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A B S T R A C T

For a surface ship carrying a towed array, its in-band radiated self-noise is one of the near-field strong
interference, which will seriously limit the performance of the underwater acoustic (UWA) signal detection
system. Typically, the conventional ship noise cancellation methods requires time-synchronized hydrophone
arrays, such as the towed linear array (TLA), to suppress its self-noise by using spatial filters. However,
the spatial filter based methods fail when the direction of arrival of the desired signal is in the ship noise
masking area. In cooperative scenarios, the prior knowledge of the template signal provides additional temporal
information, which can be utilized to design a time-domain representations based detection system. In this
paper, a multiscale time self-attention network (MTSA-Net) is proposed to mitigate the ship radiated self-noise
and enhance the desired signal to improve the performance of signal detection system. Experimental results
based on sea trial data indicate the effectiveness of our proposed method.
1. Introduction

For the underwater acoustic (UWA) detection platform with a towed
ship as the carrier, its self-noise is a kind of near-field significant
interference. The characteristics of the interference radiated by the
towed ship primarily depend on the ship type and its mode of op-
eration, encompassing both line spectrum and continuous spectrum
components (Arveson and Vendittis, 2000; Carey et al., 1997; Han
et al., 2020). Due to the multipath effect, the masked area of the
jamming exhibits the phenomenon of angular spread close to the
endfire direction (Feng et al., 2018; Hui et al., 2018; Liang et al.,
2023). In addition to developing noise reduction technology at the
physical layer (Smith and Rigby, 2022), a highly effective detection
algorithm becomes an indispensable requirement in the presence of
ship self-noise.

To suppress the self-noise, a range of spatial filter based noise sup-
pression methods have been developed in passive sonar. The adaptive
beamformings, including null-steering beamforming (NSBF) (Gersh-
man et al., 1995), minimum variance distortionloss response (MVDR)
(Capon, 1969), aim to form nulls in the direction of interference. NSBF
projects the array data onto the self-noise orthogonal subspace, thereby
forming a null-steering beam, with the assumption that the interference
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direction is known. Because the masking area of the ship self-noise is
too large, a large detection blind area will be formed. MVDR maxi-
mizes the signal-to-noise ratio by minimizing the noise variance while
preserving the desired signal, resulting in enhanced signal clarity and
improved detection performance. This method may exhibit diminished
performance when the covariance matrix is poorly estimated due to
factors like low signal-to-noise ratio (SNR), limited snapshots, and
array phase mismatch (Ijsselmuide and Beerens, 2001). There are some
robust algorithms that can reduce the mismatch phenomenon at the
expense of some high-resolution performance (Yang et al., 2018; Yan
and Ma, 2005; Shi et al., 2019). These methods still exhibit a limited
impact on angle-spread noise.

Besides, noise suppression methods relying on self-noise estimation
are aligned with the inherent background noise of the ship (Liang
et al., 2023). These methods comprise three main steps: self-noise bear-
ing estimation, self-noise beam reconstruction, and self-noise cancella-
tion. The typical algorithms are postbeamformer interference canceller
(PIC), element interference canceller (EIC), and inverse beamform-
ing (IBF). For the above methods, conventional beamforming (CBF)
can be employed to estimate the direction of arrival (DOA) of self-
noise (Van Veen and Buckley, 1988), and the beam output from this
vailable online 14 December 2023
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direction is utilized as a reference signal. The PIC method utilizes an
adaptive filter in the beam domain for interference cancellation (Go-
dara, 1991), resulting in a beam pattern with narrow nulls and high
side lobes. The EIC method, on the other hand, employs an adaptive
filter in the element domain for interference cancellation (Chi et al.,
2020). Finally, the IBF method performs interference cancellation in
the array element domain, assuming a plane wave scenario (Wilson
et al., 2006). Besides, the reference signal can also be acquired by a
sensor close to the towed linear array (TLA). The adaptive cancellation
methods often exhibit extended convergence times and may encounter
challenges in effectively suppressing non-stationary noise originating
from the tow ship. While the IBF method exhibits stronger robustness,
its assumption of far-field plane waves can introduce array phase
mismatch when applied to near-field noise.

The conventional self-noise cancellation methods obtain the ship
reference signal by using spatial filters without considering cooperative
scenarios. In practice, these methods prove ineffective in scenarios
where the desired signal and the noise arrive from the same direction
or in non-array application contexts. In these cases, no features in
the spatial domain are accessible for signal detection, and there is no
enhancement in SNR. In cooperative scenarios, the prior knowledge
of cooperative source provides the additional temporal information,
which can be used to further improve the detection performance. The
matched filter (MF) is an optimal linear filter designed to get time–
bandwidth product gain (Turin, 1960), which is solely associated with
the time–bandwidth product. However, the gain is compromised by
non-Gaussian and non-stationary noise.

This study reformulates the issue of reducing ship radiated self-
noise as a signal separation task involving two types of signals: the
desired signal from a cooperative source and the self-noise from the
towed ship. By leveraging historical data, deep learning (DL) based
methods can overcome the limitations associated with conventional
spatial filter based methods to acquire knowledge of the ship radiated
self-noise. The prevalent DL-based denoising methods can be classified
into two categories: the time–frequency (T–F) domain methods (Hao
et al., 2021; Lv et al., 2021; Zheng et al., 2021) and the time-domain
methods (Luo et al., 2020; Luo and Mesgarani, 2019; Pandey and Wang,
2019). In general, the former is simpler to explain, while the latter
exhibits superior performance (Luo and Mesgarani, 2019). The time
domain denoising methods utilize a learnable convolutional layer to
replace the short time Fourier transform (STFT), which is adopted as
the mainstream (Chen et al., 2020; Lam et al., 2021; Subakan et al.,
2021). The effectiveness of time-domain denoising methods has been
proven in UWA signal detection system. For example, a modified fully-
convolutional time-domain audio separation network (ConvTasNet) is
created to alleviate ambient noise from the cooperative source (Chu
et al., 2023). This network integrates a stacked auto-encoder with
a temporal convolutional network for enhanced performance. Addi-
tionally, the dual-path transformer network (DPTN) is introduced to
reduce ambient noise mixed with ship radiated noise, which com-
bines the multi-head attention transformer and dual-path framework
processing (Song et al., 2022). However, in low SNR scenarios, the
aforementioned methods face challenges in capturing long-term depen-
dencies effectively. Moreover, it is crucial to acknowledge that while
previous models can learn noise distributions, they often overlook the
significance of cooperative signal structures, neglecting to incorporate
them into the model’s design.

