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Abstract The mismatch between the Low Dynamic Range
(LDR) content and the High Dynamic Range (HDR) display
arouses the research on inverse tone mapping algorithms.
In this paper, we present a physiological inverse tone map-
ping algorithm inspired by the property of the Human Vi-
sual System (HVS). It first imitates the retina response and
deduce it to be local adaptive; then estimates local adapta-
tion luminance at each point in the image; finally, the LDR
image and local luminance are applied to the inversed local
retina response to reconstruct the dynamic range of the orig-
inal scene. The good performance and high-visual quality
were validated by operating on 40 test images. Comparison
results with several existing inverse tone mapping methods
prove the conciseness and efficiency of the proposed algo-
rithm.
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1 Introduction

Recently developed High Dynamic Range (HDR) monitors
have greatly extended the limited dynamic range of con-
ventional displays, and can simultaneously present bright
highlights and dark shadows, so they have gained signifi-
cant interest in industry. The availability and advancement
of HDR displays make it necessary to solve how to show
the large existing Low Dynamic Range (LDR) images and
videos on HDR monitors. In this context, a number of al-
gorithms for expanding LDR content to HDR image have
been introduced; they were called inverse/reverse tone map-
ping [1].

Among these algorithms, Akyuz et al. [2] presented a
simple linear expansion method, which indicates that LDR
image does not necessarily require sophisticated treatment
to produce a compelling HDR experience. Simply boosting
the range of an LDR image linearly to fit the HDR display
can equal or even surpass the appearance of a true HDR
image. This method works well under the hypothesis that
the input image has no compression artifacts and artistically
captured. Focusing on the images with large saturated areas,
Masia et al. [3] proposed another simple global expansion
method based on y transmission.

The more experienced algorithms detect saturated areas
and expand them more sophisticatedly. Meylan et al. [4] in-
troduced a piece-wise linear mapping function that allocates
more range to those highlights in image. Didyk et al. [5]
gave an interactive algorithm that classified a scene into dif-
fuse, reflections and light sources, enhancing only reflec-
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tions and light sources. Another interactive method [6] di-
vided images into objects of interest and background, as-
signing more dynamic range to objects of interest by apply-
ing piece-wise linear function. Wang et al. [7] reconstructed
the details of the incorrect-exposed regions by copying the
texture in the correct-exposed regions. Banterle et al. [8—
10] proposed a general framework to map LDR content with
saturated areas. The framework first maps the LDR content
to middle dynamic range by iTMO (inverse Tone Mapping
Operator), then performs an expand-map to reconstruct lost
luminance profiles in the saturated areas of the image and
attenuate the quantization and compression artifacts. In a
similar manner, Rempel et al. [11] computed a brightness
enhancement mapping function to scale the contrast that has
been linearly mapped to medium range. Kovaleski et al. [12]
substituted a bilateral filter for the combination of a Gaus-
sian blur and an edge stopping function used by Rempel and
colleagues.

Although the algorithms described above produce ap-
pealing results for a wide range of LDR contents, Aukyz
et al.’s algorithm may not work well for images with low
quality; Masia et al.’s y expansion may be unsuitable for
images with low key value, as the low key value potentially
results in negative y value, which will cause false results.
Other algorithms perform sophisticated treatment to satu-
rated areas or boost them largely; this introduces the pos-
sibility of making the image appear worse than before pro-
cessing through the introduction of objectionable artifacts
[3]; the large boosting to the bright image areas sometimes
results in contouring artifacts for bright object.

In fact, because of the large difference between the lu-
minance ranges of these two formats, the faithful reproduc-
tion of the HDR content from the LDR content is not pos-
sible in general. However, studies on Human Visual Sys-
tem (HVS) show that the perceived brightness of each point
in a scene is not simply determined by its absolute lumi-
nance; instead, the electric signal generated by the cone and
rod cells of the retina is transmitted through different layers
of cells that introduce a complex, and not yet fully under-
stood, sequence of spatial interactions, nonlinear mappings,
and feedback mechanisms [13, 14]. One useful consequence
of these mechanisms is that, in order to reproduce an image,
it is not necessary to generate an identical or proportional
luminance on the display device; by exploiting the charac-
teristics of human vision, it is possible to process change

Fig. 1 Block diagram of a HVS

in the image in order to amplify its dynamic range without
producing a significant change in the visual sensation expe-
rienced by the observers [15].

