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a b s t r a c t

To achieve efficient underwater acoustic (UWA) signal detection in low signal-to-noise ratio (SNR) sce-
narios, the transmitted signals are designed with a large time-bandwidth product to get a high detection
gain. The linear correlator (LC) is considered as the maximum SNR detector, whose detection gain is pro-
portional to the time-bandwidth product. However, the detection performance of LC degrades signifi-
cantly in time-variant multipath UWA channel and non-Gaussian UWA ambient noise. In this study,
we present a deep-learning based two-stage UWA signal detection method in intensity fluctuation envi-
ronments. This method takes the advantages of the Conv-TasNet and Encoder-Decoder network, which
utilizes an encoder module to extract signal features, a separation module to enhance the signal compo-
nents and then another decoder module to reconstruct the transmitted signal. To demonstrate the per-
formance of the proposed method, the datasets used for training and testing originated from the
ASIAEX 2001 South China Sea (SCS) experiment. The experimental results show that our model outper-
forms the classical LC and channel estimation based LC (CE-LC) in constant false alarm rate (CFAR) detec-
tion and also surpasses the TCDAE and Conv-Tasnet models as evaluated by DSI-SNR1 and DSI-SNR2.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

The rapid development of marine resources has led to increased
interest in active signal detection within complex underwater
acoustic (UWA) environments. Active signal detection has a wide
range of applications, including echo detection, target navigation,
communication system wake-up, and time synchronization. To
achieve high-gain UWA signal detection, a large time-bandwidth
product signal is necessary. However, due to the strong absorption
of high-frequency sound, the bandwidth available is limited.
Therefore, the practical approach is to maximize the transmission
signal duration to increase the gain in time domain.

Linear correlator (LC) is the most common detector in UWA
detection system, which is known as the maximum signal-to-
noise ratio (SNR) detector [1]. It assumes that the UWA ambient
noise follows a Gaussian distribution, is uncorrelated, and the
UWA channel is time-invariant with a single path. Obviously, these
assumptions are unreasonable in real UWA environment. Besides,
the UWA channel becomes more complex as the transmission sig-
nal duration increases, which results in the significant performance
degradation of LC. The complexity is mainly reflected in three
aspects: UWA ambient noise, multipath propagation and Doppler
effect.

UWA ambient noise is of impulsive property, which can be
caused by marine life [2] and human activities [3]. This means that
large amplitude values occur frequently in time domain and man-
ifests heavy tail property in probability density function (PDF)
compared to the Gaussian noise. The performance of LC is nega-
tively impacted by this property. To be precise, the symmetric
alpha-stable (SaS) distribution is adopted to represent the UWA
noise [4]. However, the PDF of SaS has no closed form expression
except for some cases, such as a ¼ 2 and a ¼ 1 corresponding to
Gaussian and Cauchy cases, respectively.

Based on its heavy tail property, Chitre proposed the maximum-
likelihood (ML) and locally optimal (LO) detectors with the
detailed knowledge of noise probability distribution [4]. To reduce
the computational complexity, Zozor used some particular proper-
ties of SaS to derive a parametric suboptimal detector without
explicit PDF [5]. Chitre further compared the performance of differ-
ent approximate functions of PDF [6]. Parametric detectors face

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apacoust.2023.109513&domain=pdf
https://doi.org/10.1016/j.apacoust.2023.109513
mailto:whb@mail.ioa.ac.cn
https://doi.org/10.1016/j.apacoust.2023.109513
http://www.sciencedirect.com/science/journal/0003682X
http://www.elsevier.com/locate/apacoust


H. Chu, C. Li, H. Wang et al. Applied Acoustics 211 (2023) 109513
challenges when applied to UWA noise due to its non-Gaussian
and non-stationary properties, especially for long-duration signals,
which can make it difficult to obtain a reliable noise distribution
estimate [7]. To avoid the numerical integration computation of
PDF, some non-parametric transfer functions are applied to LC,
for example, the sign function which can improve its applicability
in UWA noise [4, 8]. These detectors suppress the large amplitude
signals to mitigate negative impacts of impulsive noise. It is clear
that the performance of non-parametric detectors is inferior to that
of parametric detectors.

Additionally, UWA channel is characterized as a double-
selective fading channel [9], which refers to the multipath propa-
gation and Doppler effect. The multipath propagation is caused
by sea-surface and sea-bottom reflection. Due to the multipath
propagation, signal energy is dispersed and pulse duration is
extended. To concentrate the multipath energy, channel estima-
tion methods are applied to acquire the multipath structures. Then,
time reversal mirror (TRM) is used to achieve adaptive focusing
[10–12]. Tian used robust orthogonal matching pursuit to get mul-
tipath information and improved the detection performance in
multipath environment affected by impulsive noise [13]. With
the help of channel estimation methods, the performance of LC is
improved by utilizing multipath information in multipath environ-
ment. However, these channel estimation based methods may fail
in low SNR scenes and lead to noise amplification.

Another challenge for signal detection is Doppler effect, which
leads to the time-varying impulse response by platform motion
and distortion of the propagation medium [14] [15]. As for linear
platform motion, the Doppler shift can be corrected by moving tar-
get indicator (MTI) when there is no range migration [16]. When
range migration occurs, it can be compensated using Keystone
Transform [17] and Radon-Fourier Transform [18]. For more com-
plex target motion model, Lin proposed a slow time reverse based
method [19]. These methods are widely applied in radar system
under the assumption of narrowband signal. Zhang formed a
multi-pulse long-time integrated model and generalized it to the
UWA wideband signal [20]. The prior knowledge of motion model
is required in the above methods. When the motion model mis-
matches, the performance is deteriorated.

