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Abstract Modern field programmable gate array (FPGA)

chips, with their larger memory capacity and reconfigurability

potential, are opening new frontiers in rapid prototyping of

embedded systems. With the advent of high-density FPGAs, it

is now possible to implement a high-performance VLIW (very

long instruction word) processor core in an FPGA. With

VLIW architecture, the processor effectiveness depends on

the ability of compilers to provide sufficient ILP (instruction-

level parallelism) from program code. This paper describes

research result about enabling the VLIW processor model for

real-time processing applications by exploiting FPGA tech-

nology. Our goals are to keep the flexibility of processors to

shorten the development cycle, and to use the powerful FPGA

resources to increase real-time performance. We present a

flexible VLIW VHDL processor model with a variable

instruction set and a customizable architecture which allows

exploiting intrinsic parallelism of a target application using

advanced compiler technology and implementing it in an

optimal manner on FPGA. Some common algorithms of

image processing were tested and validated using the pro-

posed development cycle. We also realized the rapid proto-

typing of embedded contactless palmprint extraction on an

FPGA Virtex-6 based board for a biometric application and

obtained a processing time of 145.6 ms per image. Our

approach applies some criteria for co-design tools: flexibility,

modularity, performance, and reusability.

Keywords Rapid prototyping � System design �
VLIW processor � FPGA � Real-time image processing �
Biometric system

1 Introduction

Electronic embedded systems play an important role in

diverse real-time signal and image-processing applications

such as process control, telecommunication, satellites, and the

medical field [1, 2]. The user-programmable FPGA is capable

of performing the hardware part of a design for a significantly

lower price and they maintain many of the advantages of the

ASIC (application specific integrated circuit) solutions. FPGA

foundries offer many built-in circuit features, such as memory,

multipliers, and high-speed communication links. The most

interesting characteristic of FPGA, with its reconfigurable

nature, is probably the ability to quickly create a rapid and

fully functional prototype that can emulate and verify solu-

tions, or even be embedded into the final system [3, 4].

In the standard FPGA-based prototyping methodology,

algorithms are first developed on a personal computer or

workstation in standard software programming languages such

as C or Matlab. When the algorithm is later implemented in

hardware, the C (or Matlab) code is translated into a hardware

description language such as VHDL or Verilog. Finally, the

design is synthesized for an FPGA-based environment where it

can be tested. Most hardware description languages are

inherently concurrent and not considered trivial for non-hard-

ware developers. One of the key factors that encourage the wide

diffusion of electronic devices is the improvement of the man–

machine interface, where the great challenge is to allow the use

of complex electronic systems by software developers. Many

research laboratories and industrial manufacturers are focusing

their efforts to that effect [5, 6]. Two major trends emerge.
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The first, based on the fact that software developers know

much more about traditional software high-level program-

ming languages such as C and C?? than about hardware

description languages, a major trend consists in extending

these languages with variations capable of describing

hardware elements. These new hardware description lan-

guages [7–9] are, in effect, parallel synchronous program-

ming languages where the notion of time is fundamental to

its specification. In these languages, all events occur relative

to a global clock that runs continuously. Information is

encoded on a behavioural level in a similar manner to most

high-level languages.

The second trend consists in using programmable

devices, a processor core included in FPGA for example.

Some parts of application can be programmed with high-

level languages like C or C??. The rest of FPGA is used

to manage communication peripherals or to integrate low-

level processing blocks. All these programmable devices

including processor cores can be considered single chip

implementations of SW/HW hybrid system [5].

In this article, we propose an approach that combines

these two trends. We target rapid prototyping of signal and

image-processing applications on the FPGA. Firstly,

algorithms are programmed in C as if they were to be

executed on a classical processor. Then the advanced

compiler OpenIMPACT [10] converts the original program

into an independent assembler called Lcode. This inter-

mediate representation provides instruction-level parallel-

ism (ILP) which is analyzed and reorganized to VLIW

instructions. Finally, a flexible VLIW VHDL processor

model with a variable instruction set is generated and

implemented optimally with FPGA technology.

We have applied the same methodology in previous works

to implement multi-digital signal processor (DSP)

TMS320C62xx of Texas Instrument into FPGA devices using

the Code Composer Studio [6, 11]. The method presented in

this paper can be considered as the generalization and the

improvement of first experiences. It is more flexible; the

generic VLIW architecture is totally customizable (number of

functional units, number of registers and instruction set) in

function of a target application. In addition, we use an

advanced compiler of research OpenIMPACT to realize

optimally hardware implementations on embedded systems.

