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COMMENTARY

Removing the Influence of Feature Repetitions on the Congruency
Sequence Effect: Why Regressing Out Confounds From a Nested Design
Will Often Fall Short

James R. Schmidt and Maarten De Schryver

Daniel H. Weissman

Ghent University University of Michigan

This article illustrates a shortcoming of using regression to control for confounds in nested designs. As
an example, we consider the congruency sequence effect, which is the observation that the congruency
effect in distractor interference (e.g., Stroop) tasks is smaller following incongruent as compared with
congruent trials. The congruency sequence effect is often interpreted as indexing conflict adaptation: a
relative increase of attention to the target following incongruent trials. However, feature repetitions
across consecutive trials can complicate this interpretation. To control for this confound, the standard
procedure is to delete all trials with a stimulus or response repetition and analyze the remaining trials.
Notebaert and Verguts (2007) present an alternative method that allows researchers to use al trials.
Specificaly, they employ multiple regression to model conflict adaptation independent of feature
repetitions. We show here that this approach fails to account for certain feature repetition effects.
Furthermore, modeling these additional effectsistypically not possible because of an upper bound on the
number of degrees of freedom in the experiment. These findings have important implications for future
investigations of conflict adaptation and, more broadly, for all researchers who attempt to regress out

confounds in nested designs.
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For amost every major finding in experimental psychology
there exist multiple accounts. What is not always clear is how to
best distinguish among these accounts. For instance, some have
argued that the debate over exemplar versus abstraction accounts
of category representation is essentially unresolvable, because any
effect that appears to support one account one could just as easily
be explained by the other (Barsalou, 1990). Some debates may
appear easier to disentangle. However, we argue in the present
article that certain approaches to distinguishing competing ac-
counts are not as definitive as they initialy appear.
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For example, consider the all-too-frequent situation in which an
experimental psychologist wishes to determine whether an exper-
imental effect is better explained by a confounding variable in the
study design than by the variable of interest. In this situation, a
psychologist might devise an experiment in which the proposed
confound can no longer influence the effect of interest. If the effect
isstill observed, then it cannot be explained by the (now removed)
confound. An alternative approach employs regression to model
and remove the influence of the confounding variable in the biased
(i.e.,, confounded) data set. The present article highlights some
limitations of this second, regression approach for nested designs
using an example from the literature on congruency sequence
effects (CSEs, Notebaert & Verguts, 2007). In the Discussion
section, we review the broader implications of our findings for
researchers in a variety of domains, including those studying
working memory updating, size estimation, and resting-state func-
tional connectivity as measured by functional MRI.

As illustrated in Figure 1, the CSE is the observation that the
congruency effect in distractor-interference tasks is reduced when
the previous trial was incongruent relative to congruent (Gratton,
Coles, & Donchin, 1992). The CSE is often interpreted asindexing
conflict adaptation, a process whereby the distribution of attention
to the target and/or distractor is adjusted after incongruent trials
(e.g., Botvinick, Braver, Barch, Carter, & Cohen, 2001). Specifi-
caly, after experiencing heightened response conflict in a previous
incongruent trial (relative to a previous congruent trial), partici-
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REGRESSION AND THE CONGRUENCY SEQUENCE EFFECT
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Figure 1. Example congruency sequence effect. cC = both congruent
trials; il = both incongruent trials; cl, iC = congruency of the previoustrial
does not match the congruency of the current trial.

pants increase attention to the target and/or decrease attention to
the distractor, leading to a smaller congruency effect in the current
trial.

Some researchers, however, argue that feature repetition con-
founds may explain the CSE better than conflict adaptation (Hom-
mel, Proctor, & Vu, 2004; Mayr, Awh, & Laurey, 2003; Nieu-
wenhuis et al., 2006; Wendt, Kluwe, & Peters, 2006 for a review,
see Schmidt, 2013). Feature repetitions occur when the target
and/or distractor repeat across consecutive trias. In the Stroop
task, for example, the target color may repeat from one trial to the
next (target-target repetition), the distractor word may repeat
from one tria to the next (distractor—distractor repetition), the
distractor word on the previous trial may match the target color on
the current trial (distractor—target repetition), or the target color on
the previous trial may match the distractor word on the current trial
(target—distractor repetition). Complete repetition trials, in which
both the target and distractor repeat, are linked to relatively fast
performance and occur only when the previous and current trial are
both congruent (cC trials) or both incongruent (il trials). In con-
trast, partial repetition trials, in which the target from the previous
trial repeats while the distractor alternates, or vice versa, are linked
to relatively slow performance and occur frequently when the
congruency of the previous trial does not match the congruency of
the current trial (cl and iC trials). Thus, an unequal distribution of
different types of feature repetitions across cC, cl, iC, and il trials
may account for the CSE better than conflict adaptation (Hommel
et a., 2004; Mayr et a., 2003).

A key question, then, is whether conflict adaptation plays any
rolein producing the CSE independent of feature repetition biases.
To answer this question, an unbiased measure of the CSE is needed
that controls for feature repetition effects. The most common
approach isto calculate the CSE after both complete repetition and
partial repetition trials have been deleted, leaving only complete
alternation trials, in which neither the target nor the distractor is
repeated from the previous trial. Obtaining a significant CSE when
employing this “repetition deletion technique’ could not be ex-
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plained by feature repetitions and would therefore suggest that
conflict adaptation may indeed contribute to the CSE.

