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Due to its intrinsic advantages such as the ability to handle complex shapes, the level set method (LSM)
has been widely applied to image segmentation. Nevertheless, the LSM is computationally expensive. In
order to improve the performance of the traditional LSM both in terms of efficiency and effectiveness, we
propose a novel algorithm based on the lattice Boltzmann method (LBM). Using local region statistics and

prior based body force for LBM solver. An NVIDIA graphics processing units (GPU) is used to accelerate
the method. Our introduced algorithm has several advantages. First, it is accurate even if there are some
geometric transformations (rotation angle, scaling factor and translation vector) between the object to be
segmented and the prior shape. Second, it is local and therefore suitable for massively parallel archi-
tectures. Third, the use of local region information allows it to deal with intensity inhomogeneities.
Fourth, including shape prior allows the method to handle occlusion and noise. Fourth, the model is fast.
Finally the algorithm can be used without shape prior by means of minor modification. Intensive
experiments demonstrate, objectively and subjectively, the performance of the introduced framework.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In computer vision and pattern recognition, image segmentation
[1,2,32–35] is a major process by which a given image is partitioned
into number of meaningful and homogeneous regions, such that the
union of any two neighborhood regions yields a heterogeneous seg-
ment. The task is non-trivial and more challenging in presence of
noise, intensity inhomogeneities or occlusion.

Recently, optimization methods have been widely used as highly
effective image segmentation strategies. They basically achieve the
segmentation by minimizing a given energy function designed from
the image information. Optimization methods can be roughly clas-
sified into two important classes: spatially discrete and spatially
continuous representations. In spatially discrete approaches, the
pixels of the image are usually considered as the nodes of a graph,
and the aim of segmentation is to find cuts of this graph which have
a minimal cost [25,26].

As shown by Fig. 1, active contour models (ACMs) belong to the
spatially continuous approaches: the segmentation of the image
plane is considered as a problem of infinite-dimensional optimi-
zation. In this class, variational methods are used in the image
: þ86 29 88201620.
o.xidian@gmail.com (X. Gao).
ao/
segmentation. The principle is to evolve the active curve in the
direction of the negative energy gradient by means of an appro-
priate partial differential equation. The implicit active curve
method or level set method (LSM) [3–7] designates the class of
ACM which uses the Eulerian framework, that is, the geometric
representation of the evolving curve, instead of the parametric
one, that is, the Lagrangian framework [27–29].

The LSM has several intrinsic advantages, such as the ability to
easily handle complex shapes, and topological changes compar-
able to parametric active contours. It is, furthermore, straightfor-
ward to pass from two-dimensional (2D) to 3D space, and to add
some constraints on the smoothness of the boundaries via some
regularization terms.

The original idea of the LSM stems from the Hamilton Jacobi
approach, i.e., a time-dependent equation for a moving surface
[8,9]. In two-dimensional (2D) space, the LSM aims to evolve a
given curve toward its interior or exterior normal until defining
the boundary of the object of interest. The curve evolution is dri-
ven by the level set equation (LSE) which is a partial differential
equation and, in its simple form can be expressed as

∂ϕ
∂t

¼ V ∇ϕ
�� ��; ð1Þ

where ϕ is the level set function (LSF), ∇ϕ is the gradient of ϕ and V
is the speed function which drives the active contour towards the
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Fig. 1. Organization of optimization methods.
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Fig. 2. Spatial structure of the D2Q9 LBM lattice.
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region boundaries. Two approaches are usually used to stop the
evolving curve on the boundary of the desired object. The first one
uses an edge indicator depending on the gradient of the image like in
classical snakes and active contour models [10–12]. The second one
uses some regional attributes to stop the evolving curve on the actual
boundary [13,14]. The latter is more robust against noise and can
detect objects with weak edges. One of the most interesting
approaches was proposed in [15] where Chan and Vese introduced a
level set formulation to minimize the Mumford and Shah functional
[16]. They converted the problem into a mean curvature flow problem
just like the active contours. But the results were better than the
classical active contours because the stopping term did not depend on
the gradient of the image which reduces the dependence on strong
edges and improves the robustness against noise. However the
method cannot deal with intensity inhomogeneities, and is not sui-
table for parallel programming because at each iteration the average
intensities inside and outside the contour should be computed, which
increases drastically the CPU time by increasing communications
between processors. Furthermore, in order to solve the LSE, most of
the available methods suggest the use of some computational
expensive finite difference, finite element or finite volume approx-
imations and an explicit computation of the curvature [17].