This article is organized as follows in the following section,

we discuss some existing works and state the main contribution

of this paper. In Sect. 3 we introduce the application develop-

ment cycle and illustrate its principles and concepts from

algorithm programming to implementation on an FPGA.

Section 4 describes obtained experiment results for some

classical image-processing algorithms using the proposed

approach. We present also, in Sect. 5, hardware implementation

of a biometric application (contactless palmprint extraction) on

FPGA Xilinx Viretex-6. Finally, we conclude in Sect. 6.

2 Related works

Enabling VHDL processors model onto FPGA is not new.

Since 10 years, FPGA foundries provide already some

common processors such as MicroBlaze of Xilinx [12],

Nios II of Altera [13] and Mico32 of Latice [14]. They are

usually called ‘‘soft-core’’ processors to make the differ-

ence with ‘‘hard-core’’ processors that are physically

present in FPGA devices. These soft-core processors can

be programmed in Assembly or others classical languages

to facilitate hardware implementations on FPGA. They can

be considered as general-purpose processor (GPP) with

fixed architecture.

To benefit large available hardware resources of new

FPGA devices and to improve implementation perfor-

mance, the concept of reconfigurable processor was intro-

duced. This allows realizing optimal and adaptive models

for target applications. We can cite, for example, the Grid

Alu Processor (GAP) produced by the University of

Augsburg [15, 16] and KAHRISMA architecture of

Karlsruhe Institute of Technology [17].

The GAP architecture mixes the advantages of a super-

scalar processor and those of a coarse-grained dynamically

reconfigurable system. Their reconfigurable elements con-

sist of an array of functional units (FUs), a branch unit, and

several load/store units. To improve the performance and, in

parallel, decrease the hardware requirements of the GAP,

some DSE (design space exploration) [16] works have per-

formed with multi-objective optimization to evaluate and

define GAP architectural parameters. The great advantage of

the GAP architecture is the improvement of sequential pro-

gram execution that cannot be provided by modern multi-

threaded and multi-core architectures.

KAHRISMA designs KArlsruhe’s Hypermorphic

Reconfigurable Instruction Set Multi-grained Array archi-

tecture [17]. Based on the fact that the selection of pro-

cessing architectures (e.g., GPPs, DSPs, ASICs, etc.) is

determined at design time depending upon the require-

ments of a certain set of applications, a SoC (system-on-

chip) typically does not provide the demanded efficiency

when executing applications from different domains. One

solution to address this problem is reconfigurable com-

puting that utilizes resources in a time-multiplexed manner.

Flexibilities at both design time and run time of the

KAHRISMA architecture allow to efficiently supporting all

instruction-level parallelism (ILP), data-level parallelism

(DLP), and thread-level parallelism (TLP).

Lam and Srikanthan [18] present a framework that

enables rapid design exploration for reconfigurable

instruction set processors (RISP). In particular, it provides

rapid identification of a reduced set of profitable custom

instructions and their area costs on commercial architec-

tures without the need for time-consuming hardware
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synthesis process. The proposed framework can also be

used for determining the optimal size of FPGAs to be

embedded in cost and power sensitive SoC platforms. Their

experimental results have been obtained for the generic,

automotive industrial, image, network, security and tele-

communications application sets.

In comparison with these works, our approach address to

rapid prototyping of signal and image applications on

FPGA devices. For example, processing full high-dimen-

sion images leads to millions of independent operations but

identical on different parts of the image. In this domain,

instruction-level parallelism extraction is particularly

important and efficient before data-level parallelism

exploration. Our development cycle, for the first time,

provides multiple advantages:

• It possesses more programming flexibility: the input

consists of classical and standard C or C?? code

source (not oriented hardware languages such as

Handel C or System C). Because of automatic

generating of VLIW VHDL processor model, soft-

ware engineers can realize rapid prototyping of signal

and image processing on FPGA devices ignoring

completely hardware aspects (description language,

FPGA architecture). This is one of the key factors

that encourage the wide diffusion of electronic

devices.

