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Abstract

Phoneme pronunciations are usually considered as basic skills for learning a foreign lan-

guage. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed

or long-distance learning environment. Recent researches indicate that machine learning is

a promising method to build high-performance computer-assisted pronunciation training

modalities. Many data-driven classifying models, such as support vector machines, back-

propagation networks, deep neural networks and convolutional neural networks, are

increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially mod-

ulated from the base vibrations of vocal cords, and this fact somehow makes the predictors

collinear, distorting the classifying models. A commonly-used solution to address this issue

is to suppressing the collinearity of predictors via partial least square regressing algorithm. It

allows to obtain high-quality predictor weighting results via predictor relationship analysis.

However, as a linear regressor, the classifiers of this type possess very simple topology

structures, constraining the universality of the regressors. For this issue, this paper presents

an heterogeneous phoneme recognition framework which can further benefit the phoneme

pronunciation diagnostic tasks by combining the partial least square with support vector

machines. A French phoneme data set containing 4830 samples is established for the eval-

uation experiments. The experiments of this paper demonstrates that the new method

improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing

to state-of-the-arts with different data training data density.

1 Introduction

Within linguistic theories, phonemes play a central role as units of speech perception and

access codes to lexical representations, and phoneme pronunciations are usually considered as

basic skills for learning a foreign language. Computer-assisted pronunciation training (CAPT)
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is helpful for pronunciation practice and mispronunciation identification in a self-directed or

long-distance learning environment. Conventional CAPT modalities offer verification feed-

backs via automatic acoustic analysis. Because phonemes are essentially ‘segment-sized’ (have

different sizes in time domain) and abstract (have different acoustic realisations), identifying

the phonemes of speeches by using some physical model can hardly satisfy the requirements of

today’s CAPT applications.

Recently, machine learning (ML) techniques have made great progresses, providing new

opportunities to update CAPT modalities [1–8]. From the view point of computer sciences,

phoneme pronunciation diagnostics are naturally target classification tasks, so we can benefit

from the advances of regression analysis methods, which address the classification issues by

making data-driven predictions or decisions through building a statistical model from the

recorded speech data instead of analytical functions. Piotrowska et al. [1] use the parameter-

ized audio vector as the feature vectors to improve the automatic allophone classifier, and it is

reported that this method achieves an accuracy performance of 98% in the dark and clear [l]

distinguishing tasks. Almajai et al. [6] develop a Deep Learning based speaker-independent

speech recognizing method, which possess better accuracy performance than the conventional

methods such as linear regression and maximum likelihood linear transform in the compara-

tive evaluations. Brocki and Marasek [8] propose a DBNN-BLSTM hybrid acoustic model for

large vocabulary continuous speech recognitions by combining the deep belief neural network

with bidirectional long-short time memory (BLSTM) hybrid. This new method improve the

recognition rate by 5% comparing to the classical BLSTM method in the low-corpus-size

speech recognition tasks. Abdel-Hamid et al. [4] improve the convolutional neural network

(CNN) via limited-weight-sharing scheme and use it to speech recognitions. Experiments

show that it reduces the the error rate by 6–10% compares with conventional deep neural net-

works (DNNs) on the TIMIT phone recognition and the voice search large vocabulary speech

recognition tasks. Zehra et al. [9] experimentally investigate the ensemble learning effect using

a majority voting technique for cross-corpus, multi-lingual speech emotion recognition sys-

tem, proving that this approach gives promising results against other state-of-the-art

techniques.

However, the models of this type are sensitive to mullticollinearity of the predictors, always

resulting in model distortions [10]. The multicollinearity problem means that one of the pre-

dictor variables in a classification model can be linearly predicted from the others with a sub-

stantial degree of accuracy. A set of variables is perfectly collinear if one or more exact linear

relationships exists among some of the variables:

x0 þ q1x1 þ q2x2 þ � � � þ qixi ¼ 0 ð1Þ

where qi is constant corresponding to the i-th predictor xi. Although it is usually difficult to fig-

ure out a precise mathematical model to explain the fundamentals in a certain pattern recogni-

tion problem, many researches indicate that suppressing the multicollinearity by using some

suitable method is helpful to improve the pattern discriminability. For example, Nguyen and

Rocke [11] adapt partial least squares to reduce the sample vector dimensions in the analysis

procedure of human tumor sample classifications based on microarray gene expressions.

Uzair et al. [12] develop a hyperspectral face recognition application in the biometric field,

which effectively improve the test accuracy by modeling the relations between training and

prediction matrices. Li et al. [13] incorporate multicollinearity suppressing cycle into the

multi-spectrum palmprint recognition framework and achieve a very high recognition rate

nearly 100%.
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Similarly, phoneme utterance diagnoses may also face the issue of multicollinearity prob-

lem, which is never explored in the field of CAPT. Because the utterances are made from base

vibrations of vocal cords through resonance chambers (buccal, nasal and pharyngeal cavities)

[14, 15], the predictors of the phoneme feature vectors are highly probably collinear. Our

quantitative diagnose results demonstrate the multicollinearity problem of utterances by using

condition indices (CIs) [16]:

CIi ¼
ffiffiffiffiffiffiffiffi
lmax
li

r

ð2Þ

where λmax is the maximum eigenvalue of the symbol vector, and λi is its i-th eigenvalue. Bel-

sey et al. [17] suggest that predictor dependencies start to affect the regression estimates when

the CI is higher than 10. Fig 1 plots the condition indices of a phoneme frequency spectrum

set, in which 87.27% of the elements exceed this suggested threshold line.