In [18], the authors used the lattice Boltzmann method (LBM)
as an alternative approach for solving the LSE for region-based
image segmentation. The method can better handle the problem
of time consuming because the curvature is implicitly computed
and the algorithm is simple. Nevertheless, in this method the
proposed stop function is not local, thus cannot deal with intensity
inhomogeneities and at the same time is not suitable for GPU-
based computations.

In the present paper, we propose a new supervised method
which improves and overcomes some limitations of the one pro-
posed in [18]. Using local region properties of the image, we
design a new localized stop function which includes shape prior
information. The prior shape is used to roughly guide the evolving
curve toward boundaries of the object to detect, and the local
region statistics allow the detection of fine details. Moreover, since
sometimes there are some small geometric transformations
(rotation angle, scaling factor and translation vector) between the
object to be segmented and the prior shape, we introduced a
straightforward adjustment method which effectively increases
the accuracy of the method. The proposed algorithm can deal with
intensity inhomogeneities, occlusion and noise, and is highly
parallelizable due to its local property. Furthermore, it can be
easily used without shape prior by means of minor modification.

The rest of this paper is organized as follows: Section 2 briefly
introduces the LBM. In Section 3, we present the formulation of
the proposed method. Section 4 validates the performance of the
proposed image segmentation method through experimental
results. Section 5 concludes the paper.
2. Background

This section gives an overview of the LBM method which is
used in this paper to solve the LSE. The LBM models Boltzmann
particle dynamics on a 2D or 3D lattice. At first, it was designed to
solve macroscopic fluid dynamics problems. The LBM is second-
order accurate both in time and space, and in the limit of zero time
step and lattice spacing, it yields the Navier–Stokes equations for
an incompressible fluid [19].

In this paper, we use the D2Q9 (2D with 8 links with its
neighbors and one link for the cell itself) LBM lattice structure.
Fig. 2 shows a typical D2Q9 model.

The evolution equation of LBM can be written as

f ið r!þ e!i; tþ1Þ ¼ f ið r!; tÞþ1
τ
½ f eqi ð r!; tÞ� f ið r!; tÞ�þ D

bc2
U F
!

: e!i ; ð2Þ

where e!i is the velocity vector of a given link i, f ið r!; tÞ the dis-
tribution of the particle that moves along that link, t the time, r!

the position of the cell, F
!

the body force, D the grid dimension, b
the link at each grid point and c the length of each link which is set
to 1 in this paper. The parameter τ represents the relaxation time
determining the kinematic viscosity ϑ of the fluid by

ϑ¼ 1
3

τ�1
2

� �
ð3Þ

and f eqi is the local equilibrium particle distribution usually given
by the Bhatnager, Gross, and Krook (BGK) model

f eqi ðρ; u!Þ¼ ρðAiþBið e!i: u
!ÞþCið e!i: u

!Þ2þDið u!Þ2Þ; ð4Þ
where the constant coefficients Ai to Di are chosen via the

geometry of the lattice links, ρ and u! are respectively the mac-
roscopic fluid density and velocity computed from the particle
distributions as

ρ¼
X
i

f i; ð5Þ

u!¼ 1
ρ

X
i

f i e
!

i: ð6Þ
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For diffusion problems, the equilibrium function can be sim-
plified as [20]

f eqi ðρ; u!Þ¼ ρAi: ð7Þ
In the case of D2Q9 model, Ai ¼ 4=9 for the zero link, Ai ¼ 1=9

for the axial links, Ai ¼ 1=36 for the diagonal links and the
relaxation time τ is then determined using the following equation:

ξ¼ 2
9
ð2τ�1Þ; ð8Þ

where ξ is the diffusion coefficient. By performing the Chapman–
Enskog analysis the following diffusion equation can be recovered
from the LBM evolution equation (Eq. (2)):

∂ρ
∂t

¼ ξdivð∇ρÞþF; ð9Þ

where div is the divergence operator. Substituting ρ by the signed
distance function ϕ in Eq. (9), the LSE can be recovered. The body
force F represents the link with the image data in the LBM solver.

