4e). Statistical testing of these models will be necessary to disen-
tangle the direction of causation for reported links between atypical rhythm and disordered speech/language
acquisition.

The exact mechanisms by which phenotypic relationships are driven are also yet to be understood. If mediated plei-
otropy underlies the phenotypic associations between musical rhythm and speech/language processing, it has to be
determined what are the exact mechanisms driving the relationship and in what direction. For example, it has been
suggested that sound envelope processing as well as synchronization and entrainment to the pulse are shared between
music and speech rhythm (SEP hypothesis; Fujii & Wan, 2014), and that precise auditory timing via entrainment
to music rhythm can have a positive influence on language processing (PATH hypothesis, Tierney & Kraus, 2014;
see also Section 2). One possible scenario (Figure 4b) explaining this relationship would be that allelic variation in genes
associated with typical (vs. atypical) rhythm (Niarchou et al., 2019) is involved in the development and maintenance of
certain auditory-motor pathways in the brain, that are recruited during rhythmic synchronization and auditory timing,
thus enhancing sensitivity to linguistic features of the speech signal and bolstering acquisition of grammar and phonology.
In parallel, allelic variation associated with atypical rhythm could result in less-than-optimal development of auditory-
motor pathways (measurable via poorer rhythm task performance), resulting in reduced sensitivity to phonological and
grammatical information in the speech signal, and increasing the probability of dyslexia or developmental language
disorder.

FIGURE 4 Pleiotropy scenarios for shared versus separate genetic architecture of rhythm and speech/language. The Atypical Rhythm

Risk hypothesis predicts that associations between rhythm and speech/language are (a) in part driven by genetic pleiotropy, such that a

common set of causal genes affects both phenotypes directly, or (b) mediated genetic pleiotropy, such that genes directly affect rhythm

phenotypes, and those phenotypes in turn affect individual differences in acquisition of speech/language during development, or (c) genes

directly affect speech/language phenotypes, and those phenotypes affect individual differences in rhythm development. These models should

be tested against the null hypothesis of separate genetic architecture. Moreover, a key to understanding the dynamics between genes, brain

and behavior will be to test mediating neural endophenotypes linked to (d) shared or (e) separate genetic architecture
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When new studies are deployed to test the Atypical Rhythm Risk Hypothesis, it will also be important to incorporate
other risk factors for speech/language disorders. Among the several other risk factors that have been investigated for
speech/language disorders (see Mascheretti, Andreola, Scaini, & Sulpizio, 2018), maternal education (Ozernov-Palchik &
Gaab, 2016; Sun et al., 2013; Zhao, Zhang, Chen, Zhou, & Zuo, 2016) and, even more so, home literacy environment, seem
to be the most important for development dyslexia (Dilnot, Hamilton, Maughan, & Snowling, 2017; Sénéchal & LeFevre,
2002; Storch & Whitehurst, 2001; Sun et al., 2013; Torppa, Eklund, van Bergen, & Lyytinen, 2015; Torppa, Poikkeus,
Laakso, Eklund, & Lyytinen, 2006; van Bergen, van der Leij, & de Jong, 2014; Zhao et al., 2016). Preterm birth and birth
weight are also found to be risk factors for later language development (Dilnot et al., 2017; Liu et al., 2016; Samuelsson
et al., 2006). In DLD, low maternal education level, low 5-min Apgar score, being a male and not being a first child were
consistently found to be risk factors according to a meta-analysis (Rudolph, 2017). In stuttering, preterm birth or harmful
events before or at birth were proposed as risk factors (Ajdacic-Gross et al., 2010; Stromswold, 2006); less clear is the role
of socioeconomic status for this disorder (Yairi & Ambrose, 2013). However, there is strong evidence that all of the risk
factors listed in this paragraph arise from gene–environment interactions, and thus it is difficult to dissociate them from
other genetic risk factors for speech/language disorders without carefully designed genetic models. Unfortunately, very
large-scale population cohort studies such as UK Biobank have generally not included speech/language or musical vari-
ables in their massive data collection efforts to date, although genome-wide summary statistics on educational attainment,
SES, and preterm birth are now widely available and could be incorporated into novel studies outlined here.

Although we believe that the Atypical Rhythm Risk Hypothesis is a promising view which could facilitate the
identification of speech/language disorders, some questions might arise for the reader. One could ask whether associa-
tions between musical rhythm and speech/language processing may be explained by other shared processes, such as
intelligence, working memory or other general cognitive functions. Although these processes are definitely involved in
both domains, it does not undermine the Atypical Rhythm Risk Hypothesis. First, associations between musical rhythm
and speech/language processing were found to be associated after controlling for the variance in general cognitive
measures (e.g., Gordon, Shivers, et al., 2015). Second, if musical rhythm at infancy or early childhood proves to be a suf-
ficient risk factor for speech/language disorders, for practical purposes it is irrelevant what the underlying shared

BOX 2 Cumulative evidence and predictions of the Atypical Rhythm Risk Hypothesis for future
research
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processes are. One could also ask why we propose that a non-linguistic impairment might contribute to speech/
language disorders. Even though this contradicts some prevalent domain-specific views about speech/language disor-
ders, it is in line with the contemporary view of speech/language disorders stating that not only linguistic processes are
impaired in these populations (e.g., Hill, 2001; Ullman & Pierpont, 2005). The reader could also wonder how rhythm
tests would be integrated in clinical practice; we intentionally aim to be cautious and only focus in the current paper on
research that must first be conducted before the potential integration of rhythm screeners into clinical practice. If
research findings result in support of rhythm tests as a screener, the details of such implementation into clinical prac-
tice should be determined by experts from developmental research, speech–language pathology, and policy-makers
depending on local and national systems in place.