Another type of Doppler effect, resulting from propagation
medium distortion, is typically less pronounced than those caused
by platform motion, but it tends to be more erratic. The difficulty
brought to signal detection is the decrease of temporal coherence.
This physical phenomenon was observed and measured in shallow
and deep water [21–24]. Phase and delay-locked loop structures
are used to compensate this Doppler distortion with preliminary
pilot synchronization in UWA communication [25], which is
impossible in UWA active signal detection as the presence of inter-
ested signals is undetermined. Furthermore, the target motion
model based methods mentioned previously seem not applicable
for suppressing the random range migration as the motion model
is unpredictable in this case.

To confront the channel fading and cope with impulsive noise,
some transfer functions are utilized to enhance the received sig-
nals. In the presence of impulsive noise, the transfer functions
are designed to suppress the large amplitude signals. For UWA
multipath channel, the transfer functions are TRM with various
channel estimation based methods. For Doppler effect, the transfer
function is to compensate the range migration. However, the con-
ventional detectors’ performance suffers degradation in ASIAEX
2001 SCS environment due to the observed decrease in temporal
coherence as reported in [23,24]. This decrease is especially severe
on linear correlator.

In general, traditional techniques primarily concentrate on the
present data, whereas deep learning methods can leverage histor-
ical data to learn. As a result, the performance of conventional
2

methods may decline if the current samples do not align with
the templates, such as the transmitted signal and motion model,
particularly in a time-varying environment. However, deep learn-
ing based methods are considered to show promising performance
in complex environment with its data-driven function expression.
Upon completing the learning process, deep learning-based meth-
ods can compensate for template mismatch, which in turn leads to
high-gain detection capabilities. In order to employ deep learning-
based methods for active signal detection, the method must be
capable of distinguishing between the signal and ambient noise,
as well as dealing with channel fading. Convolutional neural net-
works (CNNs) have strong capability of extracting features. Stacked
convolutional denoising Auto-Encoders are proposed for unsuper-
vised training [26]. It can transform the raw data into high-level
feature representations as well as data compression. Zhang utilizes
the stacks of convolutional neural network with skip connections
for UWA communication [27]. It has been shown that the stacked
CNN can effectively extract promising features and achieve signal
recovery. However, the temporal dependence in time domain is
not efficiently captured for CNNs and stacked CNN. To get a more
larger receptive field, a temporal convolutional neural network
(TCNN) is proposed for real-time speech enhancement [28]. In
many underwater application scenarios and early speech enhance-
ment, deep learning based methods are implemented in the time–
frequency domain. But the features in frequency domain are not
enough for active signal detection. Conv-Tasnet is proposed to
model the signal directly in time domain [29]. This model utilizes
a 1-D convolutional layer and deconvolutional layer as the encoder
and decoder modules to replace short-time Fourier transform
(STFT) and inverse STFT, respectively. Then, masks for speaker sep-
aration are constructed by using TCNN which consists of several
stacked dilated convolutional blocks. However, the feature extrac-
tion capability is not sufficient without considering the channel
distortion.

In this study, we consider the active signal passing through
UWA channels as the interfered signal with ocean noise, multipath
propagation and Doppler effect. We resolve the detection problem
in a two-stage way. At first, we apply a temporal convolutional
separation network for signal reconstruction in time-domain.
Afterwards, decide whether the signal is present or not by utilizing
LC and channel estimation-based LC. The network consists of three
modules: an encoder, a separator, and a decoder. The encoder is
designed with stacked convolutional blocks used to extract
higher-dimensional features and compress time-domain informa-
tion. The separator comprises stacked dilated convolutional blocks
aiming to form an efficient mask based on the compressed fea-
tures. Then, the decoder can be applied to achieve time-domain
signal reconstruction, which has an inverse architecture compared
with the encoder. The loss function is the scale-invariant signal-to-
noise ratio (SI-SNR) in this network.

The main contributions of this study are summarized as
follows:

1 The deep-learning based separation network is introduced
into UWA active signal detection. The signal detection problem
is to separate the signal from ambient noise, which is fitting to
the separation network.
2 The SI-SNR is chosen to replace the mean squared error (MSE)
as the loss function in UWA active signal detection. The SI-SNR
loss function is equivalent to correlation coefficient [30] which
is our criteria for characterizing temporal coherence and signal
recognition.
3 The deep-learning structure is utilized to suppress the ran-
dom range migration caused by the distortion of the propaga-
tion medium. The detrimental influence, caused by this
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random medium distortion, can be mitigated by compressing
the time domain information.
4 These detectors are represented in a uniform form and the
performance of these detectors is compared. These detectors
differ in their corresponding transfer functions.

This paper is organized as follows. In Section 2, the conventional
UWA active signal detection system is introduced. Section 3 pre-
sents the proposed deep-learning based two stage UWA active sig-
nal detection method. The performance of the proposed method is
shown in Section 4. Finally, Section 5 concludes the paper.

2. UWA active signal detection system

In this section, the conventional UWA active signal detection
system is introduced, and several conventional detectors are com-
pared. The schematic is shown in Fig. 1. The transmitted signal
propagates through the UWA channel to the receiving end with
ambient noise. In the receiving end, the presence of signal or not
is decided by the detector.

2.1. Underwater acoustic signal and channel model

The transmitted signal consists of M adjacent phase modulated
signals, which can be defined as follows:

s1 nð Þ ¼ A cos / nð Þð Þ 0 6 n 6 N � 1
¼ 0 elsewhere

ð1Þ

s nð Þ ¼
XM�1
m¼0

s1 n�mNð Þ

where A is the magnitude, / nð Þ is the instantaneous phase, and N is
the signal duration in the samples for each phase modulated signal.
For m-sequence, the instantaneous phase is defined as:

/ nð Þ ¼ 2pf 0nTs þ /0mseq nð Þ ð3Þ
where f 0; Ts /0 and mseq are the center frequency, sample interval,
phase angle, and m-sequence, respectively..