In this paper, we propose a physiological inverse tone
mapping algorithm that is able to produce high-quality HDR
images with a very low computational complexity and a
limited number of parameters. It belongs to the category
of methods based upon the retina response, and the main
novel contribution consists in the inverse and consideration
of the local adaptive response of retina. This makes the pro-
posed algorithm comply with the physiological perception
procedure to light; furthermore, it minimizes the formation
of artifacts, such as detail loss and contrast reversal that of-
ten occurs in existing methods. In our method, the local re-
sponse is implemented by slightly shifting the global adapta-
tion level based on the local information of each pixel. This
manner considers simultaneously the general information of
the whole image and the local characters at different pixel
position.

This paper is organized as follows: The physiological re-
sponse mechanism of HVS and an overview of the proposed
system are given in Sect. 2. In Sect. 3, the mathematical
model of physiological inverse tone mapping based on retina
response is illustrated. Selected representative results of a
comprehensive experimental evaluation are given in Sect. 4.
Conclusions and further discussions are presented in the last
section.

2 Backgrounds
2.1 Visual perception mechanism

The Human Visual System (HVS) is the most important sys-
tem through which our brain gathers information about our
surroundings, and forms one of the most complex physio-
logical systems. It is capable of adapting to a great range
of light, as the light intensity increases, the sensitivity of the
HVS is decreased, which allows for operation over 10 orders
of magnitude of light levels [16].

As shown in Fig. 1 [17], the first step of HVS to light
is global perception, in which, the nonlinearity of lightness
perception and the color perception happen simultaneously.
Based on the fact that the HVS operates on multiple chan-
nels, each one tuned to different spatial frequency and ori-
entation [18], the visual information is decomposed into

model
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Fig. 2 System framework
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channels. Once the decomposition was done, local contrast
mechanisms come into effect. In fact, the HVS response de-
pends predominantly on local variations of luminance and
very little on the absolute luminance value. In scene percep-
tion processes of the HVS, the global layout of the scene
is caught in the first instance and the local contrasts are the
focus in the following steps.

2.2 System overview

The proposed system belongs to the category of methods
based upon the retina response and mainly consists of three
processing modules, i.e., global response to local response
of retina, local surrounding luminance computation, and the
calculation of HDR image luminance. As shown in Fig. 2,
the local response of retina is deduced from the global one
and be used as the mathematical model in computing the
HDR luminance. The input LDR image is first decomposed
into luminance channel and chrominance channel, the local
surrounding luminance is computed by the weighted aver-
age using iterative bilateral filter on the luminance image.
Then the local surrounding luminance and the image lu-
minance are performed on the local response of retina to
compute the HDR luminance. Finally, the obtained lumi-
nance and the chrominance channel are combined to gen-
erate HDR image. The corresponding mathematical models
and details outlined in Fig. 2 are elaborated in the next sec-
tion.

3 Physiological inverse tone mapping algorithm based
on retina response

3.1 Algorithm description

Because of its adaptation property, the eye is more sensi-
tive to changes in light level than to a steady input. When

a space-independent pulse of light is shone on the entire
eye, the retina responds with a large-amplitude signal at
the beginning followed by a decrease to a lower plateau.
That means the retina first accommodates to some lumi-
nance value; then perceives images in a rather small dy-
namic range around this luminance value. Thus, as illus-
trated in above section, the basic process of our vision is
a global tone mapping to the entire scene. This global func-
tion can be described by the relationship between the retina
response and stimulus light intensity [19]:

R I
Rmax 1"+ 0"

ey

where R is the retina response, Rpyax is the maximum re-
sponse, and / is the light intensity. o is the global adaptation
level, which represents the luminance required to generate a
response one-half of the amplitude of Ry ,x. The parameter
n is a sensitivity control exponent.