• Our approach realizes performance-efficient hardware

implementations: the concept of flexible VLIW pro-

cessor allows us to exploit intrinsic instruction-level

parallelism in maximum to reduce necessary execution

cycle number. In the same time, the VHDL processor

model uses just only minimum-necessary hardware

resources for target application. This makes better

performances in term of Area/Speed ratio.

• Our application development cycle consists of a new

open and adaptive framework: in this paper, we present

only basic steps to exploit low-level parallelism (ILP).

Some high-level parallelism (for example, data distri-

bution and task pipeline, etc.) can also be realized using

the proposed method. This last point will be illustrated

in the end of Sect. 5.

3 Application development cycle

In this section, we describe the application development

cycle from algorithm programming to implementation on a

FPGA platform. Figure 1 illustrates our approach com-

posed of four stages: intermediate representation code

generation, ILP analysis and hardware characteristic

extraction, VHDL description of flexible VLIW processor

and its implementation on FPGA.

3.1 Lcode generation using OpenIMPACT compiler

The OpenIMPACT compiler is maintained by the IMPACT

group at the University of Illinois, under the direction of

professor Wen-mei W. Hwu. The objective of IMPACT

(Illinois Micro-architecture Project utilizing Advanced

Compiler Technology) is to provide critical research,

architecture expertise, and compiler prototypes for the

microprocessor industry [19]. This objective is accom-

plished by analyzing and demonstrating the level of hard-

ware and compiler support required by architectural

enhancements to understand the cost and effectiveness of

these enhancements. IMPACT’s focus has historically been

instruction-level parallelism (ILP).

We use OpenIMPACT to compile the original source-

code into an assembly intermediate representation Lcode.

This produced Lcode is optimized for ILP, but not for a

specific machine. For example, OpenIMPACT generates

and evaluates the code for an instruction set architecture

(ISA): HPL-PD [20]. This primary/native ISA is a para-

metric VLIW architecture. It admits processors of different

composition and scale, especially with respect to the

Application development in C
and

Compilation using OpenIMPACT 

Sequential Lcode

Lcode analysis in order to generate 
parallel execution graph and extract 

the used hardware resources 

Hardware database

VHDL code generation of the 
flexible VLIW processor model 
corresponding to the application

VHDL files

Synthesis and implementation on 
FPGA using Xilinx ISE tools

Fig. 1 Proposed application development cycle
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amount of parallelism offered. The HPL-PD parameter

space includes the number of clusters in a multi-cluster

processor, the make up of each cluster (types of functional

units, the composition of the register files), and the

instruction set including operation latencies and descriptors

that specify when operands may be read and written,

instruction format and resource usage behavior of each

operation. The architecture instruction set is akin to an

RISC load-store architecture, with standard arithmetic and

memory operations.

The OpenIMPACT compiler supports many aggressive

compiler optimizations including procedure inlining, loop

unrolling, speculation, and predication. IMPACT organizes

its optimizations into three levels [21]:

Classical—performs only traditional local optimizations,

Superscalar/Superblock—adds procedure inlining, loop

unrolling, and speculative execution,

Hyperblock—adds predication (conditional execution).

3.2 ILP analysis and hardware characteristic extraction

The OpenIMPACT environment includes a trace-driven

simulator and an ILP compiler. The simulator enables both

statistical and cycle-accurate trace-driven simulation of a

variety of parameterizable architecture models, including

both VLIW and in-order superscalar data-paths. The gen-

erated Lcode representation is essentially a large, generic

instruction set of simple operations like those found on

typical RISC architectures, but not biased toward any

particular architecture.

Instructions of Lcode begin with the word op and are

composed of four major parts: operation number, opcode,

operands, and attributes. The operation number is unique

for each Lcode instruction in the function. Opcodes include

the define operations seen in Fig. 2.

We have developed a software tool which performs

Lcode analysis to expose ILP and extract need used

resources for a target application. This allows us to con-

struct hardware resource database.

The software tool executes analysis in several phases.

Firstly, it performs register optimization: Lcode produced by

the OpenIMPACT compiler uses unlimited registers while

FPGA device needs limited register definition to reduce the

use of hardware resources. The original Lcode specifies a

maximum number of registers (a new output register for each

basic operation); at the time of an instruction re-scheduling

step, we detect and delete all redundant registers taking into

account of register re-uses possibility.

Secondly, our tool examines sequentially all instruc-

tions of Lcode and notes those can be executed in parallel

with previous instructions (without data dependences).