The work of this paper focuses on the French CAPT. It is motivated by the fact that the

existing research findings demonstrate that ML-based CPAT modalities are usually distorted

by the predictor collinearity. We therefore attempt to improve their accuracy performance by

mitigating this problem. To do this, with the help of 23 volunteers, a new phoneme database,

namely CUEB French Phoneme Database 1.0, is first established. It contains 35 phonemes ×6

sessions ×23 persons = 4830 samples, allowing us to verify the relevant theories or hypothesis.

Next, as shown in Fig 1, the multicollinearity of the French phoneme utterances is analyzed,

and the results indicate that it indeed exists in the case of this paper and plays a role of negative

influencing factor. Thirdly, according to a state-of-art review, the partial least square (PLS)

regression algorithm is used to suppress the multicollinearity of utterance sample vectors. The

evaluation results show that it is an effective solution for this issue, but it is also found that the

accuracy of the PLS-only classifies are lower than the typical machine learning models, i.e. sup-

port vector machines (SVMs) and DNNs. Hence, we incorporate the improved soft-margin

SVMs into the target CAPT modality in order to further enhance its feature recognition ability.

Finally, an heterogeneous ML framework for French phoneme pronunciation recognition is

implemented and evaluated by comparing with four state-of-the-arts: PLS-only regressors,

hard-margin SVM, soft-margin SVM and DNN. The innovations of this work include:

Fig 1. Condition indices of phoneme frequency spectral.

https://doi.org/10.1371/journal.pone.0257901.g001
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1. The multicollinearity problem of the phoneme utterances are quantitatively analyzed and

experimentally verified. Up to our knowledge, this is the first time that the phoneme utter-

ance diagnostic problem is investigated from the view point of this theory.

2. A new heterogeneous ML framework for French phoneme pronunciation recognition is

proposed. More precisely, the PLS regression algorithm is first used on the frequency spec-

trum of phoneme waveforms in order to suppress their multicollinearity, then the exacted

features are classified via improved soft-margin SVMs. As a result, the accuracy perfor-

mance of the target French CAPT modality is improved by 0.21 − 8.47% comparing to the

state-of-the-arts with different data training data density.

3. A new CUEB French Phoneme Database is established. This database contains thousands

of high-quality French phoneme utterance samples collected from 23 French teachers and

learners, so can be used as a nice test bench in the future works.

The remainder of this paper is organized as follows: Section 2 describes the proposed CAPT

framewrk; Section 3 presents the training process of the phoneme classification model; Section

4 analyzes the evaluation experiment results; finally, a conclusion is given in Section 5.

2 Proposed CAPT framework

Fig 2 shows the overall framework of the proposed CAPT. Users utter the phoneme to learn

and record it as the input of the system. The input utterance is first filtered via a band-pass fil-

ter for denoising. Fig 3(a) plots a waveform example of vowel [ɑ]. Next, the waveform is seg-

mented as follows:

tic ¼
t if PðtÞ > Ztic

nan otherwise

(

ð3Þ

and

toc ¼
t if PðtÞ < Ztoc

nan otherwise

(

ð4Þ

where tic and toc are the start and end edge of the segmentation of interests, respectively. t is

time, P(t) is instantaneous power. ηtic and ηtoc are two user-defined power threshold values.

Fig 3(b) zooms in the segmenting result of the given waveform. Finally, the frequency spec-

trum of the segmentation of interest F is computed via Fourier Transform. As shown in

Fig 3(c), the normalized frequency spectrum is used as the predictor vector of detectors:

x ¼
jF j � F

D
ð5Þ

where F is the mean of the vector F , and Δ is the difference between its maximum and mini-

mum values.

Finally, the predictor vector x is assigned to the corresponding detector depending on the

user-selected phoneme for diagnosis. As shown in Fig 2(c), a single detector is trained specially

for every phoneme. Fig 2(d) displays the architecture of the detector unit, and we can see that

it is a 2-layer network architecture whose output y can be mathematically described as

y ¼ dð2Þðhð2Þðδð1Þðhð1Þðxð1ÞÞÞÞÞ ð6Þ

Within Eq 6, h(1) and h(2) are the propagation functions of the first and second layers, whereas
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δ(1) and δ(2) are two activation function sets. More precisely, we have h(1) and h(2) as

hð1Þðxð1ÞÞ ¼ xð1Þ �Wð1Þ ð7Þ

Fig 2. Proposed French CAPT framework.

https://doi.org/10.1371/journal.pone.0257901.g002

Fig 3. Preprocessing of an utterance example of vowel [ɑ].

https://doi.org/10.1371/journal.pone.0257901.g003
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and

hð2Þðxð2ÞÞ ¼ xð2Þ �Wð2Þ þ b ð8Þ

x(1) =< x11, x21, . . ., xm1 > (m is the vector size) is the input of the detector, so we assign the

predictor vector x to it directly. W(1) and W(2) are the coefficient matrices of the first and sec-

ond layers, respectively. Their sizes are m-by-n and n-by-1, where n is the class number of the

regression task of the first layer. In the case of this paper, we set n as 35, which is the phoneme

number of the French language. b is the bias value of the second layer. The training methods

of the coefficient matrices and bias vectors are presented in the next section. x(2) =< x12, x22,

. . ., xn2 > is the output of the first activation function set δð1Þ ¼< d
ð1Þ

11
; d
ð1Þ

21
; . . . ; d

ð1Þ

n1
> and its

function elements are rectified linear units (ReLU):

d
ð1Þ

1
ðxÞ ¼

x if x > 0

0 otherwise

(

ð9Þ

We apply ReLUs to the elements of h(1)’s output vector one by one. For the output of the sec-

ond layer, a sigmoid function is used as its activation function in order to constrain the output

of the detector into a reasonable range from 0 to 1:

d
ð2Þ
ðxÞ ¼

1

1þ e� x
ð10Þ

The output of the detector y is considered as the diagnosis score, and high score values corre-

spond to higher utterance quality. If desired, a decision can be made via a threshold η. The

selected phoneme is correctly pronounced if y> η, otherwise not.