Findings from the repetition deletion technique have been
mixed. On the one hand, several researchers employing this ap-
proach have reported significant CSEs (e.g., Akcay & Hazeltine,
2007; Freitas, Bahar, Yang, & Bahar, 2007; Kerns et al., 2004;
Notebaert, Gevers, Verbruggen, & Liefooghe, 2006; Verbruggen,
Notebaert, Liefooghe, & Vandierendonck, 2006; Mayr & Awh,
2009; Ullsperger, Bylsma, & Botvinick, 2005). On the other hand,
most of the tasks employed by these researchers contained con-
tingency learning confounds (see Schmidt, 2013, for a review),
and subsequent studies have shown that removing both feature
repetition and contingency learning confounds usually eliminates
the CSE (e.g., Mayr et a., 2003; Mordkoff, 2012; Schmidt & De
Houwer, 2011). Thus, some researchers have suggested that the
CSE reflects learning and memory processes related to feature
repetitions and contingency learning biases rather than conflict
adaptation (e.g., Schmidt, 2013).

Notebaert and Verguts (2007), however, argue that the repeti-
tion deletion technique is problematic for two reasons. First, sta-
tistical power is reduced. This is a valid point, given that a very
large proportion of trials must be deleted to remove all feature
repetitions. This problem can be counteracted with longer exper-
iments and/or more participants, but these procedures are obvi-
ously suboptimal. Second, the CSE is assessed on just one type of
transition: complete alternation trials. Because the conflict adap-
tation account should apply equally to al types of stimulus tran-
sitions, the importance of this point is less clear to us. Neverthe-
less, we agree with the first point that the reduction of power is
problematic.

To address the two shortcomings above, Notebaert and Verguts
(2007) introduced a multiple regression approach (henceforth, NV
regression) for estimating the contribution of conflict adaptation to
reaction time (RT) independent of feature repetition confounds and
without deleting trials. In this approach, different variables that
may influence RT are coded by distinct binary regressors. For
example, the regression they present employs eight regressors: (1)
target—target repetitions, (2) distractor—distractor repetitions, (3)
feature integration (complete repetitions and complete alternations
vs. partia repetitions), (4) negative priming (distractor—target rep-
etitions, wherein both the previous and the current trial are incon-
gruent), (5) target—distractor repetitions, (6) previous congruency,
(7) current congruency, and (8) the CSE (i.e., the Previous Con-
gruency X Current Congruency interaction). The aim of the NV
regression is to determine whether the regression coefficient asso-
ciated with the CSE regressor is significant while controlling for
the other variables. Notebaert and Verguts reported a significant
regression coefficient for the CSE regressor and concluded (with
some reservations) that conflict adaptation exists.

There is a potential problem, however, with the statistical as-
sumptions made by the NV regression approach. Each regressor,
or variable, in the model represents a simple binary effect. The
model therefore assumes that the effect of each variable (e.g.,
target—target repetitions) is the same regardless of the level of any
other variable (e.g., previous congruency, current congruency, or
other types of feature repetitions). Put another way, the model does
not allow for interactions between different variables. This is a
problem of nesting. Nesting occursin a statistical model when only
arestricted version of the full factorial model is tested. In the case
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of the NV regression, the statistical model is nested because it only
tests for a few of the simpler main effects, and does not consider
the potential interactions between the variables. The term nesting
is also used to describe study designs in which a full factorial
crossing of study factors produces empty cells (i.e., impossible or
unobserved combinations of factors). Nesting in the design makes
it impossible to test a full factorial model, ultimately requiring
nesting in the statistical model. As we explain next, the NV
regression approach may not always be valid because of a nested
design problem.

In particular, the presence of interactions involving two or more
variables in the NV regression (e.g., a target—target repetition
effect that is larger if there is aso a target—distractor repetition)
could complicate the interpretation of the CSE regressor. Specif-
ically, the CSE regressor could “steal” variance in RT that origi-
nates from unmodeled interactions between different types of
feature repetitions if it is correlated with these interactions. A
significant beta parameter for the CSE regressor in such a situation
could then potentially reflect interactions between different types
of feature repetitions rather than conflict adaptation. In sum, al-
though the NV regression aims to assess the CSE independent of
feature repetition confounds, it could fail to do so if unmodeled
interactions involving feature repetitions contribute to variance in
RT.

This problem is only worrisome when the CSE is positively
correlated with unmodeled interactions involving feature repeti-
tions. Although some unmodeled interactions might be uncorre-
lated with the CSE (in which case there is no confound) and others
might reduce the CSE, on the whole feature repetitions tend to
engender a positive CSE (e.g., Mayr et a., 2003). Thus, if they are
positively correlated with the CSE, then unmodeled interactions
involving feature repetitions will likely increase (rather than de-
crease) the CSE, making it appear as though conflict adaptation
contributes to the CSE when it does not. The present findings
provide some preliminary evidence for this possibility.

Before continuing our discussion of Notebaert and Vergut's
(2007) approach, we would like to note that the issues we are
discussing are not specific to the CSE. Rather, they are more
genera concerns that apply whenever a nested model is employed
to eliminate the influence of a confounding variable that is only
incompletely modeled. Thus, the implications of our analysis are
important for any study that employs a similar regression ap-
proach. To illustrate this point, we describe in the Discussion
section how our findings are relevant to other subfields of exper-
imental psychology as well as to research in cognitive neurosci-
ence. But, first, we return to the potential limitation of the NV
regression approach we have identified.

Isthere away to avoid this limitation? The only way isto model
all possible interactions among the four types of feature repeti-
tions, two levels of previous congruency, and two levels of current
congruency. That is, one could model all the main effects and
interactions between each of the four types of feature repetitions,
previous congruency, and current congruency ina?2 X 2 X 2 X
2 X 2 X 2 (and thus 64-cell) design. Sixty-four regressors would
be required to model al of the possible combinations of these six
binary factors. These regressors would include one intercept, six
main effects, 15 two-way interactions, 20 three-way interactions,
15 four-way interactions, six five-way interactions, and one six-
way interaction. By including all 64 regressors, a researcher could
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ensure that the conflict adaptation regressor is not influenced by
feature repetition biases. However, this is not possible for two
reasons.