Another approach for the LBM based level set segmentation is
to add a medium between the nodes of the lattice [21] in order to
design a stop function for the evolving active contour. The parti-
cles can pass through the medium with a possibility of gið r!Þ, and
will be punched back where they were with a possibility of
1�gið r!Þ. They therefore modified the LBM evolution equation as

f ið r!þ e!i; tþ1Þ ¼ gið r!Þ½ f ið r!; tÞþ1
τ
½ f eqi ð r!; tÞ� f ið r!; tÞ�þσ�

þð1�gið r!ÞÞf ið r!þ e!i; tÞ; ð10Þ
where σ is the convection coefficient.
3. The shape-constrained level set algorithm

In this section, we first design and analyze the proposed loca-
lized shape prior algorithm, and then we give the main
implementation steps.

3.1. Design and analysis of the proposed algorithm

For the level set equation defined in (Eq. (1)), we design the
following shape prior based speed function:

Vð r!Þ¼ αðf shapeð r!Þ�e1ð r!Þþe2ð r!Þ
2

Þþξð r!Þ; ð11Þ

with

f shapeð r!Þ¼ Ið r!Þþλðsignðϕref ð r
!ÞÞ�signðϕð r!ÞÞÞ; ð12Þ

where r! is a spatial variable, α a controlling parameter, λ a
weighting positive parameter, ϕ the level set function which is a
signed distance function, ϕref a signed function obtained from the
aligned prior shape, and I the pixel intensity. In this paper, ϕ is
positive inside the contour and negative outside, just as ϕref is
positive inside the aligned prior shape and negative outside.

The terms e1 and e2 are local mean values of a given pixel
respectively inside and outside the evolving curve. They are defined as

e1ð r!Þ¼
R
ΩKð r

!� s!ÞU Ið s!ÞUHðϕÞd s!R
ΩKð r

!� s!ÞUHðϕÞd s!
; ð13Þ

e2ð r!Þ¼
R
ΩKð r

!� s!ÞU Ið s!ÞUð1�HðϕÞÞd s!R
ΩKð r

!� s!ÞUð1�HðϕÞÞd s!
; ð14Þ

where H is the Heaviside function and

Kð r!� s!Þ¼ 1 ‖ r!� s!‖oμ
0; otherwise

(
ð15Þ
with μ the radius parameter and s! a spatial variable. K is a char-
acteristic function used to mask local regions, it will be 1 when the
point s! is within a ball of radius μ centered at r!, and 0 otherwise.

The term ξð r!Þ is the non-linear curvature term used to smooth
the contour. It can be written as

ξð r!Þ¼ β ∇U
∇ϕ
∇ϕ
�� ��; ð16Þ

where β is a controlling parameter.
The proposed shape prior based level set equation is therefore

∂ϕ
∂t

¼ αðIð r!Þþλðsignðϕref ð r
!ÞÞ�signðϕð r!ÞÞÞ

�e1ð r!Þþe2ð r!Þ
2

Þþβ∇U
∇ϕ
∇ϕ
�� ��Þ ∇ϕ�� ��: ð17Þ

In order to make the method suitable for parallel programming,
we use the local LBM to solve the proposed LSE. Since we consider
ϕ as a signed distance function, i.e., j∇ϕj ¼ 1, Eq. (17) can there-
fore be expressed as