3 Training process of the utterance detectors

As shown in Fig 2(c), the utterance diagnosis is realized by using multiple independent detec-

tors, and every detector is specified for each French phoneme. We train the detectors through

an heterogeneous process combined of partial least square (PLS) regressors and soft-margin

support vector machines.

3.1 First layer: PLS regression

PLS is a common class of methods for modeling relations between sets of observed variables

by means of latent variables. Its underlying assumption is that the observed data is generated

by a system or process that is driven by a small number of latent (not directly observed or mea-

sured) variables. Its goal is to maximize the covariance between the two parts of a paired data

set even though those two parts are in different spaces. That implies that PLS regression can

overcome the multicollinearity problem by modeling the relationships between the predictors.

Consequently, the first layer of the detector is trained via PLS regression in order to suppress

the multicollinearity among the predictors.

Let x� be the predictor vector of a random utterance sample for training and y� its response,

where � = 1, 2, . . ., N. Both of x� and y� are zero-mean column vectors. We present two matri-

ces X and Y whose i-th rows are the predictor vectors and their responses corresponding to the

i-th sample. Their covariance matrix Cxy is given as

Cxy ¼
1

N

XN

i¼1

xiy
T
i ¼

1

N
XTY ð11Þ

where N is the utterance sample number for training.
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Next, we project the predictor vectors onto two separate directions specified by unit vectors

wx and wy in order to obtain two random variables: wT
x x� and wT

y y�. According to the nonlinear

iterative partial least squares algorithm, PLS searches for the directions wx and wy such that

[12, 18]

max
wx ;wy :jjwx jj¼jjwy jj¼1

Cðwx;wyÞ ¼ max
wx ;wy :jjwx jj¼jjwy jj¼1

wT
xCxywy

¼ max
wx ;wy :jjwx jj¼jjwy jj¼1

1

m
wT

xX
TYwy

ð12Þ

The directions that solve the maximal covariance optimization are the first singular vectors

wx = u1 and wy = v1 of the singular value decomposition of Cxy = USVT, where the value of the

covariance is given by the corresponding singular value σ1. In this paper we apply the same

data projecting strategy through deflation in order to obtain multiple projecting direction, and

the deflation of X is written as

Xjþ1 ¼ XjðI � ujpT
j Þ ð13Þ

with

pj ¼
XT

j Xjuj

XT
j uT

j ujXj

ð14Þ

Let φ(x�) be the feature vector of some test point. By rolling the equation above with the ini-

tialization φ1(x�) = φ(x�), a series of feature vectors in terms of the sample x� are created:

φkþ1
ðx�Þ

T
¼ φðx�Þ

T
�
Xk

j¼1

φjðx�Þ
Tujp

T
j ð15Þ

Compute the inner products between φ(x�) and ui stored as the columns of ~U :

φkþ1
ðxÞT ~U ¼ φðxÞT ~U � ~φðxÞTPT ~U ð16Þ

with

~φðx�Þ ¼ φjðxÞ
Tuj ð17Þ

where ~φðx�Þ is the feature vector needed for the regression, and P is the matrix with the col-

umns of pj (j = 1, 2, 3, . . ., k). For i> j, ðI � uipT
i Þuj ¼ uj. In order to compute the regression

coefficient matrix W(1), we seek a coefficient matrix B that solves the following optimization

[19–21]:

min
B
jjX ~UB � Yjj2 ¼ min

B
hX ~UB � Y;X ~UB � Yi ð18Þ

The final regression coefficients contained in W(1) are given by ~UB. We solve the optimization

of Eq 18 by computing its gradient with respect to B:

B ¼
sjvTj

uT
j X

T
j Xjuj

ð19Þ

where vj is the complementary singular vector associated with uj so that

sjvj ¼ YTXjuj ð20Þ
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It follows that the overall regression coefficients can be computed as

Wð1Þ ¼ ~U ðPT ~U Þ� 1CT ð21Þ

where C is the matrix with columns cj ¼
YTXjuj
ujXT

j Xjuj
.

We train the first layer of the detector by using a training set X and its responses YT. The

elements of Y are 1 if the corresponding predictor vector is matched with the user-selected

phoneme and 0 otherwise. By using this way, the multicollinearity of the predictors can be well

mitigated and facilitate the classifying task in the next layer.

3.2 Layer 2: Support vector machine

The second layer of the detector is trained by using improved soft-margin SVMs. SVM is a

type of binary classifier that has been widely used [9, 22–24] in speech processing, and we

write the SVM model desired in this paper as Eq 8. Classical SVMs build the classifier by

searching for some hyperplane (W(2), b) that maximizes the margin γ between the two target

clusters (correct pronunciations or not):

min
Wð2Þ ;b

1

2
jjWð2Þjj

2

s:t: yiðx
ð2Þ

i �Wð2Þ þ bÞ � 1; i ¼ 1; 2; . . . ;N
ð22Þ

where xð2Þi is the i-th predictor vector used to train the second layer, and we have

xð2Þi ¼ δð1Þðhð1ÞðxiÞÞÞ ð23Þ

Eq 22 allows to classify the utterance samples with a “hard margin” determined by support vec-

tors (the cycled samples in Fig 4(a)), which may result in over-fitting problem. For this issue,

we regularize it to

min
Wð2Þ ;b

1

2
jjWð2Þjj

2
þ C

XN

i¼1

Jðhð2Þðxð2Þi Þ; y
ð2Þ

i Þ ð24Þ

where C is the regularization constant, and J is the loss function. The first term of Eq 24