To address the above problems, a multiscale time self-attention
network (MTSA-Net) is proposed to denoise the ship radiated self-noise
in the cooperative signal. The network consists of three modules: an
encoder, a separator, and a decoder. The encoder and decoder are
one-layer convolutional blocks, aiming to generate a representation
of time-domain signal and transform the representation back to the
waveform, respectively. Rather than adopt the sine and cosine func-
tions as the orthogonal basis like STFT (Mitra, 2001), the encoder
2

has a learnable convolutional kernel expected to produce high-level
Fig. 1. Schematic diagram of multiple time scales of one sequence: (a) The sequence
arranged in global time scale; (b) The sequence reorganized in slow and fast time
scales.

representations. Furthermore, the separator is constructed to form a
masking map, which employs a multiscale time self-attention mecha-
nism that simultaneously performs a low-cost self-attention over the
full sequence and another dual-path self-attention on local chunks.
The sequence structure of multiple time scales is illustrated in Fig. 1.
In the context of multiple pulses, the entire sequence is treated as
the overarching global entity. Signals with this structure not only
share the same time–bandwidth product but also exhibit inter-pulse
periodicity. Within this context, we distinguish between intra-pulse and
inter-pulse segments, categorizing them as the fast-time and slow-time
components, respectively. To facilitate this distinction effectively, our
architecture incorporates two attention modules. The global attention
module is specifically crafted to capture the overarching character-
istics of the sequence, while the dual-path local attention module is
designed to discern both intra-pulse intricacies and inter-pulse periodic
features. In particular, inter-pulse periodic features result from the
multi-pulse structure of the cooperative source, which are not available
for non-cooperative source scenes. This combined attention mecha-
nism empowers MTSA-Net with a holistic, global interaction capability.
As a result, MTSA-Net demonstrates superior performance in UWA
environments compared to previous models.

This paper is organized as follows. In Section 2, the conventional
interference cancellation methods are introduced. The MTSA-Net is
proposed in 3. Section 4 examines the performance of MTSA-Net.
Finally, Section 5 concludes the paper.

2. Conventional noise cancellation methods

This section introduces several representative conventional noise
cancellation methods, along with the signal model and the MF. The
ensuing discussion addresses the limitations of these methods.

2.1. Signal model

There exists a far-field cooperative point source emitting well-
defined broadband signals, and one nearby towed ship with a uniform
spaced TLA that acts as self-noise. The schematic diagram of this
scenario is depicted in Fig. 2. The ship length and TLA length are within
the range of tens of meters, while the cooperative source is several
kilometers or even dozens of kilometers away.

The ship self-noise is mainly composed of propeller noise, structure-
borne noise and so on. For instance, the propeller and engine may
locate at the stern and middle of the ship, which are considered as
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Fig. 2. Schematic of the far-field signal reception under the background of towed ship self-noise.
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different near-field point sources. Therefore, the cooperative source is
modeled as a planar wave signal, which can be reached at the TLA from
an azimuth 𝜃𝐹 ranging from [0, 2𝜋]. The ship self-noise is characterized
s multiple spherical wave signals. The 𝑖th source approaches the 𝑛th
ensor from a DOA of 𝜃𝑖𝑛. Let 𝐼 be the number of near-field sources and
ssume that the TLA has 𝑁 sensors with element spacing 𝑑. Then, the
eceived signal at frequency 𝑓 of 𝑛th sensor can be expressed as

𝑛(𝑓 ) = 𝑆(𝑓 )𝑔𝑛(𝑓, 𝑟𝐹 ) +
𝐼
∑

𝑖=1
𝑆𝑖(𝑓 )𝑔𝑖𝑛(𝑓, 𝑟𝑁𝑖

) + 𝜂𝑛(𝑓 ) (1)

here 𝑆(𝑓 ) is the cooperative source spectrum, 𝑆𝑖(𝑓 ) is the 𝑖th towed
hip near-field source spectrum and 𝜂𝑛(𝑓 ) is the ambient noise spectrum
f 𝑛th sensor. Besides, 𝑔𝑛(𝑓, 𝑟𝐹 ) and 𝑔𝑖𝑛(𝑓, 𝑟𝑁𝑖

) are the Green’s functions
of 𝑛th sensor at position 𝑟𝐹 and 𝑟𝑁𝑖

, respectively. The array received
data is denoted as 𝑿(𝑓 ) = [𝑋1(𝑓 ), 𝑋2(𝑓 ),… , 𝑋𝑁 (𝑓 )]𝐻 .

In this study, the cooperative source adopts the chaotic frequency
modulation (CFM) (Shu et al., 2016) based multi-pulse signal, where
the 𝑖th pulse has a formulation as

𝑠𝑖,𝑙(𝑡) = 𝑅𝑒[𝑎(𝑡)𝑒𝑗2𝜋𝑓𝑙 𝑡𝑒𝑗2𝜋𝑓𝑐 𝑡], (𝑖 − 1)𝑇0 ≤ 𝑡 < 𝑖𝑇0 (2)

where 𝑙 is the index of modulating symbols, 𝑓𝑐 is the carrier frequency
and 𝑇0 is the time length of each pulse. Besides, the 𝑓𝑙 = 𝑘𝑙𝛥𝑓 is the
frequency of 𝑙th symbol. Herein, the 𝐾𝑒𝑛𝑡 map (Liu et al., 2015) is
used to represent 𝑘𝑙, which ranges from −1 to 1 and 𝛥𝑓 is half of the
bandwidth. The number of pulses is denoted as 𝑚, which is shown in
Fig. 1.

2.2. PIC algorithm

At each frequency bin, the signals are processed by forming two
beams. Here, the weights of the CBF at frequency 𝑓 for beam 𝜃 are
adopted for both the signal beam and self-noise beam that

𝒘(𝑓, 𝜃) = 1
√

𝑁
[1, 𝑒𝑗2𝜋𝑓𝑑𝑐𝑜𝑠𝜃∕𝑐 ,… , 𝑒𝑗2𝜋𝑓 (𝑁−1)𝑑𝑐𝑜𝑠𝜃∕𝑐 ] (3)

where 𝑐 is the reference sound speed. The weights of the signal beam
and self-noise beam can be denoted as 𝒘(𝑓, 𝜃𝐹 ) and 𝒘(𝑓, 𝜃𝑁 ), respec-
tively.