∂ϕ
∂t

¼ αðIð r!Þþλðsignðϕref ð r
!ÞÞ�signðϕð r!ÞÞÞ

�e1ð r!Þþe2ð r!Þ
2

Þþβ ∇U∇ϕ; ð18Þ

which is similar to Eq. (9) with the body force defined as

Fð r!Þ¼ αðIð r!Þþλðsignðϕref ð r
!ÞÞ�signðϕð r!ÞÞÞ

�e1ð r!Þþe2ð r!Þ
2

Þ: ð19Þ

The proposed level set equation can thus be solved using the
lattice Boltzmann evolution equation Eq. (2) without the necessity
of explicitly computes the computational expensive curvature
term since it is implicitly handled. Furthermore, since the above
defined body force is also local, it will not affect the local nature of
the LBM. This will result in an adequate algorithm to massively
parallel devices such as the GPU because the time consuming
communications between the processors will be greatly reduced,
as well as the executive time.

From Eqs. (11) and (12) we get the followings remarks:

1. Considering an object with or without edges, Vð r!Þ reduces to
zero when the active pixel intensity verify

Ið r!Þ� e1ð r!Þþe2ð r!Þ
2

�λðsignðϕref ð r
!ÞÞ�signðϕð r!ÞÞÞ; ð20Þ

2. In the case of partial occlusion, the second term in the right
hand side of Eq. (20) makes the contour continue to evolve
instead to stop on the false boundaries caused by the occlusion.

3. If the image template is not available, we just have to fix ϕref
¼ϕ or λ¼ 0 in the algorithm and to perform the segmentation
without prior shape.

According to the above statements, using Vð r!Þ as a stop
function will theoretically produce interesting results. This will be
confirmed by experimental results.

For the shape adjustment, we use the following method which
can handle the cases of geometric transformations (translation,
rotation and scaling). Let us consider Fig. 3 where θ is the rotation

angle. In order to determine θ, the translation parameter H
!

and
the scaling parameter S, we have the following steps. We first
choose two remarkable points on the shape prior (A and B), which
can be easily recover on the object to be segmented (C and D). In
this paper, the selected points are vertex of some well-defined
angles. O1 and O2 are respectively the centers of the [AB] and [CD].



Fig. 3. Shape adjustment parameters.

Compute
and 

Compute

Update

F

Is
segmentation 

done?

YES

NO

LBM

CPU

GPU

Find Contours

Initialize
as SDF

φ

Streaming

Collision

1e

φ

2e

Do the roughly
shape adjustment

Start End

Fig. 4. Flowchart representing the process of the introduced framework.
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The rotation angle is therefore the angle between the straight lines

(AB) and (CD). By considering the scalar product of the vectors AB
�!

and CD
�!

, we have

AB
�!

U CD
�!¼ AB

�!��� ���� CD
�!��� ���� cos ðθÞ

¼ ðxB�xAÞðxD�xCÞþðyB�yAÞðyD�yCÞ: ð21Þ
We can then compute the rotation angle θ since

cos ðθÞ ¼ 1
S
:
ðxB�xAÞðxD�xCÞþðyB�yAÞðyD�yCÞ

ðxB�xAÞ2þðyB�yAÞ2
ð22Þ

where S is the scaling parameter defined as

S¼ CD
�!��� ���= AB

�!��� ���
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðxD�xCÞ2þðyD�yCÞ2�=½ðxB�xAÞ2þðyB�yAÞ2�

q
: ð23Þ

In the shape adjustment process, after the scaling and the

rotation steps, the translation parameter H
!

can be written as

H
!¼ H

!
0 ¼

1
2ðxCþxDÞ�1

2ðxAþxBÞ

1
2ðyCþyDÞ�1

2ðyAþyBÞ

8><
>: ð24Þ

Note that before the scaling and the rotation steps in the shape

alignment process, we have H
!

a H
!

0.