Some optimizations are also performed. For example,

according to hardware resource constraint specification

(number of units, memory access number per cycle), we

can change operation execution order to reduce execution

time. Figure 3 gives detailed description of this ILP-

extraction step. Then, we analyze the basic operation

types and used registers of each parallel cycle respecting

the consistency of the original Lcode. Finally, a parallel

operation graph is generated to construct hardware

resource database.

We use the Sobel filter as an example to illustrate this

parallel operation graph generation step. The Sobel filter

is considered as a simple procedure for performing edge

extraction. It is usually implemented with a convolution

using two 3 9 3 masks. Figure 4 displays the analysis

and generation obtained results for this Sobel processing.

From Lcode generated by OpenIMPACT compiler, we

analyze data and operation dependences to transform the

original sequential assembly code in parallel basic oper-

ations. To facilitate hardware implementation, we respect

the constraint of intern Block RAM in FPGA: two

accesses per cycle in dual port model. We can see that the

main loop has be performed using ten cycles after par-

allelization. Here, Ri (i = 0–7) corresponds to a register

and ld to the data loading from memory. The lsl repre-

sents data left shift. C indicates a constant. For example,

at the step (cycle) 6, two operations have been simulta-

neously realized:

This parallelization allows us to accelerate calculations

with a ratio of 2.7 which corresponds to number of

sequential cycles per number of parallel cycles.

(cb 15 1.000000 [(flow 0 4 1.000000)) <(trace (i,3)>)
(op 369 add [(r 104 i)] [(r 94 i)(i 1032)])
(op 394 sub [(r 113 i)] [(r 95 i)(i 7)])
…

cb15 : Control Block Number
1.000000: Time processing block
[(flow 0 4 1.000000)]: Flow Direction, 

0=first direction, 4= CB number direction
<(trace (i 3))>: Attribute Process

op 369: Operation Number
add: FU instruction Operator
(r 104 i): Destination operand
(r 94 i): Source Operand 1
(i 1032): Source Operand 2

Fig. 2 Lcode block sample (cf. [21])

Add R0, R6 R0
//
Sub R2, R5 R2
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3.3 VHDL description of flexible VLIW processor

and FPGA implementation

Using Lcode analysis and graph model generation

results, a flexible VLIW processor can be composed:

for a target application, we know the minimum-need

hardware resources (register number, basic operation

types, instruction set and length of each VLIW

instruction). With hardware database information, we

construct the structure of VLIW processor and describe

it in VHDL language (see Fig. 5 and Sect. 4 for detail

description).

Fig. 3 Instruction-level

parallelism extraction

description: all sequential

instructions are examined and

processed
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It is noted that the VLIW processor is totally custom-

izable and optimal for target application: number of func-

tional units, operation types and used registers are just

minimum necessary for given algorithm. We use a created

library of hardware templates to present VLIW processor

in VHDL language.

We respect different pipelined levels of VLIW processors

to control execution-time scheduling: program fetching,

instruction dispatching, and instruction decoding units deli-

ver up instructions to functional units every CPU clock cycle

[23]. This mechanism has been described in VHDL code and

implemented onto FPGA. All generated VHDL files for a

target application have been synthesized using Xilinx [24]

ISE tools [25] to realize hardware implementation.

4 Experiment results

Image processing (computer vision) is compute-intensive and

classified into three classes, namely, high, middle and low-

level algorithms based on their computation and communi-

cation characteristics. The low-level algorithms, in particular,

deal with raw and uncompressed images. Processing such

images leads to millions of independent operations but

identical on different parts of the image resulting in a high

degree of data parallelism. Due to these reasons, low-level

algorithms are right candidates for hardware implementation

[26, 27]. A lot of co-design SW/HW tools are proposed,

which provide a fast implementation of the compute-inten-

sive image processing algorithms.

To test and validate our development cycle of rapid

prototyping, we have chosen three widely used low-level

computer vision algorithms: filter Sobel for performing

edge extraction, convolution with a mask of 3 9 3, and

FDCT (fast discrete cosine transform). These basic opera-

tions are usually considered as image pre-processing stage.

Our experiment results are obtained using an Intel

Pentium 4 computer, with a clock speed of 2.8 GHz. The

OpenIMPACT environment was pre-installed with Linux

2.6.22.5 kernel as underlying operating system. We use the

Xilinx ISE [24, 25] simulator for FPGA based implemen-

tation and target hardware architecture is the Virtex

6-xc6vlx75T [28].