It has been proved that the absolute brightness informa-
tion is of secondary importance to HVS and tends to be
largely discarded on very early stages of visual processing
through mechanisms of brightness constancy. Local con-
trasts are used instead to convey the wealth of information
about the scene [20]. Hence, the more proper description of
retina response should be a local mapping. The local adap-
tive property can be realized by slightly changing the adap-
tation level o depending on the surrounding light intensity
[21]. Let I, be the intensity of pixel p in a HDR image;
by defining a spatially variant value Ao, which is a small
change in o, according to (1), the output LDR image R, can
be described as

n
IP

1"+ (0 + Acp)" @
p p

Rp - Rmax

where Rpax is the maximum value of the LDR output. If we
expand the term (o + Ao p)" tobe 0" +n - o 1. (Aop) +
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n-o-(Aop)"" !+ +(Aop)", and replace the sum of the
second term to the last term in the expanded form with Ao/,
(2) can be rewritten as

In
Rp = Rmax'—p 3)
Ip+o" + Aal’,/
where Ao ,’,/ indicates a displacement from the global adap-

tation level, it can be obtained by the difference between the
original image intensity and its surrounding image intensity
[21]. Let I, and I, , be the intensity of pixel p and its sur-
rounding intensity in HDR image respectively, we have
R R I; 4

p = INmax W 4

Usually, for LDR to HDR expansion, only the luminance
channel is processed, the chrominance channels are intact.
So, we operate the local function (4) on the luminance chan-
nel:
Ll’l

L= Lmax l w (5)

where L; and Ly, are the luminance and the maximum
luminance of LDR image respectively, Lj, and L j corre-
spond to the luminance and the surrounding luminance of
HDR image.

The above describes the local tone compression proce-
dure. For inverse tone mapping, i.e., tone expansion, we
need to get Lj, from (5):

1

n

L
Lh=( : (L?,h+<f”)> ©)
Lmax,l

In (6), L; and Lpyax  can be directly obtained from LDR
image. The following will describe how to set parameters ,
oand Lg .

3.2 Parameters setting

There are three parameters need to be determined. The value
of parameter »n is determined by the time of test flashes while
capturing the image; parameter o is the value of luminance
that causes the half-maximum response and it depends on
the state of global, local, and temporal adaptation; param-
eter L is the surrounding luminance value of each pixel
in the image. There is no direct correlation between these
parameters, we can set them separately.

The sensitivity parameter n was discussed in the litera-
ture [19] that has a value generally between 0.7 (long test
flashes) and 1.0 (short test flashes). We carried out a lot of
experiments by increasing the value of n gradually from 0.7
to 1.0; the results suggest that n = 0.86 is better for our test
images.

@ Springer

The parameters o and L j, are information related to the
luminance of HDR image, however, only the LDR image is
known. Thus, based on the assumption that the maximum
luminance 255 of a LDR image will be mapped to the max-
imum luminance Lpax ; of the HDR display, we first com-
pute the corresponding o; and L ; of the LDR image, then
substitute o7 % Lmax,n/255 and Ly ; * Lmax,»/255 for o and
L p.

The o7 is obtained using the log-average luminance:

o] _exp( <Zlog L(x,y) +9))> 7

where L(x, y) is the pixel luminance at (x, y), 6 is a small
nonnegative value, and N is the number of pixels in the im-
age.

There are various ways to compute the surrounding lu-
minance. We use the weighted average BF ® L; to portray
the L, ;, BF is bilateral filter, which is introduced by Durand
and Dorsey [22]. It is known as an edge-preserving smooth-
ing operator that effectively blurs an image, but keeps sharp
edges intact. We use iterative bilateral filter for obtaining
more proper surrounding luminance.

The filtered output L, ; of the jth iteration for a pixel g
is as

LY, =Ll,q )
1 1 1
L, = Zf (p— q)g,(Lgl,,—Lg,,,)Lﬁ,,, ©)
qu.Q

where j =1, 2 is the iterative number, L; 4 is the luminance

of the original LDR image at pixel g; ké is a normalization
term:

kj= 3 fup =8, (L, —Li,) (10)

pCs2

where oy, is the standard deviation for a Gaussian f in the
spatial domain such as

- (1)

2+ 2

here, K, is a normalization factor and £2 is the whole image.
oy 1is the standard deviation for a Gaussian g in the range
domain. The experiments suggest that for our test images
the parameters on11 and on% set to 16 and 10, and Udl and Uj
set to 0.3 and 0.1 are appropriate.