1

2
jjWð2Þjj

2
corresponds to the structural risks, whereas the second one C

PN
i¼1

Jðhð2Þðxð2Þi Þ; y
ð2Þ

i Þ

Fig 4. Support vector regression.

https://doi.org/10.1371/journal.pone.0257901.g004
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the empirical risks. This paper uses insensitive loss function Jε as loss function:

Jεðx
ð2Þ

i Þ ¼
0 if jxð2Þi j � ε

jxð2Þi j � ε otherwise

(

ð25Þ

Fig 4(b) plots the ε-insensitive loss function, and Eq 24 is rewritten as

min
Wð2Þ ;b

1

2
jjWð2Þjj

2
þ C

XN

i¼1

Jεðh
ð2Þðxð2Þi Þ � yð2Þi Þ ð26Þ

where ε is the maximum error between the prediction results hð2Þðxð2Þ
�
Þ and the corresponding

labels yð2Þ
�

(� = 1, 2, . . ., N). With Eq 26, the training process takes into account the loss only

when the error is higher than it. That is, a 2ε-width margin is obtained, within which the sam-

ples (cycled in Fig 4(c)) are supposed to have been correctly classified and their losses will not

be considered.

Eq 26 is solved by using the method of lagrange multiplier. To do this, two slack variables ξi
and x

0

i are introduced, so that

min
Wð2Þ ;b;xi ;x0i

1

2
jjWð2Þjj

2
þ C

XN

i¼1

ðxi þ x
0

iÞ

s:t: hð2Þðxð2Þi Þ � yð2Þi � εþ xi

yð2Þi � hð2Þðxð2Þi Þ � εþ x
0

i

xi � 0

x
0

i � 0

ð27Þ

with

i ¼ 1; 2; . . . ;N

The slack variables ξi and x
0

i correspond to the dissatisfaction degree to the margin constraint.

We write the lagrange function of Eq 27 as

LðWð2Þ; b;α;α0; ξ; ξ0;μ; μ0Þ ¼
1

2
jjWð2Þjj

2
þ C

XN

i¼1

ðxi þ x
0

iÞ �
XN

i¼1

mixi �
XN

i¼1

m0ix
0

i

þ
XN

i¼1

aiðh
ð2Þðxð2Þi Þ � yð2Þi � ε � xiÞ

þ
XN

i¼1

a0iðy
ð2Þ

i � hð2Þðxð2Þi Þ � ε � x
0

iÞ

ð28Þ

where μi� 0, m0i � 0, αi� 0 and a0i � 0, which correspond to the columns of μ, μ0, α, are the

lagrange multipliers. Bring Eq 8 into 28 and compute its partial derivatives with respects to
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W(2), b, ξi and x
0

i:

Wð2Þ ¼
XN

i¼1

ða0i � aÞx
ð2ÞT

j ð29Þ

XN

i¼1

ðai � a
0

iÞ ¼ 0 ð30Þ

C ¼ ai þ mi ð31Þ

C ¼ a0i þ m
0
i ð32Þ

According to Eqs 28–32, the dual problem of Eq 27 is obtained:

max
α;α0
Dðα;α0Þ ¼ max

α;α0

XN

i¼1

½yð2Þi ða
0

i � aiÞ � εða
0

i þ aiÞ�

�
1

2

XN

i¼1

XN

j¼1

ða0i � aiÞða
0

j � ajÞx
ð2Þ

i xð2Þ
T

j

s:t:
XN

i¼1

ðai � a
0

iÞ ¼ 0

0 � ai; a
0
i � C

ð33Þ

Within Eq 33, the lagrange multipliers αi and a0i correspond to the training sample

ðxð2Þi ; y
ð2Þ

i Þ. For the purpose of global optima, the Karush-Kuhn-Tucker constraints must be sat-

isfied:

aiðhð2Þðx
ð2Þ

i Þ � yð2Þi � ε � xiÞ ¼ 0

a0iðy
ð2Þ

i � hð2Þðxð2Þi Þ � ε � x
0

iÞ ¼ 0

aia
0
i ¼ 0

xix
0

i ¼ 0

ðC � aiÞxi ¼ 0

ðC � a0iÞx
0

i ¼ 0

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð34Þ

The constraints of Eq 34 implies that when and only when hð2Þðxð2Þi Þ � yð2Þi � ε � xi ¼ 0 the

value of αi is not zero, whereas yð2Þi � hð2Þðxð2Þi Þ � ε � x
0

i ¼ 0 for that of a0i. Additionally, it is

impossible that the constraints hð2Þðxð2Þi Þ � yð2Þi � ε � xi ¼ 0 and yð2Þi � hð2Þðxð2Þi Þ � ε � x
0

i ¼ 0

are both valid, therefore at least one of the two multipliers αi and a0i have to be zero. Bringing

Eq 29 into 8, we rewrite the propagation function of the second layer as

hð2Þðxð2ÞÞ ¼
XN

i¼1

ða0i � aiÞx
ð2Þxð2Þi

T
þ b ð35Þ

According to Eq 35 it can be seen that the predictor vectors making ða0i � aiÞ not to be zero are
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the support vectors, and they must be out of the ε-margin. Those support vectors are only

parts of the training samples, so the optima of the desired SVM model is still spare.