Figure 6 displays the flexible VLIW processor archi-

tecture for the Sobel filtering application. In agreement

with the Lcode analysis and operation graph model gen-

eration results (see Fig. 4), this flexible VLIW processor is

composed of 7 functional units (2 Add, 2 Sub, 2 Abs and 1

Shift left). For example, at the sixth cycle, 2 arithmetic

operators are triggered. The add(2) recuperates first oper-

and (R2) from mux_add2_e0 and second (R6) from

mux_add2_e1 and performs addition operation. The result

value is stored in the register R0. In the same manner, the

sub(2) performs subtraction with two operands (R2 and R5)

and transfers this subtraction result to the R2 register.

Based on the flexible VLIW processor architecture, its

VHDL description is automatically generated. Note that

after analysis steps, our tool also generates automatically a

VHDL code (corresponding to ROM) to manage control

signals of multiplexers for each execution cycle (see also

Sect. 3.3). Synthesis and simulations of all VHDL code for

the target algorithm are realized using the Xilinx ISE tools.

Table 1 shows Lcode analysis and parallelism extraction

results for these basic image-processing algorithms.

Fig. 4 Parallel operation graph generated by our software tool for the Sobel filter: each operation is realized using two operands from two

registers and memorizes the result in a register (cf. [22])
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Obtained experiments’ results concerning VHDL code

synthesis and hardware simulation are given, respectively,

in Tables 2, 3 and 4.

We can note that an average acceleration of 39 has been

obtained for these three basic image processing using our

graph model of parallel execution. In general, these algo-

rithms use a small percentage of hardware resources

available on FPGA: 0.24 % of register Slices, 1.1 % of

LUT slices, and 73 % of Block RAMs. Speed corre-

sponding to number of processed images per second is,

respectively, of 160, 104 and 52 images/s. These results

have been obtained with an image size of 512 9 512

pixels. Intern Block RAMs of FPGA are used to store

original and resulting images, while program instructions

are loaded in LUT blocks of FPGA Slices.

To make some comparisons with available parallel

implementation techniques, we have completed experiment

results by two other hardware realizations: Full VHDL and

4-MicroBlaze in parallel. This complementary study is

performed only with the third algorithm: fast discrete

cosine transform (FDCT).

Full VHDL implementation use directly the hardware

description language while the second realization executes

the software language C source on 4 soft-core processors

MicroBlaze in parallel. Firstly, the C source of FDCT

algorithm was compiled using Xilinx GCC cross compi-

lation tools. Then these 4 soft-cores with fixed architecture

process simultaneously in SPMD (single program multiple

data) mode, each core possess its specific block memory in

order to avoid access conflict. Each soft-core performs a

component reg is   Port (
    e         : in std_logic_vector(15 downto 0);
    clk            : in std_logic;
    reset     : in std_logic;
    s         : out std_logic_vector(15 downto 0)
                                        );
 end component;           

for i in 0 to 8 generate
begin
  re:reg port map(
      e => regist_e(i),
      s => regist_s(i),
      clk => clk_bufg,
      reset => reset);
end generate;

type type_reg is array(integer range 9 downto 0) of std_logic_vector(15 downto 0); 

mux_r0:mux_gen_4 port map(  
   e0 => data_mem_0_lo, 
   e1 => X"0000",           
   e2 => X"0000",               
   e3 => regist_s(0),     
   slct => data_vliw(1 downto 0),
   s => regist_e(0));

function lsl(ARG: STD_LOGIC_VECTOR; COUNT: NATURAL) return STD_LOGIC_VECTOR
      is
    constant ARG_L: INTEGER := ARG'LENGTH-1;
    alias XARG: STD_LOGIC_VECTOR(ARG_L downto 0) is ARG;
    variable RESULT: STD_LOGIC_VECTOR(ARG_L downto 0) := (others => '0');
  begin
    if COUNT <= ARG_L then
      RESULT(ARG_L downto COUNT) := XARG(ARG_L-COUNT downto 0);
    end if;
    return RESULT;
end lsl;

mux_lsl_1_e0:mux_gen_4 port map(
   e0 => regist_s(1),
   e1 => regist_s(3),
   e2 => regist_s(4),
   e3 => regist_s(6),
   slct => data_vliw(30 downto 29),
   s => lsl_1_e0);

Fig. 5 Segment of VHDL model generation for the Sobel application
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quarter of image of 512 9 512 pixels. Obtained hardware

performances are given in Table 5.