4 Experiments and evaluations

We implemented the proposed algorithm with Matlab2011b
on an Intel Core i5-2520M CPU @ 2.5 GHz, 4.00 GB RAM,
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Fig. 3 A subset of test images, from left-top to right-bottom: Boat, Leaf, Landscape, Lucerne, Building, Park, and Sky

win32 system. The maximum illumination of the HDR mon-
itor is set to 3000 cd/m?, according to Brightside’s 37”
HDR monitor. A wide range of images are used to test the
performance of the system, these images represent overex-
posed and underexposed scenes in various lighting condi-
tions, from very dark to very bright. Figure 3 shows a subset
of these test images.

4.1 Algorithm implementations

In order to test and validate the physiological inverse tone
mapping model, we operated on 40 images and compared to
two global and three local methods using an image quality
metric. Here, we give brief description of these algorithms
and their implementation (for a detailed explanation of the
parameters in these algorithms, the reader can refer to the
original papers).

(1) The linear expansion [2] is one of the global methods. It
is the most simple among the compared algorithms and
its computational complexity is the lowest.

(2) Banterle et al.’s operator [8] is a local one. It first ex-
pands the image to medium range through inverting the
TMO proposed by Reinhard et al. [23] as

Lm,h _ Lmaxélwhite

white

(2= 1+ = L2+ 4 x L/ 23]

where L, j is the luminance after medium expanding,
L; is the luminance of LDR image, L,y is the max-
imum luminance value expected for the inverse tone
mapped image, and Lyhie iS the smallest luminance
value that will be mapped to white.

Then the saturated areas are found using median cut;
finally based on the density estimation of the saturated
areas, an expand-map is computed to combine the origi-
nal LDR image and the expanded medium range image.

3)

“)

&)

In the implementation, when generating the expand-
map, the radius of the density estimation is 16 pixels; the
threshold is 4 light sources and the number of generated
light sources for a median cut sampling is 4 x 212(2511,1(,’6)),
r and c are the height and width of the input image.
LDR2HDR [11] first maps pixel values into linear lumi-
nance, then a brightness enhancement function together
with an edge-stopping function are computed and ap-
plied to increase brightness in saturated regions. For this
algorithm, the parameters used are 150 pixels for the
standard deviation of the large Gaussian blur applied to
the mask, a rescaling factor « = 4, and a gradient im-
age baseline width for divided differences of 5 pixels.
The maximum iteration number for the flood fill is set
to 1000, a 5x5-pixel kernel for the anti-aliasing blur,
and a 4-pixel radius for the open operator are used to
clean up the final edge stopping function.

Meylan et al.’s method [4] divided image into specular
and diffuse components, a tone scale function composed
of two slopes is used to allocate different percentage
of the maximum display luminance to different compo-
nents. For this algorithm, the percentage p value is took
as 0.67; the size of the filters for computing two thresh-
olds are (m + 1) x (m 4+ 1) and 2m + 1) x 2m + 1),
respectively, m = max(r, ¢)/50, r and c is the height and
width of input image. An iterative erosion and dilatation
with 3 steps are used to obtain the binary mask for de-
tecting highlight specular; the size of average filter for
smooth is 5 x 5.

The y expansion [3] is another global method, the y
value is determined by image key value, and other two
parameters a and b. In the implementation, a and b are
set to 10.44 and —6.282, respectively, as in the original

paper.
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Fig. 4 Comparison results of
six algorithms with the image
quality metric of Aydin et

al. [24]: the reference LDR
images are Lucerne, Park, and
Building in Fig. 3. In each
group, from top to bottom:
Linear expansion, Banterle et
al.’s operator, LDR2HDR,
Meylan et al.’s method, y
expansion and proposed
algorithm. Red, green, and blue
identify contrast reversal, loss of
visible contrast, and
amplification of invisible
contrast, respectively. Our
algorithm amplifies more detail,
and causes least contrast loss
and reversals

4.2 Evaluation experiments

We choose an image quality metric introduced by Aydin et
al. [24] to assess the quality of the generated HDR images
(the original LDR image as reference image). This metric
identifies visible distortions between two images and be in-
dependent of the dynamic range of image. The result im-
age generated by this metric is a summary image with red,
green, and blue pixels, which determines whether contrast