Now we can start to compute the coefficient matrix W(2) with Eqs 28–33, which is actually a

quadratic programming problem and can be solved by using sequential minimal optimization

(SMO) method [25]. More precisely, SMO selects one or several of them for optimizing and

fixes the others so that all the variables can be solved one by one. Let aio , a
0
io

, ajo and a0jo (io 6¼ jo)
be the variables to be optimized for some iteration. According to the KKT constraints of Eq 34,

at least one of the two multipliers αi and a0i have to be zero, allowing to define two of the four

variables directly as zero to facilitate the optimizations. Taking a0io ¼ 0 and a0jo ¼ 0 as an exam-

ple, Eq 33 is rewritten to

max
aio ;ajo

Dðaio ; ajo ; 0; 0Þ ¼ max
aio ;ajo

X

i6¼io

½yð2Þi ða
0

i � aiÞ � εða
0

i þ aiÞ�

�
1

2

X

i6¼io

X

j6¼jo

ða0i � aiÞða
0

j � ajÞx
ð2Þ

i xð2Þ
T

j

þ
1

2
aio ½
X

j6¼jo

ða0j � ajÞx
ð2Þ

io x
ð2ÞT

j � 2yð2Þio � 2ε�

�
1

2
aioajox

ð2Þ

io x
ð2Þ

jo

T

s:t: aio � ajo ¼ cwith c ¼ �
X

i6¼io ;jo

ðai � a
0

iÞ

0 � aio ; ajo � C

ð36Þ

where the third and fourth input arguments ofD correspond to a0io and a0jo , respectively. c is a

constant having
PN

i¼1
ðai � a

0
iÞ ¼ 0 satisfied. Solve aio � ajo ¼ c for ajo and substitute it in Eq

36:

max
aio

Dðaio ; aio � c; 0; 0Þ ¼ max
αio

X

i6¼io

½yð2Þi ða
0

i � aiÞ � εða
0

i þ aiÞ�

�
1

2

X

i6¼io

X

j6¼jo

ða0i � aiÞða
0

j � ajÞx
ð2Þ

i xð2Þ
T

j

þ
1

2
aio ½
X

j6¼jo

ða0j � ajÞx
ð2Þ

io x
ð2Þ

j
T
� 2yð2Þio � 2εþ cxð2Þio x

ð2Þ

jo

T
�

�
1

2
a2

io
xð2Þio x

ð2Þ

jo

T

s:t: maxf0; cg � aio � minfC;C þ cgwith c ¼ �
X

i6¼io;jo

ðai � a
0

iÞ

ð37Þ

DðaioÞ is a quadratic polynomial in standard form, allowing to compute aio by optimizing it

within the domain [max{0, c}, min{C, C+ c}]. Similarly, the four multipliers aio , a
0
io

, ajo and a0jo
can be computed with the other hypothesises satisfying aia

0
i ¼ 0, including faio ¼ 0; a0jo ¼ 0g,

fa0io ¼ 0; ajo ¼ 0g and faio ¼ 0; ajo ¼ 0g. Finally, the optimizing results with the hypothesis

maximizingDðaio ; ajo ; a
0
io
; a0joÞ are assigned to Eq 29 to compute the coefficient vector W(2).

According to the KKT constraints of Eq 34, for every training sample ðxð2Þi ; y
ð2Þ

i Þ it exists (C
− αi)ξi = 0 and aiðhð2Þðx

ð2Þ

i Þ � yð2Þi � ε � xiÞ ¼ 0. Therefore, if the final value of aio is neither

PLOS ONE An heterogeneous machine learning framework for computer-assisted French phoneme pronunciation training

PLOS ONE | https://doi.org/10.1371/journal.pone.0257901 October 18, 2021 11 / 21

https://doi.org/10.1371/journal.pone.0257901


zero nor C, xio must be zero, yielding:

bio ¼ yð2Þio þ ε �
XN

j

ða0j � ajÞx
ð2Þ

io x
ð2ÞT

j ð38Þ

where bio is the bias value corresponding to ðxð2Þio ; y
ð2Þ

io Þ. Theoretically, all the training samples

satisfying 0< αi< C should have led to the same bias, but errors may still exist due to the data

distortions. For the purpose of high robustness, the values of bi are averaged so that the final

bias b is

b ¼
1

N

XN

i¼1

bi ð39Þ

with

bi ¼
yð2Þi þ ε �

XN

j
ða0j � ajÞx

ð2Þ

i xð2Þj
T if 0 < ai < C

0 otherwise

8
<

:
ð40Þ

4 Experiments

This section evaluates the proposed CAPT framework. The experiments are conducted by

using the CUEB French Phoneme Database 1.0. First of all, the PLS regressor is tested to see

whether it can mitigate the multi-collinearity of utterance waveforms. Next, the proposed

method is compared with reference pronunciation diagnostic models in order to analyze its

properties. All experiments have been achieved in the environment of MATLAB.

4.1 Database description

The CUEB French Phoneme Database 1.0 is established by the Capital University of Econom-

ics and Business and the Institute of Acoustics CAS. Within the Version 1.0, there are 23 par-

ticipants, including 4 Chinese female teachers, 2 female French-native speakers, 3 Chinese

male learners and 14 Chinese female learners. Every participants is asked to read the French

phonemes shown in Table 1 six times to perform six different data sessions. The utterances are

recorded at 44.1 kHz by using the private cell phones of the participants in a daily-life environ-

ment, further challenging the CAPT framework of this paper. Fig 5 plots an example of the

recorded utterances. As presented in Fig 3, the sound waveform is segmented depending on

the signal-to-noise ratio, and the threshold values ηtic and ηtoc are 0:2� �P, where �P is the

Table 1. French phoneme table.