First, some of the interactions involving feature repetitions
cannot be observed in a rea experiment. For instance, a target—
target repetition and a distractor—distractor repetition cannot si-
multaneously occur in a single iC trial. Similarly, a distractor—
target repetition and a distractor—distractor repetition cannot
simultaneously occur in a single incongruent trial. As Table 1
illustrates, only 15 of the 64 possible combinations of feature
repetitions, previous congruency, and current congruency can be
observed in an experiment. In statistical terms, this means that the
design is nested. In effect, the NV regression approach estimates
the mean RT in each of these 15 conditions with the eight regres-
sors that Notebaert and Verguts (2007) include in their model.
Indeed, every observation in the data corresponds to one of these
15 points on the regression line because, as we stated earlier, only
15 of the 64 cells in the design can be observed in a real experi-
ment (we revisit this important point later).* Returning to the main
issue, however, 49 (i.e, 64 — 15) of the cells are not observable,
meaning that the data required to compute most of the interactions
involving feature repetitions are missing.

Second, it is impossible to include al 64 main effect and
interaction regressors in the model without exceeding the experi-
mental degrees of freedom. Given that only 15 unique combina-
tions of the regressors are present in the data from an actua
experiment, the model has only 14 degrees of freedom before any
regressors are included. Thus, to preserve at least 1 degree of
freedom, a maximum of 13 regressors can be included,? which is
far less than 64. If more than 13 regressors are included, then the
regression model will be able to maximize on random error and
perfectly estimate the means for all 15 unique trial types. This is
the case because each regressor in a model can connect, at a
minimum, two points (in this case, conditions). Thus, if the num-
ber of regressors in a model is one less than the number of points
to estimate (i.e., if there are 14 regressors to estimate 15 “points’
or conditions), then the regression will, by definition, be able to
perfectly estimate the means for al 15 conditions (i.e., connect al
the points), even if the regressors included in the model are
meaningless. In statistical terms, this type of regression model is
called a saturated model. Three conclusions follow from this line
of reasoning: (1) It is impossible for more than 14 regressors to
explain variance when there are only 15 cell means to estimate,
even if more than 14 factors play a real role in producing these

1 Actualy, in the data sets used by Notebaert and Verguts (2007) there
were fewer than 15 cellsto estimate with their eight regressors. If atask has
fewer than four response options, then the number of possible conditionsis
reduced (for further explanation, see Schmidt & De Houwer, 2011).

2 An anonymous reviewer suggested that this claim is false because, in
each participant, there are multiple observations (i.e., trials) for each of the
15 trial types. However, the number of observations per tria type is
irrelevant. What is relevant is that there exist only 15 points on the
regression line for the model to estimate. Therefore, only 14 regressors
(plus the intercept) are needed to perfectly estimate these 15 points. This
fact can be demonstrated by adding six random (but nonredundant) regres-
sors to the eight that are already included in the NV regression model. As
we confirmed in further (unreported) analyses of the data from Experiment
1, this procedure resulted in al of the variance between the 15 conditions
being explained. Therefore, the value of the F statistic corresponding to the
lack-of-fit test was exactly zero.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

REGRESSION AND THE CONGRUENCY SEQUENCE EFFECT

Table 1

2395

The 15 Experimentally Observable Combinations of Current Congruency, Previous Congruency,

and the Four Types of Feature Repetitions

Distractor—distractor: Repetition (R) Alternation (A)
Target—target: R A R A

Distractor—target: R A R A R A R A

Target—distractor: R AR AR A R A R A R A R A R A
Congruent—congruent v V2
Congruent—incongruent v v V2
Incongruent—congruent v v V2
I ncongruent—incongruent v v v v 7/ v R

@The four cells used in the repetition deletion anaysis.

means; (2) if more than 14 regressors are included, then all
between-conditions variance will be explained, but this will likely
be the arbitrary result of maximization on random error; and (3) if
more than 14 regressors are included, then a test of model mis-
specification, described shortly, is meaningless because the model
will aways be able to explain all between-conditions variance (a
result of the previous points).

In contrast, note that with the repetition deletion technique there
is no nesting. As can be seen in Table 1, the cells retained in this
analysis (far right column) vary only in current congruency and
previous congruency, both of which are fully modeled. One might
therefore conclude that the repetition deletion analysis is superior
because nothing is left unmodeled. As mentioned earlier, however,
the NV regression approach provides greater statistical power.
Furthermore, the preceding criticisms of NV regression are moot if
complex feature repetition biases do not actualy exist. That is, if
(a) interactions involving feature repetitions have no effect on the
data, and (b) the variables coded for in the NV regression capture
all of the actual feature repetition biases, then the NV regression is
completely valid. Thus, the goa of the present study was to
determine whether or not the NV regression is ever invalid. Such
a result would indicate that caution should be exercised when
employing this approach to assess the contribution of conflict
adaptation to the CSE.

To test the validity of the NV regression approach, we first
applied Notebaert and Verguts (2007) model to the correct RT
data from Experiments 1 and 2 of Schmidt and De Houwer (2011)
and to the 25% congruency (i.e., contingency-free) condition from
Mordkoff (2012).% Because our main aim was to test the statistical
assumptions made by the model, we conducted a lack-of-fit test
(not to be confused with a goodness-of-fit test), which assesses
whether a model misestimates observations in a systematic way
(e.g., see Faraway, 2004). If it does, then the model is misspeci-
fied, meaning that one or more additional regressors are needed to
explain systematic unmodeled variance in the data. Of course,
some degree of error in condition estimates is expected even in a
correctly specified model because of random noise. However, this
error should be random. Critically, a lack-of-fit test can tell the
difference between random and systematic error by separating the
degree of model misspecification from the between-participants
error (Faraway, 2004). This is achieved with a statistical test that
determines whether the degree to which conditional means are
inaccurately predicted (termed lack-of-fit variance) exceeds the

degree expected based on random variation between participants
(termed pure error variance).