@ Springer

in the image has been reversed, reduced, or improved. The
color is determined for each pixel depending on the highest
contributor. The red pixels mean that the contrast for these
pixels are reversed (the contrast polarity is reversed in the
compared image with respect to the reference image); the
green pixels imply that the contrast for these pixels are lost
(visible contrast in the reference image becomes invisible in
the compared image); the blue pixels denote that the con-
trast for these pixels are amplified (invisible contrast in the
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Table 1 Red, green, and blue percentages of metric results for subset images in Fig. 3: Larger red percentage means more contrast reversal, larger
green percentage denotes more contrast loss, and larger blue percentage indicates more contrast amplification

Percentage Images
Boat Leaf Landscape Lucerne Building Park Sky Average
red Akyuz 5.99 18.82 2.44 2.03 9.15 4.9 9.48 7.544
Banterle 5.14 7.53 0.63 1.18 3.26 2.8 3.84 3.884
Rempel 4.31 17.36 1.6 2.09 8.52 4.94 4.73 6.221
Meylan 2.62 16.8 1.54 1.97 7.44 4.33 5.03 5.676
Masia 0.31 19.57 1.28 73.15 6.23 3.02 0.72 14.9
Proposed 0.25 4.59 0.36 0.076 1.25 0.76 0.85 1.162
green Akyuz 8.09 50.54 4.72 23.08 17.17 16.9 20.32 20.11
Banterle 4.05 1.72 1.32 17.5 5.25 1.58 0.76 4.597
Rempel 37.09 63.31 42.66 23.23 25.9 14.46 3291 34.51
Meylan 19.4 48.41 18.74 15.63 13.11 6.55 17.81 19.95
Masia 99.36 78.85 2.43 26.12 61.7 0.74 0.039 38.46
Proposed 0.2 0.37 0.13 0.054 0.19 0.033 0.061 0.148
blue Akyuz 17.12 3.37 21.79 10.48 31.01 3491 26.91 20.79
Banterle 20.93 7.57 33.54 31.92 32.59 46.39 29.04 28.85
Rempel 6.96 3.26 18.61 10.43 28.73 34.85 4.42 15.32
Meylan 5.99 13.55 21.22 15.09 31.44 37.23 5.56 18.58
Masia 0.14 1.07 21.51 0.66 22.28 42.48 29.78 16.85
Proposed 35.41 10.78 40.45 58.61 64.52 59.08 20.13 41.28
100 Az 100 Akyuz 100 Alyuz
- Banterle - Banterle - Banterle
90 = Rempel i 90— Rempel | 90— Rempel
80 = Meylan | 80 = Meylan | 80 = Meylan
= Masia = Masia = Masia
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Fig. 5 From left to right: red, green, and blue percentages curve
resulting from the comparison between forty test images (reference
images) and the HDR images generated by six algorithms using the
image quality metric of Aydin et al. [24]. The percentage values of

reference image becomes visible in the compared image).
In our test, the original LDR images are reference images,
the generated HDR images are compared images. Figure 4
shows some result images generated by the metric for six
algorithms.

Image number

Image number

each algorithm are sorted for comparison clarity. The proposed algo-
rithm has maximum contrast amplified, minimum contrast reversal,
and contrast loss

Furthermore, we compared the algorithms numerically
by computing the percentage of red, green and blue pixels
(the ratio of the red, green, and blue pixel number to the total
number of image) of the result images obtained by the image
quality metric. Table 1 gives their percentage values corre-
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Fig. 6 Tone mapped images of
six algorithms. In each group,
from top to bottom: Linear
expansion, Banterle et al.’s
operator, LDR2HDR, Meylan et
al.’s method, y expansion, and
proposed algorithm. All tone
mapped versions are produced
using Reinhard et al.’s

TMO [23]

sponding to images in Fig. 3. Other percentage values of
metric results for forty test images are computed and drawn
in Fig. 5.