3.2. Implementation

The steps for the implementation of the proposed algorithm
are outlined as follows:

(a) Initialize ϕ as a signed distance function;
(b) Do the shape alignment, which consists to first put the tem-

plate at the same scale with the object to segment, the scaling
parameter being S. The second step is the rotation according to
θ, and the last step consists to translate the geometric tem-
plate according to H

!
;

(c) Compute e1 and e2 according to Eqs. (13) and (14);
(d) Calculate Fð r!Þ according to Eq. (19);
(e) Resolve the proposed level set equation with the LBM evolu-

tion equation Eq. (2);
(f) Accumulate the f ið r!; tÞ values at each grid point using Eq. (5)

to get the updated values of ϕ at each point;
(g) Find the contour which is the zero level of ϕ;
(h) If the algorithm has not converged, i.e., j jϕtþ1�jϕt j j410�5,

go back to step (c).
Fig. 4 illustrates the flowchart of the introduced supervised level set
based algorithm. It can be seen that the proposed method is simple to
implement since the LBM eliminates the use of complex approxima-
tions to solve the LSE and the need to explicitly compute the curvature.
4. Experimental results analysis

In this section we firstly demonstrate the performance of the
proposed image segmentation method in term of efficiency and
efficacy in presence of intensity inhomogeneities and object with
weak or without edges. Four level set based segmentation meth-
ods: the Chan and Vese’s method (CV) [15], the Li’s method [22],
the Chen’s method [21] and the Aaron and Zhao’s method (AZ)
[23] are selected as benchmarks. Secondly, we demonstrate the
effectiveness of the proposed method in the case of partial
occlusion and noise corruption. Finally, we show that the our
method is effective even without prior shape.

The experimental environment is Matlab R2012b installed on a
PC AMD Athlon (tm) 5200 processor with a clock speed of
2.31 GHz and 2 GB of RAM, and possessing the NVIDIA GPU GT
430. The optimized Matlab function arrayfun is used to execute the
introduced level set algorithm on the GPU. For example, the body
force is computed using the following instructions

1. Id¼gpuArray(I);
2. ϕd¼gpuArray(ϕ);
3. ϕrefd¼gpuArray(ϕref);
4. Fd¼arrayfun(@Body_force, Id, ϕd, ϕrefd).

The first, the second and the third instructions transfer respec-
tively I, ϕ and ϕref from the CPU to the GPU, while the fourth
instruction computes the body force on the GPU using the kernel
function Body_force.m programmed according to Eq. (19). Since all the
output arguments are stored in the GPU memory, the function gather
is used to transfer them back from GPU to CPU. In all the experiments
the radius parameter μ is set to 4, the weighting parameter λ to 3 and
the controlling parameter α also to 3.

The prior shape of the corpus callosum used in the experiments is
the mean shape of human’s segmentation of a training set. In the case
of natural images, the more suitable prior shapes have been deter-
mined in a dataset of possible prior shapes. Then, they have been
rescaled, translated and/or rotated in order to make the experimental
cases more difficult. For more information about prior shapes detec-
tion or construction, one can refer to [30,31].



Fig. 5. Comparison of the experimental results. Row I: prior shapes, row II: initial contours, row III: results of the Chen’s method, row IV: results of the Li’s method, row V:
results of AZ method, row VI: results of the CV’s method and row VII: results of the proposed method.
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To objectively evaluate the performance of the proposed
method, we use the Levine and Nazif (LN) inter-region and intra-
region contrast criterion [24]. The lower is the intra-region
Table 1
Comparison of executive times (s)

Methods Our method CV AZ Chen Li

Image (a) 0.3465 41.893 2.767 3.475 53.759
Image (b) 0.9872 101.76 3.871 5.103 49.784
Image (c) 0.6154 92.872 2.148 2.327 51.816

Table 2
LN’s inter-region contrast.

Methods Our method CV AZ Chen Li

Image (a) 0.2509 0.1711 0.0989 0.532 0.564
Image (b) 0.2867 0.1254 0.0712 0.788 0.614
Image (c) 0.2782 0.1103 0.0989 0.477 0.483

Table 3
LN’s intra-region contrast.

Methods Our method CV AZ Chen Li

Image (a) 1.96e�08 3.4e�07 0.0262 6.4e�03 9.3e�03
Image (b) 1.72e�07 8.4e�07 0.0435 0.0643 0.0242
Image (c) 3.44e�07 6.5e�07 0.0911 0.0891 0.0176

Fig. 6. Experimental results of the proposed method in presence of occlusion. Row I: prio
method.
contrast, the better is segmentation result, and the higher is the
inter-region contrast, the better is the segmentation result.