Whether or not the lack-of-fit test is significant depends on
whether the model is correctly specified. If the model is correctly
specified, then the F value for the lack-of-fit test should be about
1 and, hence, not significant. This result should be obtained if the
NV regression accounts for al relevant feature repetition effects
separately from the CSE regressor. Of course, anull result does not
indicate that the model is correct. It merely indicates that no
evidence for an error in model specification was observed. In
contrast, if there is significantly more misspecification than ex-
pected based on random noise between participants, then the F test
will be significant. This result should be obtained only if one or
more important effects involving feature repetitions have been
excluded from the model.

How might a lack-of-fit test be conducted on the NV regres-
sion model? Recall that there are 15 experimentally producible
combinations out of the 64 possible combinations of previous
congruency, current congruency, and the four repetition types.
For this reason, one can use the regression equation from the
NV approach, which contains eight regressors, to estimate the
cell meansin each of these 15 conditions (the condition-specific
weighting for each of the eight regressorsis presented in Table
2). Subtracting the model-estimated mean RT in each condition
from each participant’s mean RT in that same condition will
reveal how much each participant’s RT differed from the mo-
del’s RT. Finally, a repeated measures one-way analysis of
variance (ANOVA) on these difference scores will reveal
whether they differ from a flat line.

3 Related to the first footnote, these three data sets are most desirable
because all 15 of these combinations are possible in these four-choice
tasks, allowing for maximal degrees of freedom in the present analysis.
These experiments are also contingency-unbiased, preventing other poten-
tial complications with a contingency learning confound. In contrast, the
data from Notebaert and Verguts (2007) three-choice task, for which we
did not compute a lack-of-fit statistic, are missing one of the 15 aforemen-
tioned combinations (Condition 9 in Tables 2 and 4). Thisis not a trivial
issue for two reasons: (1) degrees of freedom are already limited, and (2)
the combination lost is a particularly interesting one, representing complete
alternations for one of the four cells of the CSE design. A final interesting
point isthat all three of these data sets provided no significant evidence for
a CSE independent of feature repetition biases.
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Table 2
Different Linear Combinations of Eight Regressors Were Employed to Predict Mean Reaction Time in 15 Unique Trial Types
Feature  Negative Previous Conflict
Trial type Congruency Target—target Distractor—distractor integration priming Target—distractor congruency adaptation
Congruent—congruent
1. BLUE, e — RED, 0 0 0 1 0 0 0 1
2. BLUE, . — BLUE 0 0 1 1 1 0 1 0 1
Congruent— ncongruent
3. BLUEy,e — REDgeen 1 0 0 1 0 0 0 0
4. BLUE, . — BLUE,o 1 0 1 0 0 1 0 0
5. BLUE, . — REDy e 1 1 0 0 0 0 0 0
Incongruent—congruent
6. REDyy e = GREEN oy 0 0 0 1 0 0 1 0
7. RED, e — RED 0 0 1 0 0 0 1 0
8. RED,,c — BLUE,« 0 1 0 0 0 1 1 0
Incongruent—incongruent
9. REDyy e = GREEN, g0, 1 0 0 1 0 0 1 1
10. REDyye — RED gyen 1 0 1 0 0 0 1 1
11. RED, . — GREEN,, 0 1 1 0 0 0 0 1 1
12. RED, e — REDye 1 1 1 1 0 0 1 1
13. REDy, . — GREEN, o 1 0 0 1 1 0 1 1
14. REDyy e — BLUE o, 1 0 0 1 0 1 1 1
15. REDy, . — BLUE, 1 0 0 1 1 1 1 1

Note.
Simon tria types, respectively, in Experiments 2 and 3.

The lack-of-fit test will lead to one of two outcomes. First, if the
NV regression is correctly specified, then the mean difference
scores across participants in each of the 15 conditions above will
not differ from zero more than would be expected from the
random, between-participants error.* Thus, if the 15 means are
submitted to a one-way ANOVA, the ANOVA should return an F
value of roughly 1, so long as an appropriate correction to the
degrees of freedom is made to account for the fact that eight
regression parameters are employed to estimate the 15 condition
means.® Second, if the NV regression is not correctly specified,
then at least some of the mean difference scores will differ from
zero (and, hence, from each other) more than would be expected
based on the random, between-participants error. Thus, if the 15
means are submitted to a one-way ANOVA, the ANOVA should
return a significant F value, consistent with a significant degree of
model misspecification. To our knowledge, the present use of a
lack-of-fit test on repeated measures data is unique. However, this
approach is analogous to previous uses of |ack-of-fit tests on other
types of data (e.g., see Faraway, 2004; see also Footnote 4 for a
demonstration that this approach works as intended).

Method and Results

NV Regression

We used three different data sets for our analyses. We refer to
these as Experiment 1 (Schmidt & De Houwer, 2011, Experiment
1), Experiment 2 (Schmidt & De Houwer, 2011, Experiment 2),
and Experiment 3 (Mordkoff, 2012, 25% congruency condition).
All three experiments employed four alternative-forced-choice
tasks in which each distractor was presented equally often with
each target to avoid contingency learning biases (for a discussion
of thisissue, see Schmidt, 2013). Experiment 1 employed a Stroop
task, Experiment 2 employed an Eriksen flanker task, and Exper-

Although example Stroop trial types from Experiment 1 are provided in the Table, the same analysis was employed with analogous flanker and

iment 3 employed a Simon task. Of importance, the CSE was
absent in all three tasks after employing the repetition deletion
technique, which deletes al trials with feature repetitions from the
analyses before calculating the CSE.