4.3 Results analysis and discussion

The experimental results show that our physiological scheme
can generate high-quality result images with a very compact
form as (6). Table 1 and Fig. 5 show that our algorithm has

@ Springer

minimum red and green percentages, but maximum blue
percentage, which means that it can obtain more contrast
improvement with little negligible contrast loss and reversal
than other compared algorithms; Fig. 4 testifies these re-
sults visually, in three metric result images of our method,
there are no visible green pixels and tiny red pixels. These
numerical results also show that the performance of Ban-
terle et al.’s operator is the second in the six algorithms; the
contrast reversal and contrast loss of the linear expansion
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Table 2 Comparison of the -
running times of six algorithms: Methods Time (s)
our algorithm has minimum
running time among the local Linear expansion 0.104
methods (Banterle’s operator, Banterle’s operator 14.06
LDR2HDR, Meylan’s method) LDR2HDR 0.692
Meylan’s method 0.570
y expansion 0.324
Proposed algorithm 0.498

is between that of Meylan et al.’s method and LDR2HDR,
but the contrast improvement of linear expansion is close to
Banterle et al.’s algorithm. For y expansion which focuses
on expanding images with large saturated regions, for some
test images which are not large saturated, its performance is
undesirable.

The good performance of the proposed algorithm was
also observed by the tone mapped version of the generated
HDR images, which cannot be shown here directly because
of limitations of the print medium. The tone mapped ver-
sions are generated by Reinhard et al.’s photographic op-
erator [23], three of them for all algorithms are offered in
Fig. 6; the corresponding original images were captured at
different luminance conditions (Lucerne, Leaf, and Build-
ing in Fig. 3). These tone mapped images also imply that
our algorithm works well and can obtain pleased images.
The rebarbative results of y expansion also suffer from the
low key value of the test images. Concerning the computa-
tional complexity, Table 2 compares the running time of the
different algorithms using the test image Sky in Fig. 3 with
a resolution of 960 x 540 pixels. The algorithms were run
on the platform that we have described in the beginning of
Sect. 3. The table implies that except the global methods,
our algorithm has minimum computational complexity with
its fast speed and compact mathematical form among the
local methods considered in this comparison. Although the
running speed of our method is little slower than the global
ones, with its high-quality result HDR images and good ap-
plicability, the general performance of our approach is better
than the global ones.

The results of the experiments show that our scheme does
not introduce objectionable artifacts and contouring artifacts
at the edges of bright objects. These artifacts are usually in-
troduced by the use of different expansion methods to the
saturated and nonsaturated areas, and large boosting to the
bright objects. However, unlike the algorithms considered in
our experiments, we expand the saturated areas and nonsat-
urated areas using the same mathematical model. Further-
more, the expansion of each pixel is not only related to the
luminance value of itself, but also the luminance values of
its surrounding pixels. For a pixel at the edges of the bright
objects or between the saturated and nonsaturated areas, be-
cause some of its surrounding pixels are dimmer than it, its

surrounding luminance value is smaller than its value. This
prevents the large boosting to the edge pixels and avoids
contouring artifacts.

The excellent performance of the proposed algorithm
owes to its physiological property and the use of local adap-
tive luminance. The physiological property intrinsically en-
ables the algorithm to imitate the inverse of the procedure
that the retina perceives the real-world scene, which makes
the generated HDR image approximates to the real-world
scene as far as possible. The consideration of local adaptive
luminance guarantees the enhancement to local details, si-
multaneously eliminates special treatment to the saturated
regions, which favors the conciseness of the algorithm. In
brief, the simulation results prove that the proposed al-
gorithm has good performance for all kinds of tested ill-
exposed images, low computational complexity, and limited
parameters.

5 Conclusions

In this paper, we proposed a new inverse tone mapping ap-
proach inspired by the adaptation property of HVS. It is ca-
pable of generating high-visual quality HDR images with
low computational complexity and limited number of pa-
rameters compared to some existing algorithms. The way to
expand the retina response to be local adaptive ensures that
the proposed approach resolves the two most important is-
sues in inverse tone mapping: enhancing local contrast and
preserving the details. Evaluation results show the high per-
formance and low computational complexity of our algo-
rithm. The numerical and visual results suggest that it ob-
tains more contrast improvement with least contrast loss and
reversal than other recent algorithms. The computational ef-
ficiency combined with the high visual quality of the result
images makes the proposed method attractive. In the fol-
lowing work, we will exploit more sophisticated ways for
estimating the parameters to make the algorithm more com-
pact. The conciseness and efficiency make the algorithm be
suitable for hardware implementation, which is the ongoing
work for platform integration.
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