We can note that the Full VHDL implementation is better in

terms of hardware resource cost and image-processing speed.

The 4-MicroBlaze realization uses a lot of more hardware

resources than our flexible VLIW processor and processes

only the half of images per second (27 vs. 52), because this

implementation exploits only the data-level parallelism.

Fig. 6 Flexible VLIW

processor structure for the Sobel

filtering algorithm
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The Full VHDL implementation is the most expensive

in terms of development cycle speed: nearly 1 week for a

hardware expert. One day is necessary for the 4-Micro-

Blaze realization, while the flexible VLIW processor is

embedded instantaneously. It is to note that two first

implementations need specific hardware knowledge and

experience.

5 Study case: contactless palmprint extraction

In recent years, new powerful FPGA devices allow hard-

ware realizations of complex applications in pattern rec-

ognition topic [29–31]. For example, Ahmad et al. [29]

combine discrete wavelet transform and FPGA-based

intellectual property (IP) core for a new approach of face

recognition. We can also cite works realized by Fons et al.

[31] on FPGA-based personal authentification using fin-

gerprints. In this section, we perform rapid prototyping of a

biometric application using the proposed development

cycle. This consists of contactless palmprint extraction. We

present different processing stages followed of hardware

implementation description.

5.1 Contactless palmprint extraction presentation

Palmprint can be used as a reliable human, identifier

because the pattern of ridges is unique and their details are

permanent. Compared to other physical biometric charac-

teristics, palmprint biometric has several advantages: low

intrusiveness, stable line features, and low-cost capturing

device. Although palmprint is traditionally a contacting

biometric, our research team has developed a palmprint

extraction and recognition system without contact, which

allows us to keep a pleasant and hygienic system [32].

Working on palmprint in a contactless context requires

some pre-processing. The region of interest (ROI) must

indeed be extracted from the hand image. Figure 7 displays

different stages of this extraction from contactless hand

images. Palm extraction requires hand localization, fol-

lowed by palm localization in the hand, and then normal-

ization because of the rotation and scale variation induced

by the free placement. Hand segmentation consists of a

thresholding on the red component of the RGB space: as a

green background has been chosen, the redder pixels

belong to the hand. Some morphological operations are

also used to enhance the hand edges. After this step,

multiple reference points are defined: they correspond to

the fingertips and valleys between fingers. This localization

of the hand extremities is achieved in two steps.

First, a contour extraction is performed using an eight

neighbourhood border-tracking algorithm known as the

Table 1 Lcode analysis and parallelism extraction results: numbers

of cycle correspond to the pixel-level processing

Algorithm Sobel Conv. FDCT

Number of sequential cycle 27 14 108

Number of parallel cycle 10 9 17

Acceleration 2.7 1.6 6.3

Table 2 Hardware implementation results for the Sobel filtering:

Fr = 420 MHz

Logic utilization Used Available Ratio (%)

No. of register slice 132 93,120 0.14

No. of LUT slice 409 46,560 0.88

No. of Block RAMs 114 156 73

Table 3 Hardware implementation results for the 3 9 3 convolution:

Fr = 247 MHz

Logic utilization Used Available Ratio (%)

No. of register slice 76 93,120 0.08

No. of LUT slice 113 46,560 0.24

No. of Block RAMs 114 156 73

Table 4 Hardware implementation results for the FDCT:

Fr = 230 MHz

Logic utilization Used Available Ratio (%)

No. of register slice 478 93,120 0.51

No. of LUT slice 1,035 46,560 2.2

No. of Block RAMs 114 156 73

Table 5 Hardware

performance comparisons for

the FDCT implementation:

Full VHDL, 4-MicroBlaze and

Flexible VLIW

Implementation on FPGA Virtex-6 Full VHDL 4 Micro Blaze Flexible VLIW

No. of register slice 820 14,588 478

No. of LUT Slice 544 12,882 1,035

No. of Block RAMs 114 154 114

Frequency (MHz) 380 190 230

Proc. speed (images/s) 181 27 52
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Freeman algorithm. Secondly, hand extremities locations

are found. As subject fingers are located on the right of the

image, local minima and maxima of the hand contour

abscissa can be considered as fingertips and valleys.