4 An anonymous reviewer suggested that this lack-of-fit test is biased
toward producing asignificant F value. The reason is that the subset of the 64
combinations of previous congruency, current congruency, and the four rep-
etition types that can be observed in areal experiment is not random. Contrary
to the reviewer's suggestion, however, we would argue that if the model is
correctly specified, then it should be able to correctly reproduce the rea-world
parameters that were used to creste the data set, regardiess of whether the
missing cellsare randomly or nonrandomly selected. To determine which view
is correct, we conducted a simulation, suggested by the reviewer, which
involved computing the cell values for the 64 combinations of our six factors
described above using the NV regression parameters from Experiment 1. We
added some random normal error for each observation (SE = 10) and included
100 smulated participants. When applied to these smulated data, the NV
regression did an exceptiona job of replicating the regression parameters that
were used to generate the data, whether it was applied to al 64 combinations
or to just the 15 combinations that were observable in actua participants.
Furthermore, when a lack-of-fit test was applied to the difference scores
between the smulated and model-estimated RTs for the 15 observable con-
ditions, the test was not significant, F(6, 86) = 0.992, Wilkss A = .935,p =
AT4. These values are exactly what one would expect with no model mis-
specification, and thus indicate that the lack-of-fit test we employed was not
biased. In fact, the only way the reviewer's view could be correct is if
nonrandomly selecting a subset of trial types caused the NV regression to
inaccurately compute the regression coefficients for the eight factors in the
model. If this were the situation, which our simulation showed is not the case,
then it would be just as detrimental to the validity of the NV regression as the
limitation we have identified.

5 Each of the eight regressors will increase the ability of the model to
capitalize on random error. Thus, the degrees of freedom for the numerator
should equal 15 (conditions) — 8 (regressors) — 1 (intercept) = 6. Without
this correction, Type Il errors will be artificialy inflated. Appropriately,
this means that the degrees of freedom for the numerator will be zero if
there are 14 or more regressors. Because all conditions would be perfectly
estimated in this scenario, there are no degrees of freedom (see Footnote 2).
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We conducted the NV regression in atrivialy different fashion
from that of Notebaert and Verguts (2007). They conducted a
regression on the correct RT data for each participant and then
averaged the resulting estimated regression coefficients for each
condition across participants (cf. Lorch & Myers, 1990). In con-
trast, we conducted alinear mixed effects (LME) regression model
(using the MIXED procedure in SPSS) on the correct RT data for
each participant, which is essentidly identical and typically pre-
ferred because it can provide greater flexibility (Van den Noort-
gate & Onghena, 2006). In this approach, participants are added as
random factors and a single regression coefficient is calculated for
each factor across all participants. The eight fixed factors, or
regressors, that we included in the LME for each experiment are
listed in Table 2.

It is important to note that, although not reported, we aso
performed the regression analysis identicaly to Notebaert and
Verguts (2007). Critically, we observed no notable differences
between the regression coefficients or statistical tests yielded by
the NV regression approach and those yielded by the LME ap-
proach that we report in the present article, including the critical
lack-of-fit test. In fact, the two approaches produced group-
averaged regression coefficients that differed by only fractions of
a millisecond. The condition estimates used for the lack-of-fit test
were therefore also nearly indistinguishable.

Returning to how we conducted the LME regression, like Note-
baert and Verguts (2007), we excluded (a) error trials and (b)
correct trials that were preceded by error trials. Unlike Notebaert
and Verguts, however, we included al eight regressors of the NV
regression in a single step rather than adding the previous congru-
ency and CSE regressors in a second step. A one-step regression
assigns variance to al eight regressors simultaneously, whereas a
two-step regression assigns variance to the regressors in the first
step before assigning variance to the regressors in the second step.
Of importance, this methodological choice does not influence the
outcome of the critical lack-of-fit test because one- and two-step
regressions provide the same end fit to a data set. The condition
estimates for the lack-of-fit test were therefore identical with both
approaches.

The regression coefficients and statistical tests from the LME
models of Experiments 1, 2, and 3 are presented in Table 3. In all
three experiments, there was a significant regression coefficient for
the congruency effect, indicating faster responses for congruent
relative to incongruent trials. There were also significant regres-
sion coefficients for target—target and distractor—distractor repeti-
tions, indicating faster responses for repetitions relative to ater-
nations. Finally, there was a significant regression coefficient for
the feature repetition regressor, indicating that performance aver-
aged across complete repetitions and complete aternations was
faster than performance for the remaining trials (i.e., partial repe-
titions).

Some effects were significant in only a subset of the experi-
ments. In Experiment 1, there was a significant regression coeffi-
cient for previous congruency, indicating slower responses to trials
following a congruent trial. In Experiment 2, there was a marginal
regression coefficient for target—distractor repetitions, indicating
marginally slower responses on repetition trials. In Experiment 3,
there was a significant regression coefficient for negative priming,
indicating slower responses for negative priming trials. Most rel-
evant for present purposes, the CSE regressor was marginaly
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Table 3
Regression Model Results
Regressor Estimate t p
Experiment 1
Intercept 506 27.149 <.001
Current congruency -57 —14.393 <.001
Target—target 209 53.651 <.001
Distractor—distractor 31 7.960 <.001
Feature integration 15 3.648 <.001
Negative priming 1 0.141 .888
Target—distractor -2 —0.453 .651
Previous congruency 9 2.327 .020
CSE 7 1.700 .089
Experiment 2
Intercept 543 36.448 <.001
Current congruency —36 —13.126 <.001
Target—target 101 37.301 <.001
Distractor—distractor 14 5.355 <.001
Feature integration 17 5.949 <.001
Negative priming -3 -0.973 331
Target—distractor -4 —-1.885 .059
Previous congruency -1 —0.504 .614
CSE 2 0.692 489
Experiment 3
Intercept 515 30.990 <.001
Current congruency —57 —14.480 <.001
Target—target 100 23.166 <.001
Distractor—distractor 18 4.090 <.001
Feature integration 18 4.053 <.001
Negative priming -13 —2.606 .009
Target—distractor -2 -0.617 537
Previous congruency -4 —0.995 .320
CSE 9 2.163 .031