Given the doubly-selective characteristic of UWA channel, we
can denote the UWA channel impulse response as

h n; kð Þ ¼
XL�1
l¼0

Al nð Þd k� kl nð Þð Þ ð4Þ

where L is the number of paths, n and k are the index of time and
time delay, Al nð Þ and kl nð Þ denote the gain and time delay of the
l-th path at sample n, respectively.

After passing through the UWA channel, the received signal can
be expressed as

r nð Þ ¼
XK�1
k¼0

s n� kð Þh n; kð Þ þw nð Þ ð5Þ

where K is the length of channel and w nð Þ is the ambient noise.
Fig. 1. The UWA active so

3

Our aim is to determine whether the transmitted signal is
received. Then, the detection problem can be formulated as a
hypothesis-testing problem with two cases where hypothesis H1

and H0 mean that the transmitted signal is present or not.

r nð Þ ¼
w nð Þ ; if H0XK�1
k¼0

s n� kð Þh n; kð Þ þw nð Þ ; if H1

8><
>: ð6Þ

2.2. Conventional underwater acoustic detectors

The test statistic for the LO detector can be given by [4]:

K rð Þ ¼
XMN

n¼0
g r nð Þ½ �s nð Þ ð7Þ

where g �ð Þ is the transfer function, which is determined by the dis-
tribution of ambient noise and also the UWA channel. When g �ð Þ is a
linear function, that is g xð Þ ¼ ax, the test statistic can be simplified
as LC detector, which is optimal in the presence of Gaussian noise.
Obviously, the performance of LC detector will degrade in the pres-
ence of non-Gaussian noise. In the following, we will derive several
detectors and explain their relationship.

To simplify the notation, the UWA channel impulse response is
rewritten as h kð Þ and zero-padded to length N, wherein the

Algorithm1 OMP

Require: Received signal r, dictionary matrix S, iterations I
1: Initialization: iteration i 0 residual e0  y atom index
set K0  £

2: while i < I do
3: Calculate inner product between residual and each
atom, and then select the atom corresponding to the largest
product, i.e., j argmaxjsTj eij

4: Update the atom index set, i.e. Kiþ1  Ki [ j

5: Calculate the channel estimation ĥ S�1Kiþ1r

6: Update the residual eiþ1  y � SKiþ1 ĥ
7: i iþ 1
8: end while

9: Outputs: the channel estimation ĥ and the reconstructed

signal SKi
ĥ

time-invariant channel is assumed. Then Eq. 5 can be expressed as

r ¼ Shþw ð8Þ
where the signal matrix can be written as

S ¼

s 0ð Þ s N � 1ð Þ � � � s 1ð Þ
s 1ð Þ s 0ð Þ . .

.
s 2ð Þ

..

. . .
. . .

. ..
.

s N � 1ð Þ s N � 2ð Þ � � � s 0ð Þ

2
666664

3
777775 ð9Þ
nar detection system.
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The output of LC can be expressed as

zLC ¼ STr ð10Þ

where the vectors r ¼ r 0ð Þ; � � � ; r N � 1ð Þ½ �T ;h ¼ h 0ð Þ; � � � ;h N � 1ð Þ½ �T ,
and w ¼ w 0ð Þ; � � � ;w N � 1ð Þ½ �T .

The least-squares solution can be expressed as

ĥLS ¼ S�1r ¼ STS
� ��1

STr ð11Þ

As the auto-correlation function of wideband signal is approxi-
mated to Dirac function [31], we can get

ĥLS ¼ 1
r2

s
STr ð12Þ

where r2
s is the power of signal. From Eq. 10 and Eq. 12, we can see

that LS detector is equivalent to LC detector.
For CE-LC detector, the output can be expressed as

zCE�LC ¼ r � s� ĥ
� �

¼ r � g
s� ĥ

� �
¼ r � êh� �

� s
¼ zTRM�LC
¼ STgCE rð Þ

ð13Þ

where e� means time reversal operation, � means convolution oper-
ation, and �means correlation operation. Obviously, using the same
channel estimation, CE-LC detector is equivalent to TRM-LC detec-
tor. In this paper, the expression of CE-LC is adopted.

Given the sparsity of UWA channel, orthogonal matching pur-
suit (OMP) algorithm is used to estimate the channel. The proce-
dure of sparse channel estimation and received signal
reconstruction using OMP is described in Algorithm1. The OMP
algorithm uses partial columns of the dictionary matrix to achieve
Fig. 2. The deep-learning based two-stage

4

channel estimation, which can reduce the noise of the channel. In
the following sections, we use OMP-LC to represent CE-LC.

According to the above descriptions, all detectors can be repre-
sented in a unified form with different transfer functions g �ð Þ. For
LC detector, the transfer function is a linear function. As for CE-
LC detector, the transfer function is a convolution function, which
is related to the algorithms of channel estimation. The linear func-
tion is easy to implement but performs not well in non-Gaussian
noise and double-selective fading channel. The convolution func-
tion utilizes the multipath information, but has a noise amplifica-
tion issue. In the next section, we adopt deep-learning network
to get a better transfer function.

3. Deep-learning based UWA active signal detection method

In this section, the architecture of deep-learning based detec-
tion method is proposed. As shown in Fig. 2, the proposed method
has two stages. The first stage utilizes the deep-learning network
to achieve signal enhancement, which consists of three modules-
an Encoder, a Separator, and a Decoder. Furthermore, the LC and
OMP-LC detector are applied to identify whether the signal is pre-
sent or not in the second stage.