Then, the output of the signal beam and the self-noise beam at
frequency 𝑓 are, respectively, given by

𝐵𝑒𝑎𝑚(𝑓, 𝜃𝐹 ) = 𝒘(𝑓, 𝜃𝐹 )𝐻𝑋(𝑓 ) (4)

and

𝐵𝑒𝑎𝑚(𝑓, 𝜃𝑁 ) = 𝒘(𝑓, 𝜃𝑁 )𝐻𝑋(𝑓 ) (5)

At each frequency bin, the output of the PIC is formed by subtracting
the weighted output of the self-noise beam from the signal beam, thus

𝐵𝑒𝑎𝑚𝑃𝐼𝐶 (𝑓 ) = 𝐵𝑒𝑎𝑚(𝑓, 𝜃 ) − ℎ𝑃𝐼𝐶 (𝑓 )𝐵𝑒𝑎𝑚(𝑓, 𝜃 ) (6)
3

𝐹 𝑁 m
The total output power can be denoted as

𝑃 𝑃𝐼𝐶 =
𝑓ℎ
∑

𝑓=𝑓𝑙

|𝐵𝑒𝑎𝑚𝑃𝐼𝐶 (𝑓 )|2 (7)

where 𝑓𝑙 and 𝑓ℎ are the lower and upper frequency limits of the band,
respectively. By minimizing the total output power, the optimal weights
ℎ̂𝑃𝐼𝐶 (𝑓 ) can be given as

ℎ̂𝑃𝐼𝐶 (𝑓 ) =
𝐵𝑒𝑎𝑚(𝑓, 𝜃𝐹 )(𝐵𝑒𝑎𝑚(𝑓, 𝜃𝑁 ))𝐻

𝐵𝑒𝑎𝑚(𝑓, 𝜃𝑁 )(𝐵𝑒𝑎𝑚(𝑓, 𝜃𝑁 ))𝐻
(8)

The PIC is applied to the strongest self-noise beam first and then
this procedure can be repeated several times until all self-noise beams
present are suppressed.

2.3. EIC and IBF algorithms

The self-noise beam is formed as that of the PIC algorithm. The
difference is that the signal beam is formed after canceling self-noise
in the element domain.

From Eq. (5), the DOA of strongest self-noise is estimated. The
estimated self-noise of the 𝑛th sensor at frequency 𝑓 can be denoted
as

𝛷𝑛(𝑓 ) = 𝐵𝑒𝑎𝑚(𝑓, 𝜃𝑁 )𝑒2𝜋𝑓 (𝑛−1)𝑑𝑐𝑜𝑠𝜃𝑁 ∕𝑐 (9)

The element domain output of the EIC is formed by subtracting the
weighted output of the self-noise beam after phase compensation from
the received signal for each sensor,

𝑋𝐸𝐼𝐶
𝑛 (𝑓 ) = 𝑋𝑛(𝑓 ) − ℎ𝐸𝐼𝐶

𝑛 (𝑓 )𝛷𝑛(𝑓 ) (10)

the optimal weights ℎ̂𝐸𝐼𝐶
𝑛 (𝑓 ), which minimizes the output power of

each sensor, can be given as

ℎ̂𝐸𝐼𝐶
𝑛 (𝑓 ) =

𝑋𝑛(𝑓 )𝛷𝑛(𝑓 )𝐻

𝛷𝑛(𝑓 )𝛷𝑛(𝑓 )𝐻
(11)

he subtraction process of IBF is performed without adaptive weight-
ng, that is
𝐼𝐵𝐹
𝑛 (𝑓 ) = 𝑋𝑛(𝑓 ) −𝛷𝑛(𝑓 ) (12)

fter the self-noise cancellation, the signal beam is formed as follows:

𝑒𝑎𝑚𝐸𝐼𝐶 (𝑓, 𝜃𝐹 ) = 𝒘(𝑓, 𝜃𝐹 )𝐻𝑋𝐸𝐼𝐶 (𝑓 ) (13)

nd

𝑒𝑎𝑚𝐼𝐵𝐹 (𝑓, 𝜃𝐹 ) = 𝒘(𝑓, 𝜃𝐹 )𝐻𝑋𝐼𝐵𝐹 (𝑓 ) (14)

Both algorithms, similar to PIC, can be iteratively repeated multiple
imes until the self-noise is completely suppressed. However, these
ethods have limitations when the DOA of the desired signal, i.e. the
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Fig. 3. The overall architecture of the MTSA-Net based UWA signal detection system.
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ooperative source signal, is in the masking area formed by the towed
hip self-noise. In this case, the desired signal and ship noise have
he same array gain of 10𝑙𝑜𝑔10𝑁 after CBF. The output power of the

above self-noise cancellation methods will be zero as the signal and
interference are canceled together based on the minimum output power
criterion. To be pointed out, this limitation is the main issue to be
solved. In other cases, the performance experiences degradation due to
the self-noise beam having a non-zero response in the signal direction,
along with a portion of the signal leaking into the self-noise beam.

2.4. Matched filter

In cooperative scenarios, the cooperative source spectrum 𝑆(𝑓 ) is
the prior knowledge. Therefore, the MF can be applied to get additional
time–bandwidth product gain. After self-noise cancellation, the signal
beam can be denoted as 𝐵𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑓, 𝜃𝐹 ) representing the above three
methods. The input of MF in time domain is

𝐵𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑡, 𝜃𝐹 ) = 𝐼𝐹𝐹𝑇 {𝐵𝑜𝑢𝑡𝑝𝑢𝑡(𝑓, 𝜃𝐹 )} (15)

The impulsive response of MF in time domain is

ℎ(𝑡) = 𝑠(𝜏 − 𝑡) = 𝐼𝐹𝐹𝑇 {𝑆(𝑓 )𝐻𝑒𝑗2𝜋𝑓𝜏} (16)

Then, the output of MF is obtained as

𝑦(𝑡, 𝜃𝐹 ) = 𝐵𝑒𝑎𝑚𝑜𝑢𝑡𝑝𝑢𝑡(𝑡, 𝜃𝐹 )⊗ ℎ(𝑡) (17)

where ⊗ represents the convolution operation. The theoretical gain is

𝐺𝑇𝐵𝑃 = 10 log10 2𝐵𝑊 ⋅ 𝑇 (18)

where 𝐵𝑊 is the bandwidth and 𝑇 is the time duration. In order to
improve the stability of MF, its normalized form is adopted.