Note. CSE = congruency sequence effect.

significant in Experiment 1 and significant in Experiment 3, indi-
cating a larger congruency effect after a congruent trial than after
an incongruent trial. These latter findings contrast with the null
CSEs reported with the repetition deletion procedure, which aso
yielded smaller numerical estimates of the CSE (i.e., with trims,
the effect was only 1 msin Experiment 1 and 6 msin Experiment
3).® These contrasting findings are consistent with two possible
interpretations: (1) The NV regression provided more statistical
power than the repetition deletion procedure for detecting a CSE or
(2) the NV regression was misspecified.

% In the ided stuation, one would determine whether estimates of the CSE
derived from the NV regression and repetition deletion approaches differ from
one another. However, the sample size required to make this comparison with
high stetistical power is often prohibitive. For instance, if the true CSE
magnitude in Experiment 1 was zero, then detecting a difference between 0 ms
(estimated with the repetition deletion technique) and 7 ms (estimated with the
NV regression approach) would require a sample size of gpproximately 300
participants to achieve arelatively high power of .8. Thisisdue, in part, to the
fact that the NV regression approach produces a significant CSE only because
arelatively small parameter estimate for the CSE is associated with a very
(probably artificidly) small estimate of the error variance. In contrast, the
repetition deletion technique estimates the CSE to be approximately 0 ms and
is associated with a relaively high estimate of the error variance. Thus,
detecting a significant difference between these only dightly different esti-
mates of the CSE is difficult, in part, because one is associated with a much
higher estimate of the error variance than the other.
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Lack-of-Fit Tests

To investigate whether the NV regression model was misspeci-
fied, we conducted a lack-of-fit test in each of the three experi-
ments. To this end, we first used the regression equations de-
scribed in the previous section to generate a model -estimated mean
RT for each of the 15 relevant conditions in Table 2. The condi-
tional mean RTs for participants, model-estimated mean RTs, and
differences between the two are shown in Table 4, separately for
each experiment. Positive and negative difference scores, respec-
tively, indicate that model-estimated mean RT was greater or less
than participant mean RT. As can be seen from the 15 difference
scores, the model misestimates the conditional means by an aver-
age of 12 msin Experiment 1, 3 msin Experiment 2, and 7 msin
Experiment 3. Next, for each of the 15 conditions separately, we
subtracted each participant’s mean RT from the model-estimated
mean RT. Finally, we conducted a repeated measures one-way
ANOVA on these 15 difference score variables. The ANOVA
revealed large violations of sphericity in al three experiments. We
therefore employed multivariate analysis of variance (MANOVA)
to conduct the lack-of-fit test as it makes no assumptions about
sphericity (see O'Brien & Kaiser, 1985).”

The MANOVA revealed that the lack-of-fit test was significant
in Experiment 1, F(6, 9) = 34.846, Wilks's A = .041, p < .001,
marginal in Experiment 2, F(6, 9) = 2.982, Wilks's A = .359, p =
.069; and significant in Experiment 3, F(6, 9) = 6.613, Wilks's
A = .201, p = .006. Thus, in general, the degree to which the
model did not fit the data exceeded the amount expected from
random error. This result suggests that the model was misspeci-
fied, meaning that one or more additional regressors would be
needed to explain systematic unmodeled variance in the data

Table 4
Actual and Model-Estimated Mean Reaction Times (ms)

Experiment 1
Trial type Obs Est Diff Obs

Experiment 2
Est Diff Obs Est Diff

Experiment 3

cC
1 687 698 11 618 613 -5 554 557 4
2 486 459 —27 492 503 10 462 441 -20
cl
3 776 761 —15 655 651 —4 630 623 -7
4 740 746 6 652 658 5 620 625 6
5 554 567 13 565 567 2 536 540 4
iC
6 684 695 12 615 617 1 560 570 10
7 673 679 7 617 619 2 58 570 -15
8 529 503 —26 543 537 —6 494 490 —4

9 765 745 —20 645 650 6 630 618 -—12
10 737 729 -8 657 653 -4 615 618 3
11 543 551 8 566 566 0 531 536 5
12 494 505 11 538 535 -2 493 500 7
13 750 744 -6 654 654 0 634 631 -3
14 736 747 11 657 655 -2 618 620 2
15 739 746 7 656 658 2 629 633 4

Note. Obs = observed (participant); Est = estimated (model); Diff =
difference; cC = both congruent trias; il = both incongruent trials; cl,
iC = congruency of the previoustrial does not match the congruency of the
current trial. Data are from Schmidt & De Houwer (2011) and Mordkoff
(2012).
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Thus, the significant CSE yielded by the NV regression approach
in Experiment 3, which contrasts with the null CSE that was
observed with the repetition deletion technique, was likely due to
unmodeled feature repetition effects.