3.1. Encoder

The received signal is taken as the input of the Encoder. The
Encoder is utilized to transform the discrete waveform into a single
feature map, which is implemented by a 1-D convolutional block.
The detailed architecture of the encoder is shown in Fig. 2(B).

The input is divided into F overlapped frames xf 2 RL�1, where L
is the length of each frame and f ¼ 1;2; � � � ; F is the frame index.
The stride of the first 1D convolutional is L=2, otherwise, the stride
is 1. The kernel size is L. Zero padding is adopted in the 1-D convo-
lutional block to ensure the number of frames to be the same.
Therefore, the Encoder realizes the information compression and
feature extraction. The feature map w can be formulated as:
UWA active signal detection system.



Fig. 3. The diagram of loss function.
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w ¼ PReLU U3 � PReLU U2 � PReLU U1 � Xð Þð Þð Þ

where X ¼ x1; x2; . . . ; xF½ � 2 RL�F contains all input frames,
U1 2 RC1�L;U2 2 RC2�C1 , and U3 2 RC3�C2 consist of C1;C2 � C1 and
C3 � C2 learnable kernels, respectively. Fig. 3.

3.2. Separator

The Separator is used to learn a non-negative mask msep from
the feature map w, which is the output of the Encoder. The esti-
mated clean feature map of transmitted signal can be formed as:

ws ¼ w�msep ð15Þ
The specific structure of the separator is shown in Fig. 2 (D). The

Separator is implemented by the stacked 1-D dilated convolutional
blocks (1-D ConvBlock). The number of 1-D Conv-Block is R, which
has x layers. The kernel size is 3 in every 1-D ConvBlock. The dila-
tion factors increase exponentially to ensure a sufficiently large
reception field to incorporate with the long-range dependence
temporal information. Besides, the 1� 1� conv block is used at
the beginning and the end of the module as a bottleneck layer to
connect with the Encoder and Decoder. To keep the frame length
the same, zero padding is used in every block whose structure is
shown in Fig.2 (C). The residual path of each block serves as the
input to the next block, and the skip-connection paths for all blocks
are summed up and used as the output of the Separator.

3.3. Decoder

The Decoder is a symmetrical structure of the Encoder, which
transforms the clean feature map ws to a waveform, that is the
estimation of transmitted signal. The overlapped frames of the esti-
mation can be formulated as

Y ¼ PReLU V3 � PReLU V2 � PReLU V1 �wsð Þð Þð Þ ð16Þ
Then, we can get the estimation of the transmitted signal ŝ

which is recovered by removing the overlapped frames.

3.4. Training objective

Here, we choose SI-SNR as our loss function, which has com-
monly been used in speech separation system. It is defined as:

ŝ ¼ gDL rð Þ
sproj ¼ ŝ;sh is

sk k2

e ¼ ŝ� sproj

SI � SNR ¼ 10log10
sprojk k2
ek k2

8>>>>>><
>>>>>>:

ð17Þ
5

where �h i and �k k denote the inner product operation and power
operation respectively. gDL �ð Þ denotes the deep learning network, ŝ
denotes the signal estimation, sproj denotes the projection of signal
estimation onto the transmitted signal, and e is the residual
between the signal estimation and the signal projection.

The mean square error (MSE) loss function is defined as:

JMSE ¼ ŝ� sk k2 ð18Þ
From Fig. 3, it is obvious that given the angle h, SI-SNR is invari-

ant with the scale a but MSE is dependent on the scale a. Besides,
maximizing SI-SNR is equivalent to maximizing the correlation
coefficient, which is exactly the purpose for improving temporal
coherence. Furthermore, the minimum mean-squared error
(MMSE) can be asymptotically approached by deep learning based
methods [32,33] and is also equivalent to SI-SNR [30].

For the ASIAEX 2001 SCS experiment, internal waves are the
major oceanic features in the exploration of acoustic volume inter-
action, resulting in sound-speed fluctuation and scattering. Due to
the ocean sound field fluctuation, the experimental area is a time-
varying environment and the amplitude gains of the received sig-
nal are variant at different time. Based on the above analysis, the
SI-SNR function is more conductive for UWA active signal
detection.

3.5. Time domain signal detection

Based on the deep-learning method, we can get the estimation
of transmitted signal from the received signal in time domain.

ŝ ¼ gDL rð Þ ð19Þ
After passing through the LC and OMP-LC detector, we can get

the output of the whole system

zDL�LC ¼ STgDL rð Þ ð20Þ

zDL�OMP�LC ¼ STgOMP gDL rð Þð Þ
¼ STgDL�OMP rð Þ

ð21Þ

We can see that the transfer function is replaced by the deep-
learning network and can be combined with channel estimation
methods.

4. Experiments

In this section, we evaluate the performance of the proposed
method in the detection system. Several experiments were con-
ducted to compare our method with other conventional and deep
learning methods. In the following, we will introduce our datasets,
then make comparison with deep neural network (DNN) based
models and optimize the model’s parameters. Finally, the imple-
mentation process with conventional methods is presented and
the results are discussed.

4.1. Datasets preparation

The raw data used in this study was obtained by ASIAEX 2001
SCS experiment. The configuration of the ASIAEX 2001 SCS exper-
iment is shown in Table 1 and the source transmission schedule is
provided in Table 2. To form our datasets, the first 10 pulses and
the top hydrophone are chosen. After bandpass filtering, the
received signals are demodulated and resampled in 800 Hz. Our
datasets contain about 40 h signal components and 60 h ambient
noise. Under assumption H1, each sample consists 10 pulses and
its adjacent ambient noise. Under assumption H0, each sample is
composed of ambient noise. In our following experiments, the ratio
of the training set to testing set was approximately 4:1 and cross



Table 1
Configuration of the experiment.