7 | CONCLUSION

Inefficient identification of speech/language problems has academic, social, and economic consequences both for the
affected individuals, their families, and society (e.g., Conti-Ramsden et al., 2018; Snow, 2019). In the current paper, we
reviewed evidence motivating the Atypical Rhythm Risk Hypothesis, which posits that individuals with atypical rhythm
are at higher risk for developmental speech/language disorders. We reviewed different lines of research suggesting
(a) shared underlying processes for musical rhythm and speech/language processing, (b) associations between musical
rhythm and speech/language processing in typically developing populations and impaired musical rhythm processing
in children with developmental disorders affecting speech/language skills, and (c) individual differences in mechanisms
underlying rhythm processing in infants, which were associated with later speech/language development.

The Atypical Rhythm Risk Hypothesis and its theoretical framework presented here allow us to generate a series of
predictions (presented in Box 2) about co-morbidities between rhythm and speech/language disorders and the shared
underlying biology from genes to brain to behavior. For instance, one prediction of our theory is that if a screener for
atypical rhythm is administered to a large population, individuals with rhythm deficits would show a higher prevalence
of speech/language disorders. Associations between rhythm-related processes at infancy and language development
reported by Kalashnikova et al. (2019) provide initial supporting evidence for this hypothesis. Furthermore, there is
already some evidence for statistically increased prevalence rates of atypical rhythm in association with developmental
disorders (Peretz & Vuvan, 2017) from a study of over 16,000 individuals, which identified 2.7% of their sample as
“time-based amusics” and an additional 3.4% of the sample with general amusia/uncategorized deficits that included
poor rhythm performance. In particular, the time-based amusia group had higher prevalence of dyslexia, speech disor-
ders, and attentional disorders than controls, consistent with the framing of atypical rhythm as a risk factor across these
disorders. Although the contribution of pitch-based amusia and deficits in other aspects of music perception to atypical
speech/language development (i.e., Couvignou, Peretz, & Ramus, 2019) is beyond the scope of the current review, other
elements of musicality should certainly be considered in the broader context of an influence of rhythm, melody, timbre,
or harmony on speech and language development (see Brandt, Gebrian, & Slevc, 2012, for a model of how “musical
hearing” may scaffold language acquisition).

The Atypical Rhythm Risk Hypothesis is in line with the transdiagnostic approach (Mareva & Holmes, 2019)
emphasizing the need for large-scale epidemiological studies (e.g., Raghavan et al., 2018). This work needs to incorpo-
rate various known and to-be-determined risk factors into prediction models and disentangle gene–environment inter-
actions, intermediary neural endophenotypes, and underlying biological mechanisms. Once genome-wide data for
rhythm and language phenotypes from large enough samples are available, recently developed methods such as two-
sample Mendelian Randomization (Zhu et al., 2018) may be used to begin to identify the hypothesized causal influence
of rhythm on speech/language development (even when measured in separate samples) and to model other contribut-
ing variables. With new population-based efforts to assess individual differences in rhythm and speech/language abili-
ties in tens and hundreds of thousands of participants (i.e., Niarchou et al., 2019, and ongoing work by the GenLang
consortium), exploration of the hypothesized shared genetic architecture among these traits and other risk factors
(e.g., Watanabe et al., 2005) is on the near horizon.

If a significant body of experimental evidence is found in favor of the hypothesized association between atypical
rhythm and speech/language disorders, we can envision new risk factor models that incorporate atypical rhythm
processing. Measuring rhythm processing could serve as a simple, easy-to-administer prescreening test that can be con-
ducted with young infants and children and even in parents to identify familial risk of atypical rhythm. These screening
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efforts could be used as a tool to increase referrals to appropriate speech/language pathology services with the end goal
of closing the gap in the identification and increasing access to early intervention to maximize long-term impact.
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ENDNOTE
1 Note that musical rhythm processing, speech/language functions, and motor impairments were reported in nondevelopmental disorders
such as Parkinson's disease and in acquired brain injuries (e.g., Ariatti, Benuzzi, & Nichelli, 2008; Grahn & Brett, 2009; Kotz & Gunter,
2015; Smith & Caplan, 2018). The investigation of the relationship between these impairments has a theoretical importance as well as clini-
cal relevance. This article and the Atypical Rhythm Risk Hypothesis, however, focus on developmental disorders, and the extension to non-
developmental disorders is beyond the scope of the paper.
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