3. The multiscale time self-attention network

The overall architecture of the MTSA-Net based UWA signal de-
tection system is illustrated in Fig. 3. Once the array processing is
completed, the beam output is fed into the MTSA-Net for augmentation.
The MF is a temporal filter serving as a detector. The loss functions are
shown in Section 3.3.

Fig. 4 presents the detailed architecture of the MTSA-Net, which
consists of encoder, decoder and separator modules. During the training
of MTSA-Net, both the self-noise and noisy cooperative signal are taken
as input in pairs, while the corresponding generated outputs are the
self-noise and pure cooperative signal, respectively. Throughout the
testing process, the self-noise and noisy cooperative signal are provided
separately as the negative and positive samples.

3.1. Encoder and decoder

The encoder is utilized to extract the STFT-like representations in
a latent feature space. It consists of a one-dimensional convolutional
layer (Conv1D) and a rectified linear unit (ReLU). The kernel size of
Conv1D is 𝐿 with a stride of 𝐿∕2. The input sequence 𝒊𝒏𝒑𝒖𝒕 ∈ 𝑅𝐵×1×𝑇

is encoded to the feature map 𝑍:

𝒁 = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣1𝐷(𝒊𝒏𝒑𝒖𝒕)) (19)

where 𝒁 ∈ 𝑅𝐵×𝐶×𝑆 , 𝐶 is number of filters, 𝐵 is the batch size and
𝑆 = ⌈(𝑇−𝐿∕2)∕(𝐿∕2)+1⌉. The notation ⌈⋅⌉ is rounding up. Zero padding
is used to ensure each channel having the same time length.
4

Let the output of separator, i.e. the mask, be denoted as 𝑴 ∈
𝑅𝐵×𝐶×𝑆 . Then, the masked feature map 𝒁𝑀 = 𝒁 ⊙𝑴 is decoded into

aveform 𝒐𝒖𝒕𝒑𝒖𝒕 ∈ 𝑅𝐵×1×𝑇 :

𝒖𝒕𝒑𝒖𝒕 = 𝑇 𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒𝑑𝐶𝑜𝑛𝑣1𝐷(𝒁𝑀 ) (20)

here ⊙ is the element-wise multiplication operation, and the decoder
s one Transposed Conv1D layer with same kernel size and stride as the
ncoder.

.2. Separator

The separator is designed to apply a non-linear mapping from
he feature map 𝒁. To accomplish this, the feature map 𝒁 performs

layer normalization and is added with sinusoidal positional encod-
ings (Vaswani et al., 2017b) in position embedding block. The position
embedding provides positional information for the learning of attention
modules. Afterwards, the sequence undergoes a pointwise convolution
before being input to the MTSA block.

In the MTSA block, the sequence is processed by the attention
mechanism. The proposed attention mechanism consists of three scales
time self-attention: fast time, slow time and global time. It performs
a joint local and global self-attention operations, in which the skip
connection is adopted for ease of training. The process of the MTSA
block is repeated 𝑅 times.

After the sequence passes through the ReLU and a pointwise con-
volutional layer, it is passed to a parallel pointwise convolutional layer
and a gate linear unit (GLU) (Shazeer, 2020). Finally, the sequence un-
dergoes another pointwise convolution, followed by a ReLU activation,
to yield the mask 𝑴 .

3.2.1. MTSA block
The MTSA block is developed to integrate the global self-attention

and local self-attention for feature extraction in three time scales,
whose architecture is presented in Fig. 5(a). The processing flow is
as follows. First, the feature input 𝑭 𝑖𝑛 ∈ 𝑅𝐵×𝐶×𝑆 is processed by the
token shift module, which is a simple offset in the temporal dimension
at each block and has almost no computational cost (Peng et al.,
2023). It is implemented by shifting the first half of the channels while
preserving the last half channels. The shifted channels primarily collect
contextual information from the preceding tokens and pass it to the
following tokens, whereas the unshifted channels are primarily respon-
sible for prediction (Peng et al., 2023). Then, the token shifted feature
𝑭 𝑠ℎ𝑖𝑓 𝑡 ∈ 𝑅𝐵×𝐶×𝑆 is fed parallelly into the dual-path local self-attention
module (DPL-SA) and the global self-attention module (GSA), getting
the augmented features 𝑭 𝑙𝑜𝑐 ∈ 𝑅𝐵×𝐶×𝑆 and 𝑭 𝑔𝑙𝑜 ∈ 𝑅𝐵×𝐶×𝑆 . Next,
the augmented features are added to obtain the integrated features
𝑭 𝑎𝑢𝑔 ∈ 𝑅𝐵×𝐶×𝑆 . Moreover, there is a gating operation applied to the
integrated features to improve the capability of the MTSA block. It
has the ability to selectively filter input information, extract crucial
features, and model long-term dependencies, thereby enhancing the
model’s expressive and generalization capabilities (Hua et al., 2022;
Narang et al., 2021). In this operation, two convolution modules are
conducted, which is illustrated in Fig. 5(b). The kernel size of 1D-
Depthwise convolution is 𝐿1 and zero-padding is adopted. This module
utilizes the combination of pointwise convolution and 1-D-Depthwise

convolution to reduce the number of required parameters (Chollet,
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Fig. 4. The architecture of the MTSA-Net.
Fig. 5. (a) The diagram of the MTSA block. (b) The diagram of the convolution module.
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017). Let the convolution module be denoted as function 𝐶𝑜𝑛𝑣-𝑀 . The
rocess of MTSA block is described as

𝑠ℎ𝑖𝑓 𝑡 = 𝑇 𝑜𝑘𝑒𝑛-𝑠ℎ𝑖𝑓 𝑡(𝑭 𝑖𝑛) (21)

𝑙𝑜𝑐 = 𝐷𝑃𝐿-𝑆𝐴(𝑭 𝑠ℎ𝑖𝑓 𝑡) (22)

𝑔𝑙𝑜 = 𝐺𝑆𝐴(𝑭 𝑠ℎ𝑖𝑓 𝑡) (23)

𝑎𝑢𝑔 = 𝑭 𝑙𝑜𝑐 + 𝑭 𝑔𝑙𝑜 (24)

𝑜𝑢𝑡 = 𝐶𝑜𝑛𝑣-𝑀(𝑭 𝑎𝑢𝑔) ⋅ 𝜙(𝐶𝑜𝑛𝑣-𝑀(𝑭 𝑎𝑢𝑔)), (25)

here the 𝑭 𝑜𝑢𝑡 is the output of MTSA block and 𝜙(⋅) is the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
unction.