Parameters Value

source E400
source depth 99.7 m

distance 19 km
receiver 16-element vertical line array

receiver depth 42.75 m-121.5 m

Table 2
Source transmission schedule.

Parameters Value

center frequency 400 Hz
bandwidth 100 Hz

m-sequence length 511
number of pulses 88

time length of a single pulse 5.11s
sample rate 3255.208252 Hz
resample rate 800 Hz
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Fig. 5. Time domain waveform of recorded underwater ambient noise.
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Fig. 6. Comparison of PDF between the underwater ambient noise and the Gaussian
noise.
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validation was chosen. To guarantee the generalization of our pro-
posed method, the data in training set and testing set is from dif-
ferent experiment dates, which is considered to have different
propagation medium fluctuations. Additionally, we calculate the
correlation coefficient and SI-SNR matrix between the training
and testing sets, which are shown in Fig. 4 (a) and (b). These matri-
ces model the difference in channel characteristics and can be con-
sidered as a measure of distance between the training and testing
sets. There are only 7 numbers greater than 0.7 in the correlation
coefficient matrix and 5 numbers greater than 0 dB in the SI-SNR
matrix. It can be seen that the correlation coefficients and SI-
SNRs of the channel characteristics are low, indicating a difference
in the environment between the testing set and the training set.

In the training set, the arrival time of pulses is random between
[300,2000] sampling points and the SNR of each sample is random
between [-15,0] dB. For the testing set, the SNR of each sample is
from �25 dB to 0 dB. The SNR of the received signal is defined as

SNR ¼ 10log10
rsignal

�� ��2 � rnoisek k2
rnoisek k2

where rsignal is the received signal under assumption H1 and rnoise is
the adjacent received signal under assumption H0.

The time domain normalized waveform of the recorded under-
water ambient noise (about 15 min) is shown in Fig. 5, where the
impulsive property of the noise can be clearly observed. Compared
with Gaussian distribution, it appears that the probability density
for large noise amplitudes is significantly higher in Fig. 6.
Fig. 4. (a) The correlation coefficient matrix between the training and test

6

Here, we give two time-varying channels (SCS1 and SCS2) sam-
pled from our testing sets, as well as their delay-Doppler spread
functions (DDS) and power delay profiles (PDP) in Fig. 7, which
are described in [14]. In Fig. 7 (a) and (b), the sub-pictures in the
upper right corner are partial enlarged pictures from 1.2 s to 1.3
s. We can see that the two channels have several relatively stable
paths but with some distortion,which means range migration. To
provide additional evidence of the quality of the UWA channels,
we employ empirical mode decomposition (EMD) as described in
[34] to isolate the random component from the channel.

h ¼ hd þ hw ð23Þ

where h represents the UWA channel. hd is known as the trend, rep-
resenting the contribution of pseudo-deterministic physical phe-
nomena to the channel’s fluctuations. Additionally, hw represents
channel fluctuations caused by scatterers that result in fast fading,
which is the zero-mean wide-sense stationary uncorrelated scatter-
ing (WSS) ergodic random process.
ing sets; (b) The SI-SNR matrix between the training and testing sets.
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Fig. 7. Channel impulse response: (a) SCS1; (b) SCS2. Delay-Doppler spread function: (c) SCS1; (d) SCS2. Power delay profile: (e) SCS1; (f) SCS2.

Table 3
Summary of system parameters and symbols.

Parameter Value Symbol Value

Optimizer Adam L 255
Learning rate 1e-3 F 355
Batch number 128 C1 128
Epoch number 200 C2 256
Training SNR �15 dB - 0 dB C3 512
Training TOA 300–2000 sample points B/H/Sc 128

Test SNR �25 dB–0 dB x 8
Test TOA 300–2000 sample points R 3

H. Chu, C. Li, H. Wang et al. Applied Acoustics 211 (2023) 109513
Then the average fade rate (AFR) defined in [27] can be applied
to evaluate the UWA channels.

AFR ¼ 10 log
Pow hwð Þ
Pow hð Þ ð24Þ

The AFR values of the SCS1 and SCS2 channels are 0.0505 and
0.6312, respectively. We can see that the SCS1 channel with small
AFR value is of higher quality. This is because its stable paths’
energy is more concentrated and it has smaller Doppler frequency
shift.

4.2. Comparison with baselines

In this section, the advantages of our model over previous mod-
els are analyzed without considering the multipath information. As
a comparison, the LC detector is used as the conventional baseline
model. In addition, the TCDAE [35] and Conv-Tasnet [29] are used
as the representative DNN-based baseline models, which are
briefly introduced as follows: TCDAE is one-dimensional time-
domain denoise approach with skip connections between encoder
7

and decoder layers. Conv-Tasnet is a fully-convolutional time-
domain audio separation network for end-to-end time-domain
speech separation. All the above models are trained on the same
datasets. Our proposed model was implemented on the advanced
deep-learning framework PyTorch and trained using NVIDIA RTX
4090 GPU. The parameters and symbols of our proposal are listed
in Table 3.



Table 4
Quantitative comparisons with other UWA signal detection methods on our dataset.