Fig. 5 demonstrates the proposed method on an MRI image of
head and some real world images. Row I displays the prior shapes,
row II the initial contours, row III the results of Chen’s method,
row IV the results of Li’s method, row V the results of AZ method,
row VI the results of the CV’s method and row VII the results of the
proposed method. The executive times are displayed in Table 1
and the objective evaluation results in Tables 2 and 3. In nearly all
the presented cases the proposed method has the lowest intra-
region contrast and the highest inter-region contrast. Thus, it
objectively gives the best results, which can be confirmed sub-
jectively by observing the segmented images. Chen’s and Li’s
methods fail in most of the cases because they are edge based and
the objects are with weak or without edges. The CV’s method is
based on non-local means values and is therefore not effective
when they are intensity inhomogeneities like in most of the pre-
sented cases. In column (a), only the proposed method has well
segmented the corpus callosum in the head magnetic resonance
image. Furthermore it is the fastest one; in this case the executive
time is of 0.3465 s versus 41.89 s for the CV’s method. In columns
(b) and (c), the results of the proposed method are also pretty
good, and demonstrate its effectiveness in presence of intensity
inhomogeneities, weak edges and for texture image segmentation.

Fig. 6 shows the performance of the proposed method in the
case of partial occlusion. In all the cases, the segmentation results
are promising.

Fig. 7 shows the performance of the proposed method in the
presence of noise. In row II the image is corrupted by the speckle
noise with the variance v¼ 0:04; in row III the image is corrupted
by the Gaussian noise with the mean m¼ 0:3 and the variance
r shapes, row II: occluded images, and row III: segmentation results of the proposed



Fig. 7. Experimental results of the proposed method in presence of different types of noises. Row I: prior shapes; row II: image corrupted by the speckle noise; row III: image
corrupted by Gaussian white noise; row IV: image corrupted by the salt and pepper noise; row V: image corrupted by the Poisson noise. Column I: initial contours, and
column II: segmentation results of the proposed method.

S. Balla-Arabé et al. / Neurocomputing 177 (2016) 40–4846



Fig. 8. Segmentation using the proposed method without prior shape. Column I: initial contours, and column II: segmentation results.
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v¼ 0:3; in row IV the image is corrupted by salt and pepper noise
with the density d¼ 0:3; finally in row V the image is corrupted by
the Poisson noise. The quality of the segmentation result demon-
strates the robustness against noise of our method.

In Fig. 8 we demonstrate that the method we propose can be
used even if the template is not available. As already specified, in
this case we just need to fix ϕref ¼ϕ. The results obtained are
subjectively promising.

Nevertheless, we should note that the effectiveness of our intro-
duced model is limited in case of occlusion when the prior shape is
incorrect. Furthermore, the model can lead to an inappropriate result
if the recovery of the points A and B on the object to be segmented is
inaccurate. This can limit the use of the method in automatic systems
since it requires human interaction to be fully effective when used
with prior shape.
5. Conclusion

In this paper, we have presented a novel shape prior level set
image segmentation algorithm based on the lattice Boltzmann
model. It is effective in the presence of noise, intensity inhomo-
geneities and partial occlusion, and can be used if the prior shape is
not available by means of minor modification. Furthermore, it is
local and thus highly parallelizable, which allows it to be a good
candidate for parallel implementation. Experimental results using a
graphics processing units on medical and real-world images have
demonstrated the good performance of the proposed method in
terms of efficiency, effectiveness and robustness.

As stated in the manuscript, our introduced model needs human
interaction in order to be effective because A and B must be
manually selected. Thus, future work will be mostly based on the
development of an automatic technique which will remove any
exterior interaction. Furthermore, we will work on the extension of
the proposed method to volume image segmentation and real-time
objects (buildings, cars, etc.) extraction in very high resolution
satellite images.
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