In dual-path self-attention module as depicted in Fig. 6(a), the mod-
le input 𝑭 𝑠ℎ𝑖𝑓 𝑡 is firstly split into non-overlapping chunks of length 𝑃 .
he last chunk is zero-padded to generate 𝐻 equal size chunks and all
hunks are then concatenated together. Then, the long sequence with
ize 𝑆 is segmented into inter-chunks with size 𝑃 and intra-chunks with
ize 𝐻 , which represent fast time and slow time scale, respectively.
fterwards, the scaled dot-product self-attention (SDPSA) is applied for
5

d

he two paths by groups (Vaswani et al., 2017a), which is shown in
ig. 6(c). The two SDPSA modules can be defined as:
𝑓𝑎𝑠𝑡
𝑙𝑜𝑐 = (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑸𝑓𝑎𝑠𝑡

𝑙𝑜𝑐 (𝑲𝑓𝑎𝑠𝑡
𝑙𝑜𝑐 )𝑇 ))𝑽 𝑓𝑎𝑠𝑡

𝑙𝑜𝑐 (26)
𝑠𝑙𝑜𝑤
𝑙𝑜𝑐 = (𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑸𝑠𝑙𝑜𝑤

𝑙𝑜𝑐 (𝑲𝑠𝑙𝑜𝑤
𝑙𝑜𝑐 )𝑇 ))𝑽 𝑠𝑙𝑜𝑤

𝑙𝑜𝑐 (27)

here 𝑸𝑓𝑎𝑠𝑡
𝑙𝑜𝑐 , 𝑲𝑓𝑎𝑠𝑡

𝑙𝑜𝑐 , and 𝑽 𝑓𝑎𝑠𝑡
𝑙𝑜𝑐 ∈ 𝑅𝑃×𝐶 and 𝑸𝑠𝑙𝑜𝑤

𝑙𝑜𝑐 , 𝑲𝑠𝑙𝑜𝑤
𝑙𝑜𝑐 , and 𝑽 𝑠𝑙𝑜𝑤

𝑙𝑜𝑐 ∈
𝑅𝐻×𝐶 . The 𝐵 ×𝐻 and 𝐵 × 𝑃 represent the group size in fast and slow
time dimensions, respectively.

As depicted in Fig. 6(b), the global attention module has the same
input as the local attention module, where 𝐶 < 𝑆. To speed up
the computation, a low cost self-attention is shown in Fig. 6(d) and
derived (Zhuoran et al., 2021) as:

𝑭 𝑔𝑙𝑜 = 𝑸𝑔𝑙𝑜(𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑲𝑔𝑙𝑜)𝑇 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑽 𝑔𝑙𝑜)) (28)

where 𝑸𝑔𝑙𝑜, 𝑲𝑔𝑙𝑜, and 𝑽 𝑔𝑙𝑜 ∈ 𝑅𝑆×𝐶 . The 𝐵 represents the group size in
global attention module.

To explain the complexity of computation, the 𝑸, 𝑲 , and 𝑽 can be

enoted with the dimension 𝑆 × 𝐶. Without the 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 and 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
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Fig. 6. (a) The diagram of the dual-path self-attention on local time module. (b) The diagram of the self-attention on global time module. (c) The detailed structure of the scaled
dot-product self-attention. (d) The detailed structure of the low cost self-attention.
function, the multiplication would involve three matrices 𝑸𝑲𝑇 𝑽 . Con-
sidering the matrix multiplication is associative, 𝑲𝑇 𝑽 can be calculated
firstly, resulting in a 𝐶 × 𝐶 matrix, and then left multiply it with 𝑸.
Since 𝐶 < 𝑆, this computation yields an approximate complexity of
(𝑆), which is dominated by the 𝑸 left multiplication step. If the matrix
multiplication is calculated like Eqs. (26) and (27), 𝑄𝐾𝑇 produces a
𝑆 ×𝑆 matrix, which determines that the complexity of this attention is
(𝑆2).

3.3. Loss function

The proposed MTSA-Net is designed to provide accurate estimation
of both ship self-noise and pure cooperation source signal. In this
section, the modified scale-invariant signal-to-noise ratio (MSI-SNR)
is adopted to match the noise information and source information.
The MSI-SNR contains the measurements of the original self-noise and
source, which is the loss function in this study:

𝐿𝑜𝑠𝑠𝑀𝑆𝐼−𝑆𝑁𝑅 = 𝑆𝐼 − 𝑆𝑁𝑅(𝒔, �̂�) + 𝑆𝐼 − 𝑆𝑁𝑅(𝜼, �̂�) (29)

where 𝒔 is the target and 𝜼 is the ship noise. The SI-SNR(𝒔, �̂�) (Chu
et al., 2023) can be calculated as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝒔𝑝𝑟𝑜𝑗 =
⟨�̂�,𝒔⟩𝒔
‖𝒔‖2

𝒆 = �̂� − 𝒔𝑝𝑟𝑜𝑗

𝑆𝐼 − 𝑆𝑁𝑅 = 10 log10
‖

‖

‖

𝒔𝑝𝑟𝑜𝑗
‖

‖

‖

2

‖𝒆‖2

(30)

here ⟨⋅⟩ and ‖⋅‖ denote the inner product operation and power
peration, respectively. It can be proven that SI-SNR is invariant with
he amplitude of signal, which is equivalent to the correlation coeffi-
ient (Rugini and Banelli, 2016). In Eq. (29), the first term signifies
he capacity to learn from signals, while the second term signifies the
bility to learn from noise.

. Experimental results

In this section, the experimental results are presented, including an
ntroduction of the datasets employed, evaluation metrics, representa-
ive baselines, and the evaluation of the performance of the proposed
TSA-Net.
6

Table 1
The detailed experimental setup.