SNR(dB) Methods DSI-SNR1(dB) DSI-SNR2(dB)

�20 LC 3.49 �5.62
TCDAE 6.58 �3.13

Conv-Tasnet 10.53 �0.50
Our model 16.05 7.90

�18 LC 5.08 �3.97
TCDAE 8.42 �1.29

Conv-Tasnet 15.53 5.95
Our model 24.83 16.69

�15 LC 7.72 �1.33
TCDAE 11.16 1.45

Conv-Tasnet 19.58 6.01
Our model 28.76 20.61

Ave. LC 5.43 �3.64
TCDAE 8.72 0.99

Conv-Tasnet 15.21 3.82
Our model 23.21 15.07
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In audio separation task, the signal-to-distortion ratio (SDR)
[36] and SI-SNR are used as objective metrics. To be pointed out,
the SDR is equivalent to SI-SNR for one target signal. Unlike audio
tasks, the aim of UWA signal detection task is to magnify the differ-
ence between the two scenarios with and without the presence of
the target signal. Therefore, we define two differential SI-SNR (DSI-
SNR) loss functions as our objective metrics:

DSI � SNR1 ¼ 1
Ncv

XNcv

i¼0
SI � SNR ŝijH1 ; s

� �� �

� 1
Ncv

XNcv

i¼0
SI � SNR ŝijH0 ; s

� �� � ð25Þ

DSI � SNR2 ¼ 1
Ncv

XNcv

i¼0
SI � SNR ŝijH1 ; s

� �� �
�max SI � SNR ŝijH0 ; s

� �� � ð26Þ
Table 5
Tuning the hyper-parameters.

L H x

127 128 8
255 128 8
511 128 8
255 128 7
255 256 8
255 512 8

LC OMP-LC
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Fig. 8. The output noise levels
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where ŝijH1 and ŝijH0 represent model outputs when the i-th noisy
signal sample and i-th noise sample are inputted, respectively. Ncv

is the number of signals in the test dataset. The DSI-SNR1 and
DSI-SNR2 both characterize the improvement in SI-SNR. The former
measures the average improvement, while the latter focuses on the
improvement at low probability of false alarm (PFA).

The results for DSI-SNR1 and DSI-SNR2 are presented in Table 4
at three different SNRs. It is evident that the conventional LC detec-
tor performs poorly in detecting UWA signals with low SNRs, while
the DNN-based baselines outperform the conventional methods
across all evaluation metrics. Moreover, our proposed method out-
performs other DNN-based techniques on our datasets at different
SNRs, achieving the highest evaluation scores. Our method pro-
vides a 17.78 dB gain in DSI-SNR1 and an 18.71 dB gain in DSI-
SNR2, which indicates its effectiveness even at low SNRs. These
results demonstrate that our proposed method is an efficient solu-
tion for detecting UWA signals, particularly in low SNR conditions.

4.3. Parameter optimization

In this section, the parameters including the kernel size L in the
encoder and decoder, the number of filters H in the separator and
the number of 1-D D-ConvBlocks in each repeat x are optimized
with SNR ¼ �18 dB and the results are shown in Table 5. We can
see that for different H values, DSI-SNR1 results are similar. How-
ever, the methods achieved the best results for DSI-SNR2 when we
set H ¼ 128. Meanwhile, increasing the H in the separation module
greatly increases the model size. Additionally, when we reduce the
L and x values, there is significant performance degradation in both
DSI-SNR1 and DSI-SNR2. This is particularly evident for the L
parameter.

4.4. Evaluation on unseen datasets

This section further explores the generalization performance of
our model on unseen datasets. For this purpose, we utilize two
DSI-SNR1 (dB) DSI-SNR2 (dB)

19.34 6.87
24.83 16.69
23.54 11.15
21.47 12.77
24.16 13.80
25.57 15.50

DL-LC DL-OMP-LC

of LC, OMP-LC and DL-LC.
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different unseen scenarios to test our method. The first scenario is
from the unseen source S400 in the AXIAEX 2001 SCS experiment
and its geographic coordinates are shown in Fig. 10. The distance
between S400 source and recever is about 30 km. To be pointed
out, the E400 and S400 sources transmit the same frequency band
signal but with different modulation sequences. We demodulate
the S400 source transmitted signal and then modulate it by the
E400 source’s m-sequence. After that, this test dataset utilizes
the same template signal. To simplify it, we call it the S400 dataset.
The second is the unseen noise dataset, which is from ShipsEar
dataset [?] and conducted in Cortegada. In this scenario, we form
our test dataset by mixing the noise signal in ShipsEar dataset with
the source E400 signals in the AXIAEX 2001 SCS experiment. The
results are shown in Fig. 12.

For the S400 dataset (Fig. 12(a)), we observe that the LC detec-
tor has 1.8 dB performance improvement in DSI-SNR1 and DSI-
SNR2. Meanwhile, our model achieves the similar DSI-SNR1 and
DSI-SNR2, which means that the detection performance of our
model is not affected and our model has a good generalization per-
formance in different sound propagation sea area. Besides, for the
unseen noise dataset (ShipsEar), it can be seen from Fig. 12 (b) that
= �25 dB; (b) SNR = �20 dB; (c) SNR = �18 dB; (d) SNR = �15 dB.
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the LC detector has about 0.9 dB degradation in DSI-SNR1 and has
about 6 dB gain in DSI-SNR2. Our model has about 2 dB gain in DSI-
SNR1 and DSI-SNR2. The noise samples (rain, flow and wind) in the
ShipsEar dataset are collected from the sea surface. The E400 and
S400 noise samples are collected from the underwater environ-
ment. It can be seen that our model exhibits a robust performance
in different noise background environment. Furthermore, the per-
formance gain of our model over LC detector is relatively stable in
both unseen datasets. All the above results demonstrate that our
proposed model is effective to deal with unseen datasets and has
a good generalization performance.