Discussion

One goal of the present commentary was to investigate whether
the NV regression approach to isolating a conflict adaptation effect
isever invaid. To this end, we applied an LME model to the data
from Experiments 1 and 2 of Schmidt and De Houwer (2011) and
the 25% congruency (i.e., contingency-free) condition of Mordkoff
(2012). A lack-of-fit tests demonstrated that the NV regression
approach significantly misestimated the conditional means in both
Experiment 1 (Schmidt & De Houwer, 2011, Experiment 1) and
Experiment 3 (the 25% congruency condition of Mordkoff, 2012)
and marginally misestimated the conditional means in Experiment
2 (Schmidt & De Houwer, 2011, Experiment 2). Furthermore, the
CSE estimated with the NV regression approach was significant in
Experiment 3 and marginally significant in Experiment 1, in con-
trast to the nonsignificant CSEs previously reported in these ex-
periments by researchers employing the repetition deletion tech-
nique. These findings suggest that the NV regression approach did
not code for all possible effects of feature repetitions on RT. Thus,
the CSE regressor had the opportunity to “steal” unmodeled,
correlated RT variance stemming from interactions involving dif-
ferent types of feature repetitions, thereby increasing the probabil-
ity that it would achieve significance.

One might wonder whether the NV regression approach ssimply
provides greater statistical power for detecting a CSE than the
repetition deletion technique. In other words, perhaps only the NV
regression approach was powerful enough to detect small conflict
adaptation effects that were truly present in our data sets. This
possibility appears unlikely for two reasons. First, the estimates of
CSE magnitude were numerically larger in Experiments 1 and 3
when using the NV regression approach relative to the repetition
deletion technique. However, it is unclear why this should be the
case from the perspective of statistical power. Indeed, complete
aternation trials are generally the slowest of al trials (see Table 4).
Thus, the conflict adaptation effect should scale up to alarger size
with the repetition deletion technique (which uses only complete
alternation trials) than with the NV regression approach (which
makes use of al trials). Second, the lack-of-fit results indicate that
the (nested) regression approach is less valid than the (non-nested)
repetition deletion technique, in the sense that the CSE regressor
has the opportunity to “steal” variance in RT from unmodeled
repetition effects only with the former approach. This finding may
explain why estimates of CSE magnitude were higher with the NV
regression approach as compared with the repetition deletion tech-
nique. Given these considerations, it appears unlikely that the
present results were driven by increased statistical power for
detecting a CSE with the NV regression approach as compared
with the repetition deletion technique.

7 Given a mgjor violation of sphericity and an acceptable sample size,
MANOVA is generally a more powerful approach for dealing with viola-
tions of sphericity.
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Implications for Prior Findings With the NV
Regression Approach

By showing that the NV regression approach does not account
for al effects of feature repetitions on RT in the present data set,
our findings suggest that certain prior claims of CSEs independent
of feature repetitions may need to be re-evaluated (e.g., Blais &
Verguts, 2012; Braem, Verguts, Roggeman, & Notebaert, 2012;
Eichele, Juvodden, Ullsperger, & Eichele, 2010; Steinhauser et al .,
2012). For example, Braem and colleagues (2012) reported that the
CSE was modulated by reward after controlling for feature repe-
titions with the NV regression approach and concluded that reward
modulates conflict adaptation. Given the present findings, how-
ever, it is possible that reward modul ated feature repetition effects
that were not coded in the model. Consistent with this possibility,
target repetition effects were significantly stronger with reward
than without in their experiment. Additional studies could be
conducted to investigate this alternative interpretation of Braem
and colleagues’ finding.

A second finding that may deserve further scrutiny is that the
CSE is greater with small stimulus sets than with large stimulus
sets (Blais & Verguts, 2012). To explain this result, Blais and
Verguts (2012) presented a variant of the adaptation-by-binding
account (see Verguts & Notebaert, 2009), in which conflict-
modulated learning occurs most strongly for recently encountered
stimuli. Based on this variant, Blais and Verguts argued that
conflict-modulated learning, and hence the size of the CSE, should
be larger with small stimulus sets than with large ones because
each feature occurs more frequently (and, hence, recently) with
small stimulus sets. Notably, however, the CSE was significantly
greater with small than with large stimulus sets when the authors
employed the NV regression approach to control for immediate
feature repetitions, but not when the authors removed trials with
immediate feature repetitions from the analysis. Given our findings
suggesting that the NV regression approach does not always “re-
gress out” al possible immediate feature repetition effects, this
discrepancy suggests an alternative interpretation of Blais and
Verguts' findings. Specifically, the CSE yielded by the NV regres-
sion approach might have increased as the set size became smaller
simply because the number of immediate stimulus repetitions
increased as the set size became smaller. Future studies could be
aimed at testing this hypothesis.

Implications for Future Studies With the NV
Regression Approach

Future studies might potentially identify a differently specified
model that does not violate the lack-of-fit test. Although such a
development would be encouraging, it is important to note that
whereas a significant lack-of-fit test indicates that a model is
incorrect, a nonsignificant lack-of-fit test does not indicate that a
model is correct. This follows the logic of any null statistic: Even
when evidence for the aternative hypothesis is lacking, the alter-
native hypothesis may nevertheless be true (i.e., there may be a
Type |l error). Critically, detected or not, error in the structure of
a regression model makes the regression coefficients difficult to
interpret. In such cases, a regressor in the model (e.g., the CSE
regressor) can “steal” variance produced by a correlated but un-
modeled variable (e.g., interactions between different types of
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feature repetitions), resulting in a significant regression coefficient
for that regressor in the absence of the theoretical process of
interest (e.g., conflict adaptation). These considerations suggest
that NV regression may not provide unequivocal evidence of CSEs
independent of feature repetition confounds, even when a lack-of-
fit test does not achieve significance.

Given the limitations of the NV regression approach, future
researchers investigating the CSE might consider other approaches
that (a) delete trials with feature repetitions “ after the fact” (Kunde
& Wihr, 2006; Mayr et a., 2003; Mordkoff, 2012; Schmidt & De
Houwer, 2011) or (b) prevent feature repetitions from occurring in
the original trial sequence without introducing contingency learn-
ing biases (Jiménez & Méndez, 2013; Mayr et al., 2003; Schmidt
& Weissman, 2014; Weissman, Jiang, & Egner, in press). Because
these approaches estimate the CSE solely from performance in
complete aternation trias, there should be no concerns about the
effects of unmodeled feature repetition effects on the CSE.