Cond. PRM STW/knots SOG/knots AD/m WD/m CL/m

Cond1 70 4 3.2 51 144 300
Cond2 80 5.1 4.4 54 138 300
Cond3 90 6 4.9 48 138 300
Cond4 100 6.8 6 46 137.8 320
Cond5 110 7.7 6.8 44 134 320

4.1. Experimental setup and datasets

The raw data used for this study was collected in the shallow water
of the South China Sea. While the towed ship was sailing at different
revolutions per minute (RPM), the 30-element TLA with a spacing of
1.5 m records its own noise. Additionally, there are no other nearby
ships present during the experiment. The sampling frequency 𝑓𝑠 is
10 kHz. The detailed experimental setup is shown in Table 1, including
the RPM, speed through water (STW), speed over ground (SOG), array
depth (AD), water depth (WD) and cable length (CL).

In this experiment, a band-pass filter is applied. For each scan
azimuth of broadband CBF, 2508 self-noise (negative) samples are
generated, each with a duration of 4.2 s. In addition, the noisy signal
(positive) samples are generated by adding the target signal in the
corresponding negative samples, resulting the same 2508 samples. The
data from each of the four conditions forms the training set, while the
remaining condition comprises the test set. Besides, the cross validation
is chosen and the ratio of the training set to testing set is approximately
4:1. This allows the noise of the training set and the test set to be
collected at different PRM.

Within the training set, the arrival time of the target signal is
randomly distributed between [0, 0.2] seconds, and the SNR of each
sample varies randomly between [−25, 0] dB. In the testing set, the
SNR of each sample ranges from −35 dB to 0 dB. The SNR is defined
as:

𝑆𝑁𝑅 = 10 log10
‖𝒔‖2 (31)

‖𝜼‖2
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Table 2
Comparisons of model size and computational complexity.

Model ConvTasNet DPTN MTSA-Net

No. Parameters 4.92M 2.64M 3.98M
FLOPs 13.46G 220.76G 469.84M

To avoid confusions, the near-field interference is the towed ship
self-noise. In the following experiments, the denotation of SNR is
adopted.

4.2. Evaluation metrics

To assess the performance of the proposed MTSA-Net, the SI-SNR,
two DSI-SNRs (Chu et al., 2023), the probability of detection (𝑃𝐷), the
probability of false alarm (𝑃𝐹 ) are selected as evaluation metrics.

The two DSI-SNRs are, respectively, expressed as

𝐷𝑆𝐼-𝑆𝑁𝑅1 = 1
𝑁𝑐𝑣

𝑁𝑐𝑣
∑

𝑖=0
(𝑆𝐼-𝑆𝑁𝑅(�̂�𝒊|𝑯𝟏

, 𝒔))

− 1
𝑁𝑐𝑣

𝑁𝑐𝑣
∑

𝑖=0
(𝑆𝐼-𝑆𝑁𝑅(�̂�𝒊|𝑯𝟎

, 𝒔))

(32)

𝑆𝐼-𝑆𝑁𝑅2 = 1
𝑁𝑐𝑣

𝑁𝑐𝑣
∑

𝑖=0
(𝑆𝐼-𝑆𝑁𝑅(�̂�𝒊|𝑯𝟏

, 𝒔))

−𝑚𝑎𝑥(𝑆𝐼-𝑆𝑁𝑅(�̂�𝒊|𝑯𝟎
, 𝒔))

, (33)

here �̂�𝒊|𝑯𝟏
and �̂�𝒊|𝑯𝟎

represent model outputs when the 𝑖th positive
ample and 𝑖th negative sample are inputted, respectively. 𝑁𝑐𝑣 is the
umber of positive samples in the test dataset. Both DSI-SNR1 and
SI-SNR2 quantify the enhancement in SI-SNR. DSI-SNR1 evaluates

he average improvement, while DSI-SNR2 specifically examines the
nhancement at low 𝑃𝐹 .

The 𝑃𝐷 and 𝑃𝐹 are, respectively, formed as

𝐷 = 𝑁𝑇𝑇 ∕(𝑁𝑇𝑇 +𝑁𝐹𝑇 ) (34)

𝐹 = 𝑁𝑇𝐹 ∕(𝑁𝑇𝐹 +𝑁𝐹𝐹 ), (35)

here 𝑁𝑇𝑇 and 𝑁𝐹𝑇 are the detected and undetected positive samples,
espectively. 𝑁𝑇𝐹 and 𝑁𝐹𝐹 are the detected and undetected negative
amples, respectively.

.3. Competitive baselines

In this study, the typical traditional and DL-based methods are in-
estigated to quantitatively compare them with the proposed network.
he conventional noise cancellation methods introduced in Section 2
re invalid when the DOA of the desired signal is in the ship self-noise
asking area. Therefore, the MF is adopted as conventional baseline
odel. For the DL-based comparison, the ConvTasNet (Luo and Mes-

arani, 2019), and DPTN (Chen et al., 2020) are utilized. ConvTasNet
s a fully convolutional neural network (CNN), whereas DPTN combines
he CNN, recurrent neural network (RNN) and attention mechanism.

Both structures share the same encoder and decoder design with
TSA-Net, differing only in the kernel size. The main difference is in

he separator module. ConvTasNet utilizes the temporal convolutional
etwork (TCN) with an increasing dilation factors as its separator.
he dilation factors grow exponentially to guarantee an adequately
xpansive temporal context window, enabling the utilization of the
ignal’s long-range dependencies. In the separator, DPTN splits this
odule input into overlapped segments. Then, a module combining
NN and multi-head attention combined is designed to learn the order

nformation of the sequence without positional encodings. However, it
s worth noting that the segmentation stage does not account for the
7

tructural aspects of the source signal and this structure only provides
Table 3
Quantitative comparison between baseline methods and the proposed method.