15 vowels

Vowel: [a], [i], [e], [ε], [y], [u], [o], [ɔ], [ə], [ø], [œ]

Nasal vowel: [ã], [~ɔ], [~ε], [ ~œ]

3 semi vowels [j], [w], [ɥ]

17 consonants

Deaf consonants: [p], [t], [k], [f], [s], [ʃ]

Sound consonants: [b], [d], [g], [v], [z], [ȝ]

Lateral consonants: [l], [r]

Nasal consonants: [m], [n], []

https://doi.org/10.1371/journal.pone.0257901.t001
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mean power of the signal. The segmentation results are marked by using green and red crosses

on the waveform plot, which correspond to the start and end edges, respectively. The size of

the data set of this paper is therefore 35 phonemes ×6 sessions ×23 participants = 4830 sam-

ples. Fig 6 shows the examples of the predictor vectors corresponding to the 35 French pho-

nemes, which actually are the frequency spectrum of the utterance waveforms.

Fig 5. A data example of CUEB French Phoneme Database 1.0 (developed from S1 Audio).

https://doi.org/10.1371/journal.pone.0257901.g005

Fig 6. Examples of predictor vectors (developed from S1 Audio).

https://doi.org/10.1371/journal.pone.0257901.g006
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4.2 Evaluation of PLS algorithm

The subject of this experiment is to evaluate the PLS algorithm of this paper. The frequency

band of the signals is from 0 to 5000 Hz, and the maximum projection direction number k of

PLS regressor is 100. The dimension of the input predictor vectors is reduced down to 500 via

linear interpolation. CI values are used as the criterion to quantify the multicollinearity of the

processed predictor vectors (see Eq 2). All the samples of the database are used for the

measurements.

Fig 7 plots the CI measurement results of the first 15 iterations, corresponding to the first

15 projection directions. It demonstrates that the CI values are reduced with the increase of

the projection direction number k, indicating that the multicollinearity of the predictor vectors

are mitigated step by step.

The ratios of the predictors whose CI exceed 10, which is a threshold value proposed by Bel-

sey et al. [17] for multicollinearity estimations, are computed with different projection direc-

tion numbers. The results shown in Fig 8 demonstrate also that the multicollinearity problems

are mitigated, and the high-CI predictor ratio is reduced by around 64%. Meanwhile, the pro-

posed method loss effects when k> 50, implying that it possess boundary effects.

4.3 Accuracy performance

The experiments of this subsection evaluate the accuracy performance of the proposed frame-

work as well as its sensitivity to the PLS projection direction number k. 4 of the 6 sessions of

the database are used to train the framework of Fig 2 whereas the rest two for testing. The

curves of receiver operating characteristics (ROC) for different user-selected phonemes are

measured to estimate the minimum diagnostic error rate.

Let us take the phoneme [ɑ] for example. When this phoneme is selected, it is actually the

[ɑ]-detector of Fig 2(c) who works. Fig 9 plots its ROC curves from k = 2 up to k = 40 with a

Fig 7. CI measurement results with different projection direction numbers.

https://doi.org/10.1371/journal.pone.0257901.g007
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step of 2, in which x and y-axis correspond to the false positive rate (FPR) and false negative

rate (FNR), respectively. The dotted line FNR = FPR is the constraint to balance the FPRs and

FNRs, meaning that the minimum diagnostic error rates are obtained when the false and leak

detection rates are equal. It can be seen that with the increases of projection direction, the

accuracy performance of the [ɑ]-detector is improved by around 10%, implying that PLS bene-

fits the diagnostic tasks.

Applying the ROC measuring with the other phonemes we can get similar results. The min-

imum diagnostic error rates of all the phonemes over the PLS projection direction numbers

are plotted in Fig 10, in which a single box corresponds to the diagnostic error rates of the 35

detectors measured with different projection direction numbers. On each box, the central

mark indicates the median, and the bottom and top edges of the box indicate the 25th and

75th percentiles, respectively. We can see that the medians of the diagnostic error rates con-

verge with the increase of projection direction number, demonstrating that the PLS algorithm

helps to facilitate the classification tasks. Meanwhile, comparing to Fig 8, all the diagnostic

error rate curves convergence after 8 iterations rather than 50, implying that the SVM classifier

specified in this paper somehow has possessed the multicollinearity mitigating ability but can-

not eliminate it completely. Fig 11 shows the optimal diagnostic error rates of all the 35 pho-

nemes with k 2 [1, 100], and the overall accuracy performance of the proposed CAPT

framework approximates 2.43% (average minimum diagnostic error rate).

4.4 Comparing experiments

In order to highlight the properties of the proposed method, we compare it with the state-of-

the-arts. The framework shown in Fig 2 is used as the evaluation platform. Its detectors are

implemented by using the classifiers to be evaluated, including PLS regressor (PLS), hard-mar-

gin SVM (HMSVM), soft-margin (SMSVM), deep neural network (DNN) and the proposed

as well.

Fig 8. Predictor ratios at CI> 10 over the projection direction numbers.

https://doi.org/10.1371/journal.pone.0257901.g008
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The PLS implementation for reference is realized by using a PLS regressor which comprises

of regression and classification tasks. Its final decisions are performed directly on the PLS

regression without a second network layer. Its size is m-inputs, m-nodes and 1-output, where

m is the size of the predictor vector. The HMSVM and SMSVM implementations are two

Fig 9. Receiver operating characteristics of the proposed CAPT framework with [ɑ].

https://doi.org/10.1371/journal.pone.0257901.g009

Fig 10. Diagnostic error rates with different PLS projection direction numbers.

https://doi.org/10.1371/journal.pone.0257901.g010
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classical SMV classifiers implemented with hard and soft margins, respectively (see Fig 4).