Because these initialized locations are not accurate, we

applied a refining algorithm, which minimizes the Euclid-

ean distance between the considered point and its two

neighbours among the reference points.

Location of the new fiducial points is deduced from the

length of the index and little finger. Figure 7 shows the

square window, which corresponds to the ROI. The win-

dow size depends on the distance between the hand and the

camera. Therefore, it is taken proportional to the hand

width. As the palmprint images are of different sizes and

orientations, we normalize them. First, they are rotated

around the vertical axis. Then, they are resized to a stan-

dard image size of 64 9 64 pixels, and converted into a

gray-level image. After this ROI pre-processing, biometric

recognition is realized using Gabor filtering (feature

extraction) and Hamming distance (similarity measure-

ment) with multiple shifts to introduce a tolerance in

translation [32].

5.2 Hardware implementation of embedded palmprint

extraction

We use the ML605 evaluation board [28] as hardware

platform for embedded palmprint extraction. It enables

hardware and software developers to create or evaluate

designs targeting the Virtex-6 XC6VLX240T-1FFG1156

FPGA. It contains 768 DSP slices (with 25 9 18 multi-

pliers and 48-bit adder/subtracter/accumulator), which

support massively parallel DSP algorithms, 416 intern

Block RAMs and 37,680 configurable logic blocks (CLBs).

Slices of the CLBs can be used to provide logic, arithmetic,

and ROM functions; a part of them can also be used as

distributing RAM or 32-bit data registers. The ML605

provides also board features common to many embedded

processing systems, which include a DDR3 SODIMM

memory, an 8-lane PCI express interface, a tri-mode

Ethernet PHY, general purpose I/O, and a UART.

Based on the Virtex-6, we added a CMOS sensor to

capture hand images, the DDR3 memory is necessary to

store original and resulting images of different processing

stages. Using the proposed development cycle of rapid

prototyping, we have enabled five VLIW VHDL processors

corresponding to five main functions of palmprint extrac-

tion. Obtained results of these hardware implementations

are given in Table 6.

We present ILP extraction of each function as the ratio

of necessary sequential/parallel cycle number (accelera-

tion). In the frequency column, values correspond to

obtained synthesis results of Xlinx ISE. Two first functions

(Thresholding and Erosion) constitute the hand segmenta-

tion stage. They perform on images of 1,200 9 1,600

pixels and their corresponding VLIW processors execute

with a lot of cycle numbers. Others functions process on

less important data size: *5,000 edge pixels for Freeman,

2,480 sampled edge pixels for Point processing, and

64 9 64 pixels for Palm extraction. Their corresponding

processing times are very small.

Figure 8 illustrates the realized architecture for hard-

ware implementation of complete palmprint extraction

processing chain. We use a PicoBlaze microcontroller core

implemented on the FPGA to synchronize different VHDL

modules. PicoBlaze is a Xilinx’s intellectual property [24];

this soft-core microcontroller is programmed in assembly.

It triggers firstly the Image acquisition block when a hand

image arrives in the FPGA, and the Memory manager

block to store this original image in the DDR3 memory.

Then, it starts sequentially five VLIW VHDL processor

blocks through five different signals (pbi, i = 1–5), and

Fig. 7 Illustration of different

stages for the contactless

palmprint extraction: hand

segmentation, Freeman edge

detection, point processing and

palm extraction
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drives DDR3 memory using the Memory manager block.

The clk_manager block allows us to generate correspond-

ing clock for each VLIW processor execution frequency. In

agreement with Fig. 8, obtained hardware implementation

of entire extraction chain is given in Table 7. We can note

that a small percentage of available hardware resources are

used for this hardware implementation, and a processing

time of 145.6 ms is obtained to extract a palmprint image.

Note that for this biometric application, pipeline exe-

cution of contactless palmprint extraction chain is not

necessary. But, for some video applications, PicoBlaze

would be able to manage pipeline execution of several

flexible processors with memory manager study.

The implementation of the contactless palmprint extrac-

tion chain has also been simulated on a TMS320C64xx DSP

platform of Texas Instruments, thanks to the Code

Composer Studio tool. The C64x central processing unit

(CPU) consists of eight functional units, two register files,

and two data paths. Devices of the C64x family can execute,

for example, four 16-bit multiplies every cycle, or eight 8-bit

multiplies. They have a two-level memory architecture for

program and data.