SNR Method 𝑃𝐷 SI-SNR DSI-SNR1 DSI-SNR2
(dB) (%) (dB) (dB) (dB)

−20 MF 7.6 −18.24 1.39 −2.53
ConvTasNet 20.0 −16.58 2.19 −1.76
DPTN 47.8 −13.98 4.17 −0.20
MTSA-Net 62.7 5.65 23.95 18.64

−18 MF 21.3 −17.22 2.41 −1.51
ConvTasNet 42.2 −15.22 3.55 −0.40
DPTN 74.0 −12.90 5.25 0.88
MTSA-Net 83.5 17.39 35.69 30.38

−15 MF 72.2 −14.83 4.79 0.88
ConvTasNet 87.6 −12.04 6.73 2.78
DPTN 98.0 −11.04 7.12 2.75
MTSA-Net 99.3 30.66 48.97 43.66

Table 4
Ablation studies on the MTSA block when SNR = −20 dB.

Global Fast Slow 𝑃𝐷 SI-SNR DSI-SNR1 DSI-SNR2
time attn. time attn. time attn. (%) (dB) (dB) (dB)

× ✓ ✓ 43.6 −3.48 14.54 6.97
✓ ✓ × 43.8 −2.74 15.99 8.09
✓ × ✓ 54.7 3.56 22.47 16.63
✓ ✓ ✓ 62.7 5.65 23.95 18.64

a fast and slow time scale information to approach the global context
awareness.

All the above models are retrained on the same datasets intro-
duced in Section 4.1. The proposed MTSA-Net is implemented on the
advanced DL framework 𝑃𝑦𝑇 𝑜𝑟𝑐ℎ by using NVIDIA RTX 4090 GPU. Ta-
ble 2 compares the model size and computational complexity of above
DL-based methods, where the model size of the proposed MTSA-Net is
between the convTasNet and DPTN models, and the proposed MTSA-
Net has the smallest computational complexity. The five performance
metrics mentioned in Section 4.2 are used to analyze the experimental
results.

The results are presented in Table 3 at three different SNRs, where
SI-SNR describes the enhancement effect of signal components and 𝑃𝐷
is calculated when 𝑃𝐹 is at 10−3. It is evident that the conventional
MF method exhibits subpar performance in detecting UWA signals with
low SNRs due to its susceptibility to noise mismatch. Furthermore,
the DL-based baselines consistently outshine the conventional method
across all evaluation metrics. Additionally, the proposed MTSA-Net
surpasses other DL-based baselines on the aforementioned datasets,
across various SNRs, and attains the highest evaluation scores. Taking
SNR = −20 dB as an example, it yields a notable 55.1% improvement
in 𝑃𝐷, 23.89 dB gain in SI-SNR, 22.56 dB gain in DSI-SNR1 and
21.17 dB gain in DSI-SNR2, which indicates its effectiveness even at low
SNRs. These results demonstrate that MTSA-Net is an efficient solution
for detecting UWA signals against ship noise background, particularly
in low SNR conditions. This superiority arises from their ability to
learn and adapt to the features of ship noise and cooperative source
signals. More specifically, obtaining high detection probability requires
discrimination between positive and negative samples. It can be seen
that the baselines attain a relatively high value for 𝑃𝐷, yet other per-
formance metrics do not exhibit equally impressive results. Meanwhile,
the proposed MTSA-Net achieves promising results in all metrics. This
is attributed to the superior capacity of MTSA-Net to effectively learn
the intricate signal structure while concurrently preserving its ability
to discern noise characteristics.

4.4. Ablation studies

This section conducts ablation studies on the MTSA-Net and the

results are shown in Table 4. The experimental configuration for all
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Fig. 7. ROC comparisons for different methods in different SNRs: (a) SNR = −25 dB; (b) SNR = −20 dB; (c) SNR = −18 dB; (d) SNR = −15 dB.
odels remains consistent with that of MTSA-Net, with the excep-
ion being the model architecture. Scores of 𝑃𝐷, SI-SNR, DSI-SNR1,
SI-SNR2 are adopted.

The MTSA block consists of attention mechanisms operating across
hree distinct time scales: global time, fast time and slow time. To assess
he effectiveness of these attention mechanisms, a stepwise approach
s employed, systematically removing these mechanisms individually
or evaluation. First, the global time attention module in every MTSA
lock is removed. It means that only the dual-path local time attention
odule is adopted. In this case, the model achieves the 𝑃𝐷 of 43.6%,

I-SNR of −3.48 dB, DSI-SNR1 of 14.54 dB and DSI-SNR2 of 6.97 dB.
esides, the score of 𝑃𝐷 is similar to that of DPTN (see Table 3) but
he scores of other metrics are improved about 10 dB. While DPTN
lso incorporates two local time scales, it adopts a sequential learning
pproach. In this model, the features of these two time scales are
earned in parallel and feature fusion is carried out within each module,
hich results in a better learning of signal structure.

Second, the performance is evaluated by using the global and fast
ime attention modules. It exhibits performance parity with the pre-
eding model, implying a congruent role for the slow time attention
odule when compared to the global time attention module. The

esults show that the two models can integrate contextual information
ppropriately.

Third, keep the other two attention modules of larger time scales.
he performance improves compared to the first two models, indicating
he contribution of slow time and global modules are relatively sub-
tantial. In summary, the MTSA-Net proposed in this study proficiently
xtracts both self-noise and signal features from multiple time scales.
otably, when integrated with the fast time attention module, the

low time attention module offers an additional dimension of global
wareness, supplementing the global module’s capabilities.
8

Fig. 8. Dependency of PD versus SNR in CFAR detection: (a) 𝑃𝐹 = 10−3; (b) 𝑃𝐹 = 10−2.

Table 5
Summary of model parameters.

Model parameter B T C L S P R
Value 4 44 000 256 50 1760 400 8

Signal parameter m T0 𝑓𝑠 𝑓𝑙 𝑓𝑐 𝑓ℎ /
(s) (Hz) (Hz) (Hz) (Hz) /

Value 4 1 10 000 300 350 400 /

Table 6
Parameter optimization on the MTSA block.