Their sizes are m-inputs, m-nodes and 1-output, their maximum training iterations are 106

and the minimum errors are 10−6. The DNN implementation is a three-hidden-layer feedfor-

ward neural network [6]. Its size is m-inputs, (m + 1)-nodes per hidden layer and 1-output, the

maximum training iterations is 106 and the minimum error is 10−6.

The CAPT French Phoneme database acquires 6 sessions of data from every participant,

and the experiment of this subsection divide them into two groups for training and testing ran-

domly depending on the different ratios R = 1: 5, 2: 4, 3: 3, 4: 2 or 5: 1. For the purpose of unbi-

ased conclusions, the average diagnostic error rate of three measurements is used as the final

evaluation result. The statistical results of the evaluation are shown in Fig 12 via box-plot. A

single box corresponds to the diagnostic error rates of the 35 detectors measured with different

implementations and sample ratios R.

The experiment results of Fig 12 demonstrate that the diagnostic error rates of all the imple-

mentations raise with the increases of the training database size. This is because providing

enough training data is a well-known solution to improve the machine learning classifiers by

overcoming their over-fitting problems. The median diagnostic error rates of the five imple-

mentations reduce by 4.26%, 2.91%, 0.88%, 11.62% and 2.58%, which indicate that training

data sensitivity of the proposed method is lower than PLS and DNN implementations, whereas

higher than the two SVM implementations. The proposed method combines the PLS and

SVM methods into a single framework, so it needs a certain number of training data to find

the correct data projection directions, which raise its sensitivity to the size of the training data-

base related to SVMs. On the other hand, the SVM layers enforce the pattern classifying ability

Fig 11. Minimum diagnostic error rates of all the phonemes: k 2 [1, 100].

https://doi.org/10.1371/journal.pone.0257901.g011
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of the overall CAPT framework, allowing for lower data intensity than PLS-only or DNN

implementations.

Within the experiments of this paper, the proposed heterogeneous CAPT framework

achieves the best performance comparing to the reference implementations. The diagnostic

error rates of the implementations are further compared in Fig 13, in which each bar indicates

the average diagnostic error rate of the 35 French phoneme detectors over different training-

testing sample ratios. We can see that among the reference implementations, the SMSVMs

achieve the best accuracy performance at R = 1: 5, 2: 4 and 3: 3, whereas the DNNs at R = 4: 2

and 5: 1. Comparing to them, the method of this paper improves it by 0.28%, 1.24%, 1.84%,

1.03% and 0.21%. For the proposed method itself, the accuracy achievement due to the raising

of sample intensity is 2.76% (R = 1: 5 v.s. R = 5: 1).

5 Discussions and conclusions

This paper explores the possibility to improve the ML-based French CAPT modalities via mul-

ticollinearity suppressing. Its main contributions include:

1. The assumption that the phoneme utterance recognition models of ML families are

impacted by the multicollinearity problem is experimentally verified, and a PLS based solu-

tion is proposed to address it.

Fig 12. Diagnostic error rates of different implementations.

https://doi.org/10.1371/journal.pone.0257901.g012
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2. An heterogeneous machine learning framework is developed for French CAPT modalities.

It combines the PLS algorithm and improved soft-margin SVM, allowing to enhancing the

classifying ability of the model by mitigating the multicollinearity problem. Evaluation

results show that it achieves better accuracy performance than the reference phoneme clas-

sifying models, such as PLS-only regressor, SVMs or DNNs.

3. A French phoneme database is established in order to evaluate the achievements of this

work. This database contains thousands of French phoneme utterance samples collected

from 23 French teachers and learners, providing a nice test bench for future works.

Despite of achievements regarding to accuracy performance within the experiments of this

paper, there exists still some issues. First of all, the proposed CAPT framework is more sensi-

tive to the data density than SVM, but less than PLS regressor and DNN. That is, it requires

more data to model the relationships between the predictors for collinearity analysis than

some conventional machine learning models with low-complex topology structures. Secondly,

the experiment results of Fig 13 show that the performance gap between DNN and the pro-

posed implementations gradually shrinks with the increases of data density, implying that the

multi-layer networks perhaps can handle the collinearity problem under the supports of big

data as well. With the constrains of data base size, we provisionally cannot make a conclusion

that DNNs will lead to better performance if enough training data are provided. Conservatively

speaking, the advantage of the proposed method is to allow faster convergence with sparse

training data set comparing to deep learning. Therefore, the method of this paper may be

more appropriate for the scenarios of data scarcity. Finally, training a classifier of this paper is

time- and resource-costly, because the PLS regressing procedure is programmatically a

Fig 13. Average diagnostic error rates.

https://doi.org/10.1371/journal.pone.0257901.g013

PLOS ONE An heterogeneous machine learning framework for computer-assisted French phoneme pronunciation training

PLOS ONE | https://doi.org/10.1371/journal.pone.0257901 October 18, 2021 19 / 21

https://doi.org/10.1371/journal.pone.0257901.g013
https://doi.org/10.1371/journal.pone.0257901


dependent loop with low parallelism. At present, it seems hardly to embeddly realize such a

model in a on-line way.

In the future work, we will attempt to further explore the collinearity-sensitivity characteris-

tics of other ML classifiers, especially the methods of the deep learning families. PLS actually

can be considered as a potential sparse-learning solution to address the data-hungry problem,

which may better benefit the CAPT applications from deep learning methods.