4.5. Detailed analysis with conventional methods

As the advantages of our model are analyzed in previous sec-
tions. In this section, the detailed analysis is implemented to
Fig. 12. Evaluation of our model for unseen datasets in terms of D

(a)

(c)

Fig. 13. The output correlation coefficients of LC, OMP-LC, DL-LC and DL-OMP-LC in diffe
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demonstrate the performance of our proposed detection methods.
The detectors in Eq. 20 and 21 are experimentally compared with
two other approaches:

1 Normalized LC based detection system. This method is widely
used for various detection systems because it offers stable per-
formance with low complexity.
2 OMP based detection system. Fisrt, this method uses OMP to
acquire a prior knowledge of the UWA channel, and then recon-
structs the copy signal or deconvolves the received signal.
Finally, normalized LC is applied to detect if the object signal
exists. It improves the performance of detection system when
the OMP method is valid.

As we discussed before, our aim is to get a higher probability of
detection (PD) while maintaining a low PFA. In this section, we will
SI-SNR1 and DSI-SNR2: (a) S400 dataset; (b) ShipsEar dataset.

(b)

(d)

rent SNR: (a) SNR = �20 dB; (b) SNR = �18 dB; (c) SNR = �15 dB; (d) SNR = �10 dB.
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make a comparison about the output noise levels of these methods
under assumption H0, which are corresponding to the detection
threshold (Th) in CFAR detection. The box plots of the above detec-
tors are shown in Fig. 8. The comparisons of correlation coefficients
are shown in Fig. 9, where the straight lines are noise level con-
tours. If the scatters are above these lines, then the noise level is
amplified. We can see that LC has a lowest output noise level.
The noise level of DL-LC and DL-OMP-LC are equivalent to LC and
OMP-LC, respectively. The noise level of OMP-LC and DL-OMP-LC
is doubled at least compared to LC. Besides, OMP-LC has more out-
liers than DL-LC. It means that the DL-LC method is more stable
with the underwater ambient noise and DL does not has the issue
of noise amplification, which makes the high PD with a low PFA

possible.
The ROCs are one of the most important graphs showing the

performance of detection from the relationship between PD and
PFA. The ROCs of different detectors in different SNR are shown in
Fig. 11, and the following observations can be made. (1) The perfor-
mance of LC is not good in low SNR and is inferior to other pro-
posed methods. (2) OMP-LC is unable to get a good performance
when PFA is low. This is because OMP-LC is likely to amplify the
noise level, which leads to a higher detection threshold when keep-
ing PFA low. (3) OMP-LC is also not efficient in low SNR since OMP
algorithm fails under this condition. (4) DL-LC performs well when
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PFA is below 10�3. Given the PFA ¼ 10�4, when SNR is �20 dB,
�18 dB and �15 dB, the PD can reach 0.4, 0.8 and 1. (5) When
PFA is beyond 10�2, DL-OMP-LC has the best performance and
OMP-LC shows a better performance than DL-LC. However, this
area is not in our interest. If PFA is very high, the detection system
will always find targets and brings much burden to the operators.
(6) The DL signal enhancement method augments the received sig-
nal when the object signal exists. Before the processing of LC and
OMP-LC, DL is applied to enhance the signal. It can be seen that
there is a great performance improvement with both LC and
OMP-LC detetors.

In the following, we will analyze how the DL network enhances
the signal in detail. Take the SNR of �20 dB, �18 dB, �15 dB and
�10 dB as examples, the output correlation coefficients of the pro-
posedmethods are illustrated in Fig. 13. The horizontal and vertical
axis represents the output correlation coefficients of noise and
noised signal at a given SNR. It can be seen that OMP-LC and DL-
OMP-LC can enhance the signal for most samples, but LC and DL-
LC enhance it selectively when SNR = �20 dB. With the increase
of SNR, the correlation coefficients of LC and OMP-LC improve
slowly. On the contrary, the correlation coefficients of DL-LC and
DL-OMP-LC improve rapidly. It means that on the one hand, noised
signals are not enhanced if DL network considers it as noise, and on
-10 -5 0
/(dB)

 correlation coefficient

correlation coefficients versus SNR.

detection: (a) PFA ¼ 10�4; (b) PFA ¼ 10�3;.
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the other hand, the DL network tends to output a very clean signal
if the features of signals are captured.

To further illustrate the enhancement capability of the DL net-
work, we test the median values of correlation coefficients with
the above four methods versus SNR, which are shown in Fig. 14.
It is necessary to point out that the detection is more reliable with
-25 -20 -15 -10 -5 0
SNR/(dB)

0

0.2

0.4

0.6
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P
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Fig. 16. Dependency of PD versus SNR in different

Fig. 17. F1 score of different detectors: (a) LC
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more higher coefficient and the correlation coefficient is equivalent
to the SNR gain. We can see that the median values of correlation
coefficients of DL-LC and DL-OMP-LC increase rapidly to 0.7 and
0.9, respectively. For LC and OMP-LC, their correlation coefficients
increase slowly. When SNR = �15 dB, the correlation coefficients of
LC and OMP-LC only have about 0.1 and 0.19. When SNR exceeds
-25 -20 -15 -10 -5 0
SNR/(dB)
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0.4

0.6

0.8

1
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Threshold=0.3
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DL-LC
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(b)

detection thresholds: (a)Th = 0.2; (b)Th = 0.3.

; (b) DL-LC; (c) OMP-LC; (d) DL-OMP-LC.
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�15 dB, our proposed methods have a relatively stable and higher
correlation coefficient values. From the point of view of median
values, our proposed methods are always better than the conven-
tional methods. The increase in the median values is quite signifi-
cant, which means a high gain detection.