SNR Method 𝑃𝐷 SI-SNR DSI-SNR1 DSI-SNR2
(dB) (%) (dB) (dB) (dB)

−20 P = 256 33.8 −8.96 10.58 6.63
P = 300 45.8 −0.77 18.78 14.88
P = 400 62.7 5.65 23.95 18.64
P = 450 47.1 −0.31 19.22 15.33
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Fig. 9. The output correlation coefficients of MF, ConvTasNet, DPTN and MTSA-Net in different SNRs: (a) SNR = −25 dB; (b) SNR = −20 dB; (c) SNR = −18 dB; (d) SNR =
−15 dB.
4.5. Parameter optimization

The optimization method is Adam (Kingma and Ba, 2014), learning
rate is 0.001, and maximum epoch is 200. To avoid overfitting, the
early stopping strategy is adopted. The parameters of MTSA-Net and
the cooperative source signal are shown in Table 5. In cooperative
scenarios, the model parameter selection is supposed to be linked to
the structure of cooperative signal. In this study, the signal is composed
of 4 periodic pulses, spanning a total of 40 000 samples. Following the
application of an encoder module with a kernel size of 50 and a stride
size of 25, a total of 1600 remaining time steps are obtained. Conse-
quently, each individual pulse consists of 400 time steps, equivalent to
the size of an intra-chunk.

In order to illustrate the connection between model parameter
selection and signal structure, the tuning experiment on intra-chunk
size, which is denoted as 𝑃 , is conducted. The results are shown in
Table 6. It is obvious that the model shows the best result when the
intra-chunk size is equal to 400. The performance drops significantly as
the intra-block size deviates from 400. When the intra-chunk size is set
to either 300 or 450, there is a 15% reduction in 𝑃𝐷, and the other three
metrics have a 5 dB decrease. The tuning experiment demonstrates that
model with parameters that match the signal structure yields superior
performance.

4.6. Detailed statistical analysis

In this section, the ROC curves in various SNRs and SNR versus 𝑃𝐷
curves for different 𝑃𝐹 are provided to analyze the statistical properties.
Besides, the correlation coefficients output by the baselines and MTSA-
Net are also shown, facilitating a comprehensive evaluation of the
algorithms’ performance and its impact on signal enhancement.

First, these ROC curves stand as fundamental graphical tools, shed-
ding light on the intricate dynamics between 𝑃 and 𝑃 , thereby
9

𝐷 𝐹
providing valuable insights into the effectiveness of the detection pro-
cess. The ROC curves of different methods are shown in Fig. 7. It
can be seen that the conventional method MF, compared to the DL-
based methods, has poor performance in low SNRs, and achieves the
𝑃𝐷 of 7.6% when SNR = −20 dB. The performance degradation can
be attributed to the non-Gaussian nature of ship noise, resulting in a
discrepancy between the noise model employed by MF and the actual
noise characteristics. Furthermore, the proposed MTSA-Net is the best
model across all baselines for various SNRs, which implies that signal
and noise features are well learned and good discrimination is achieved.
Moreover, the 𝑃𝐷 improvement is the greatest in the low 𝑃𝐹 region.
This is noteworthy because detection systems exhibiting high 𝑃𝐹 values
can pose considerable challenges for sonar operators.

Second, the dependence of 𝑃𝐷 versus SNR at low 𝑃𝐹 holds greater
significance, which is investigated in Fig. 8. It is evident that the
proposed method outperforms the other baselines consistently across
various SNRs. When 𝑃𝐹 = 10−3, The SNR gain of the MTSA-Net
relative to the baselines is 1.5 dB, 4 dB, and 5.5 dB, respectively. Upon
comparing the outcomes concerning 𝑃𝐹 under different conditions, it
is apparent that the MTSA-Net introduced in this study yields greater
advantages, particularly in the context of low 𝑃𝐹 . This further proves
the effectiveness of the proposed method.

In addition to the evaluation metrics of 𝑃𝐷 and 𝑃𝐹 , the correlation
coefficient is a normalized indicator that can evaluate the quality of
the signal. Through a meticulous comparison of correlation coefficients
among positive and negative samples, with the replicated signal, before
and after undergoing various model enhancements, a more lucid as-
sessment of the performance enhancements offered by different models
across the entire datasets becomes discernible and the results are shown
in Fig. 9. It is apparent that the output correlation coefficients of
MF are gathered in lower left corner and the correlation coefficients
increase slowly with SNR. For ConvTasNet, the coefficient gain exhibits
a significant increase in only a subset of samples. In terms of DPTN, the
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Fig. 10. (a) Dependency of mean output correlation coefficients versus input SNRs;
b) Dependency of mean output SNRs versus input SNRs;.

iscrimination between positive and negative samples is extremely pro-
ounced but the coefficient gain is limited. This observation provides
nsight into the condition wherein a high detection rate is achieved
ithout a corresponding significant gain in SI-SNR, DSI-SNR1 and
SI-SNR2. The proposed MTSA-Net can still obtain a high coefficient
ain when maintaining sufficient discrimination. Additionally, the gain
f certain samples can attain extremely high levels. It implies that the
earning of noise characteristics is good enough to guarantee low 𝑃𝐹

and the learning of signal characteristics is significantly better than
other baselines. Furthermore, once the signal characteristics are iden-
tified, the likelihood of the output correlation coefficient value being
close to 1 is remarkably high, consequently leading to significantly
improved evaluation metrics.

To further illustrate the enhancement capability of the MTSA-Net,
the mean output correlation coefficients and output SNRs versus input
SNRs are depicted in Figs. 10(a) and 10(b), respectively. The growth
trend of MTSA-Net and ConvTasNet exhibit similarity, as do those
of MF and DPTN. When the correlation coefficients among the three
baselines reach approximately 0.3, the corresponding value for MTSA-
Net exceeds 0.9. As for output SNR, when the values among the three
baselines are around −10 dB, the corresponding value for MTSA-Net
rise above 30 dB. For MF and DPTN, the increase of output correlation
coefficients and SNR is slow. Besides, the output correlation coefficient
and SNR of MTSA-Net become stable when input SNR is above −15 dB.
n this circumstance, the coefficients of most samples are equal to 1,
epresenting that the positive samples are denoised and successfully
nhanced.

. Conclusion

In this study, a DL-based MTSA-Net is proposed for denoising the
hip radiated self-noise under cooperative source scenario. The network
omprises three modules, in which the encoder and decoder module
enerate a representation of time-domain signal and transform the
epresentation back to the waveform, respectively. Besides, the sep-
rator consisting of multiple multiscale time self-attention blocks is
esigned to integrate the local information of intra-pulse and inter-
ulse with global information. Especially, the learning of inter-pulse
eatures is based on the signal structure of cooperative source, which
s not present in previous studies. Throughout the oblation studies and
eal-world data based experiments, the effectiveness and efficiency are
emonstrated.
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