Supporting information

S1 Audio. Phoneme pronunciation data example. An sample example of CUEB French Pho-

neme Database 1.0 conducting the experiments of this paper.

(M4A)

S1 Appendix.

(PDF)

Author Contributions

Conceptualization: Yanjing Bi, Chao Li.

Data curation: Yanjing Bi.

Funding acquisition: Yannick Benezeth.

Methodology: Yanjing Bi, Chao Li.

Project administration: Chao Li.

Software: Chao Li.

Supervision: Chao Li, Fan Yang.

Validation: Yannick Benezeth, Fan Yang.

Writing – original draft: Yanjing Bi, Chao Li.

Writing – review & editing: Chao Li, Yannick Benezeth, Fan Yang.

References
1. Piotrowska M, Korvel G, Kostek B, Ciszewski T, Cyzewski A. Machine Learning-based Analysis of

English Lateral Allophones. International Journal of Applied Mathematics and Computer ence. 2019; 29

(2):393–405.

2. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436. https://doi.org/10.1038/

nature14539 PMID: 26017442

3. Schmidhuber Jürgen. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015; 61:85–117.

https://doi.org/10.1016/j.neunet.2014.09.003 PMID: 25462637

4. Abdel-Hamid O, Mohamed AR, Jiang H, Deng L, Penn G, Yu D. Convolutional Neural Networks for

Speech Recognition. IEEE/ACM Transactions on Audio Speech & Language Processing. 2014; 22

(10):1533–1545. https://doi.org/10.1109/TASLP.2014.2339736

5. Graves A, Mohamed AR, Hinton G. Speech Recognition with Deep Recurrent Neural Networks. Acous-

tics Speech & Signal Processing icasspinternational Conference on. 2013.

6. Almajai I, Cox S, Harvey R, Lan Y. Improved speaker independent lip reading using speaker adaptive

training and deep neural networks. In: 2016 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP); 2016. p. 2722–2726.

7. Hinton G, Deng L, Yu D, Dahl GE, Mohamed Ar, Jaitly N, et al. Deep Neural Networks for Acoustic

Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal Processing

Magazine. 2012; 29(6):82–97. https://doi.org/10.1109/MSP.2012.2205597

PLOS ONE An heterogeneous machine learning framework for computer-assisted French phoneme pronunciation training

PLOS ONE | https://doi.org/10.1371/journal.pone.0257901 October 18, 2021 20 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257901.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0257901.s002
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1371/journal.pone.0257901


8. Brocki U, Marasek K. Deep Belief Neural Networks and Bidirectional Long-Short Term Memory Hybrid

for Speech Recognition. Archives of Acoustics. 2015; 40(2). https://doi.org/10.1515/aoa-2015-0021

9. Zehra W, Javed AR, Jalil Z, Gadekallu TR, Kahn HU. Cross corpus multi-lingual speech emotion recog-

nition using ensemble learning. Complex & Intelligent Systems. 2021;(1).

10. Barons MJ, Parsons N, Griffiths F, Thorogood M. A comparison of artificial neural network, latent class

analysis and logistic regression for determining which patients benefit from a cognitive behavioural

approach to treatment for non-specific low back pain. In: IEEE Symposium Series on Computational

Intelligence; 2013. p. 7–12.

11. Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression

data. Bioinformatics. 2002; 18(1):39. https://doi.org/10.1093/bioinformatics/18.1.39 PMID: 11836210

12. Uzair M, Mahmood A, Mian A. Hyperspectral Face Recognition With Spatiospectral Information Fusion

and PLS Regression. IEEE Transactions on Image Processing. 2015; 24(3):1127–1137. https://doi.org/

10.1109/TIP.2015.2393057 PMID: 25608305

13. Li C, Benezeth Y, Nakamura K, Gomez R, Yang F. A robust multispectral palmprint matching algorithm

and its evaluation for FPGA applications. Journal of Systems Architecture. 2018; 88:43–53. https://doi.

org/10.1016/j.sysarc.2018.05.008

14. Boersma P. An articulatory synthesizer for the simulation of consonants. In: Third European Conference

on Speech Communication and Technology, EUROSPEECH 1993, Berlin, Germany, September 22-

25, 1993; 1993.

15. Wong K, Lo W, Meng H. Allophonic variations in visual speech synthesis for corrective feedback in

CAPT. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);

2011. p. 5708–5711.

16. Fildes R. Conditioning Diagnostics: Collinearity and Weak Data in Regression. Technometrics. 1993;

35(1):85–86. https://doi.org/10.1080/00401706.1993.10484997

17. David B A, Edwin K, Welsch RE. Conditioning Diagnostics: Collinearity and Weak Data in Regression.

Published online: 28 january 2005 ed. Wiley-Interscience; 2005.

18. Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis. New York, NY, USA: Cambridge

University Press; 2004.

19. WOLD H. Soft modelling: The Basic Design and Some Extensions. Systems Under Indirect Observa-

tion, Part II. 1982; p. 36–37.

20. Wold H. In: Kotz S, Johnson NL, editors. Partial least squares. John Wiley & Sons, Inc.; 2004. Available

from: http://dx.doi.org/10.1002/0471667196.ess1914.pub2.

21. Wold S, Ruhe H, Wold H, III D, J W. The collinearity problem in linear regression. The partial least

squares (PLS) approach to generalized inverse. Journal of Scientific and Statistical Computations.

1984; 5:745–743.

22. CORTES C, VAPNIK V. SUPPORT-VECTOR NETWORKS. MACHINE LEARNING. 1995; 20(3):273–

297. https://doi.org/10.1007/BF00994018
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