In addition to the ROC curves, in many cases, the dependence of
PD versus SNR at small PFA is of higher interest, which is investi-
gated in Fig. 15. It can be seen that the proposed detectors are bet-
ter than conventional detectors regardless of SNR. Besides, the
proposed detectors show a promising performance in very low
SNR. When SNR is below �15 dB, LC and OMP-LC are almost unde-
tectable at PFA ¼ 10�4, but Pd of the proposed methods is able to get
a 0.4 at �20 dB and almost 1 at �15 dB. If we relax PFA to 10�3, the
performance of OMP-LC has been improved, but has at least 2 dB
performance gap with the proposed methods. The detection per-
formance of the proposed methods is at the same level when PFA

is low. This shows that the performance improvement is due to
the DL network in this area.

To compare the detection performance in fixed thresholds, we
increase the detection threshold to 0.2 and 0.3, which are normally
used in real engineering applications. The dependence of PD versus
SNR is shown in Fig. 16. When the threshold equals 0.2, there is
about 6 dB and 13 dB performance improvement compared to
OMP-LC and LC. When the threshold equals 0.3, LC is completely
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undetectable and OMP-LC is able to get a 0.6 PD at �8 dB. Our pro-
posed detectors DL-LC and DL-OMP-LC dose not loss much perfor-
mance. It means that our proposed detectors are able to get a high
detection gain.

To verify the tolerance of the proposed methods in threshold
selection, we show the relationship between F1 score, SNR and
threshold in Fig. 17. It can be seen that the maximum detection
thresholds of LC, OMP-LC, DL-LC and DL-OMP-LC are 0.3, 0.4, 0.7
and 0.85, respectively. For conventional detectors, OMP-LC is more
tolerant than LC. This result also holds for the DL based detectors,
that is, DL-OMP-LC is more tolerant than DL-LC. Meanwhile, the
proposed detectors are more tolerant than the conventional detec-
tors, which also means that the proposed detectors are of higher
detection gain.

The above analysis is from the perspective of statistics. Next, we
will analyze from the perspective of samples, which means time-
domain correlation coefficient, channel impulsive response, DDS
and PDP. Time-domain correlation coefficient and PDP are shown
in Fig. 18–19 when SNR is �15 dB. We find that the peak SNR gain
is about 55 dB with DL network and the main lobe width is more
narrower with OMP. The peak SNR gain is from the background
noise suppression and peak augmentation. As shown in Fig. 20,
the background noise levels of the proposed detectors are very
low. Besides, the time-delay and Doppler spread are quite small.
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Fig. 20. DDS of different detectors: (a) LC; (b) DL-LC; (c) OMP-LC; (d) DL-OMP-LC.

(a) (b)

(c) (d)

Fig. 21. Channel impulsive response of different detectors: (a) LC; (b) DL-LC; (C) OMP-LC; (D) DL-OMP-LC.
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Channel impulsive responses of these detectors are investigated in
Fig. 21, it can be seen that the distortion in multipath (i.e. range
migration) is migrated by the proposed detectors. Based on the
above results, it is obvious that our proposed methods are able
to denoise the signal and compensate the channel fading both in
multipath and Doppler.

To further illustrate the source of detection gain, a simulation
was conducted in the random distortion environment with range
migration. In time-invariant UWA channel, the relative time delay
for adjacent pulses is a constant, i.e., the time length of a single
14
pulse. In this simulation, we model the range migration as the
abrupt time of arrivals between adjacent pulses, which leads to a
random time delay shift for each pulse. Here, we ignore the multi-
path propagation and set the number of multipath to 1. Then, the
random time delay shift for each pulse is set from 0 to 62.5 ms.
Besides, we assume that there is no ambient noise in this
simulation.

Monte Carlo simulations were used to evaluate the perfor-
mance, assuming that the total number of Monte Carlo run is 10
000. The median values of correlation coefficients versus different
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time delay shifts are shown in Fig. 22 (a). We can see that the LC
detector is more sensitive to the time delay shift and its perfor-
mance degrades significantly with the increase of time delay shift.
On the contrary, the DL-LC detector is able to suppress the random
range migration. When the time delay shift is 62.5 ms, the median
value of correlation coefficient for DL-LC is above 0.8, in which the
LC detector only has 0.2. Then we make the comparison of correla-
tion coefficients between LC and DL-LC detectors when the time
delay shift is 10 ms. As shown in Fig. 22 (b), the correlation coeffi-
cients of DL-LC are always higher than that of LC. Under this con-
dition, the correlation coefficient of LC is hard to get 0.8 but the
median value of DL-LC is above 0.8.

From this simulation, we show that the deep-learning structure
is able to suppress the random range migration. When the range
migration occurs, the performance of LC detector degrades signifi-
cantly. As for the DL-LC detector, the correlation coefficients are
pretty high even with a large range migration. It means that the
time gain is acquired by the DL network.
5. Conclusion

In this study, we proposed a deep-learning based two-stage
method for UWA active signal detection, in which the encoder
was applied to extract latent features from the received signals,
the separator was designed to obtain the clear object signal map
and the decoder was used to reconstruct signal from the masked
feature map. In the first stage, we utilized deep-learning network
to enhance the received signal. In the second stage, two types of
conventional detectors were developed to decide if the object sig-
nal is present or not. Moreover, a novel SI-SNR function was intro-
duced to UWA active signal detection, the benefits and equivalence
of which were explained. Furthermore, these detectors were uni-
fied into one form with their own transfer functions, which are
related to their detection performance. In particular, a simulation
was conducted to illustrate the source of detection gain and show
the ability of suppressing the random range migration. Finally, the
real-world experimental results demonstrate that the proposed
detectors outperform the conventional detectors.
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