A DSP implementation description has been made in C

language. We let the compiler of the CCStudio environ-

ment decide the possibilities of parallelization and opti-

mization. Our simulations empirically show that the

necessary number of CPU cycle for entire palmprint

extraction is 390 9 106, which corresponds to 390 ms at a

frequency of 1 GHz.

To illustrate the potential adaptability of our development

cycle, we have also performed complementary experiments

using erosion operation. We used a mechanism of loop

Table 6 Hardware implementation results of 5 VLIW VHDL processors corresponding to 5 main functions of palmprint extraction

Function Ratio: sequential/

parallel cycle number

Used slice

numbers

Ratio: used slice

numbers (%)

Freq.

(MHz)

Necessary

cycle numbers

Processing

time (ms)

Thresholding 1.63 559 1.48 260 15,394,000 63.35

Erosion 2.72 1,345 3.57 273 21,176,000 77.57

Freeman 1.34 1,468 3.90 255 532,111 2.08

Point processing 1.31 4,190 11.12 190 418,947 2.20

Palm extraction 2.22 3,360 8.92 190 58,040 0.31

Serial line

Thresholding

Erosion

Fremann

Point processing

Palm extraction

pb1

pb2

pb3

pb4

pb5

clk

sync_Iclkclk_I

PicoBlaze microcontroller

pb1

Image 
acquisition CMOS 

sensor

DDR3 
memory 

controller

DDR3 
memory

sync_I clk_I

clk
manager

clk_mem

clk_mem

pb2 pb3 pb4 pb5

clk

clk

clk

clk

Fig. 8 Architecture of

palmprint extraction hardware

implementation on the Virtex-6
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unrolling present in OpenIMPACT optimization option. In

fact, loop overhead can be reduced by reducing the number

of iterations and replicating the body of the loop. Table 8

gives hardware implementation results with a reduction

factor of loop iteration, respectively, equal to 1, 2, 4, and 8.

We can observe that the processing speed (number of pro-

cessed images per second) increases at the same time as the

number of used slices.

Loop-unrolling operation can be considered as data-

distribution processing. These preliminary results show

that using our proposed development cycle, DLP can also

be easily extracted. It can be used to determine the best

compromise between the processing speed and the used

hardware resources.

6 Conclusions and perspectives

In this paper, we present a new co-design SW/HW approach

for computer vision applications. The proposed develop-

ment cycle allows non-electronic specialists to realize rapid

prototyping of image processing. Since they can transform

automatically their C codes in VHDL description for FPGA

implementation in an optimal manner. Our method is based

on advanced compiler technology and uses the minimum-

necessary hardware resources for a target application,

thanks to flexible VLIW processor model.

Our approach has been tested and validated using firstly

three common image-processing algorithms: Sobel filter,

Convolution 3 9 3 and Fast DCT. In general, these algo-

rithms use a small percentage of hardware resources

available on FPGA and this allows considering others and

complexes post-processing of image in the same FPGA

device. We have also realized rapid prototyping of

contactless palmprint extraction for a biometric applica-

tion. This complex and less-regular ROI (region of interest)

extraction is processed instantly on a FPGA Virtex-6 based

board (145.6 ms vs. 390 ms on TMS320C64xx DSP of

Texas Instrument). Through these experiments, we can

conclude that our approach is a promising way of gener-

ating performance effective of embedded VLIW processors

in FPGA and it applies some criteria for co-design tools:

flexibility, modularity, performance, and reusability.

In perspectives, we want to test and valid the develop-

ment cycle using another open compiler: LLVM infra-

structure [33] for the conversion of C?? source to

intermediate representation. This LLVM environment is

more popular in the signal and image-processing topic than

OpenIMPACT. We hope also to compare our approach

with other advanced parallel implementation techniques.

This paper consists of only the basic stage of our com-

plete tool suite: rapid prototyping of flexible VLIW pro-

cessor for image processing. Some high-level parallelism

(data-level and thread-level) can also be considered using

the proposed method because of economic use of available

hardware resources. On the other hand, with a given FPGA

or given application, we can perform rapid design space

exploration to respect simultaneously algorithmic and

hardware constraints due to adaptive capacity of our

approach.
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