In sum, we have highlighted an important problem associated
with “regressing out” the influence of a confounding variable in a
nested design. As with more typical regression approaches, re-
gressing out the influence of a confounding variable in a nested
design will fail to the extent that the appropriate regressors do not
completely capture variance associated with the confounding vari-
able. However, this problem is magnified with nested designs
because there are no regressors to code for various higher order
interactions involving a confounding variable. Thus, unmodeled
variance due to such interactions may influence regression-derived
estimates of the variable(s) of interest. Because it is never an
experimental psychologist’s goal to partialy (rather than fully)
control for a confounding variable, our findings indicate the need
for caution when trying to regress out the influence of a confound-
ing variable in a nested design.

Broader Implications

We now turn to the second main goa of our commentary: to
illustrate that the problem we have identified with regressing out
the influence of a confounding variable in a nested design existsin
many areas of psychology and neuroscience. We now consider
three examples of the “nested design problem” from the literatures
on working memory updating, size estimation, and resting-state
functional connectivity. As will become clear, the “nested design
problem” complicates the interpretation of data in multiple do-
mains.

First, consider a study from the literature on working memory
updating. Kessler and Oberauer (2014) presented participants with
four items followed by another four items in each trial and ma-
nipulated (a) the number of old items that were repositioned or
changed to new items, (b) the number of new combinations of
items, (c) the number of changed sequences of successive num-
bers, and (d) the number of times the list switched from an old to
anew item when read from left to right. This was a nested design
because fully crossing these four factors was impossible (e.g., it is
impossible to have a new sequence of numbers without introduc-
ing new or repositioned items). It is therefore possible that the
effect of one factor (e.g., the number of new or repositioned items)
was actually driven by unmodeled interactions between two other
factors (e.g., the number of new combinations of items and the
number of new sequences of items). Whether such an aternative
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explanation of these data is plausible remains uncertain. However,
a lack-of -fit test conducted on such data would help to determine
whether evidence of misspecification exists in the authors best-
fitting model of the data. Although not conclusive, anonsignificant
lack-of-fit test would be consistent with the authors' interpretation
of the results.

Second, consider a study by Kirsch, Konigstein, and Kunde
(2014) who were interested in the roles of motor performance and
task feedback on judgments of target size. Participants were asked
to move a (disappearing) cursor toward a target circle, after which
they were to estimate the target’s size. The authors reported that
size estimations were influenced by whether a participant “hit” or
“missed” the target. This influence might have been due to par-
ticipants' knowledge of their actual motor accuracy, as measured
by the degree to which the final location of their movement
deviated from the center of the circle. Alternatively, this influence
might have been due to the feedback participants received about
their accuracy.

To distinguish between these two potential explanations, Kirsch
et a. (2014) gave participants “hit” feedback in some trias
wherein the target was barely missed and “miss’ feedback in some
trials wherein the target was barely hit. The authors then employed
regression to determine whether accuracy feedback influenced the
results independent of actual motor accuracy. The results of the
regression supported this view by showing that size judgments
were influenced by the feedback regressor after controlling for
motor accuracy. However, this use of regression is potentially just
as problematic as in our earlier example above because the exper-
imental design was once again nested. For example, whereas trials
in which the target was either just missed or just hit could receive
either “hit” or “miss’ feedback, clear misses were aways given
“miss’ feedback and clear hits were always given “hit” feedback.
For this reason, very accurate responses only contributed to the
estimate for a hit and very inaccurate responses only contributed to
the estimate for a miss. It is therefore possible that size estimates
were only affected by motor performance, and that the feedback
regressor merely capitalized on unmodeled variance from trials
with very accurate and/or very inaccurate responses, which was
not captured by the strictly linear motor accuracy regressor. Al-
though this alternative interpretation of the data may not be cor-
rect, a lack-of-fit test could reveal whether evidence of model
misspecification exists. Alternatively, deleting the very accurate
and very inaccurate responses and restricting the analyses to mod-
erately inaccurate trials would eliminate the nesting problem,
similar to the repetition deletion technique for the CSE.

Third, consider work from the resting-state functional connec-
tivity literature. In this literature, functional MRI is employed to
assess the degree to which the blood-oxygenated level-dependent
signal is correlated between different brain regions across time
while study participants lie still without performing a task. Nu-
merous researchers have reported that resting-state functional con-
nectivity varies across different subject populations (e.g., Van
Dijk, Sabuncu, & Buckner, 2012). Recently, however, it has been
shown that some of this variance can be explained by unmodeled,
higher order head motion artifacts (e.g., Lemieux, Salek-Haddadi,
Lund, Laufs, & Carmichael, 2007; Satterthwaite et al., 2012),
which are not completely “regressed out” by incorporating linear
estimates of motion into regression analyses of resting-state func-
tiona MRI data (e.g., Power et al., 2014; Satterthwaite et al.,
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2012). Linear motion regressors probably fail to capture all of the
motion effect because they do not model al of the ways that
motion and resting state activation interact. The regression model
typically employed is thus a nested version of a more complex,
correctly specified model that would include more regressors.
Determining the correctly specified model, however, is no easy
task. Thus, researchers in this field now employ approaches anal-
ogous to the repetition deletion technique, such as deleting time
points at which motion artifacts occur. They aso employ severa
other approaches that do not rely on regression to correct for head
motion artifacts (Fair et a., 2013). This example further illustrates
the potential problems associated with trying to “regress out”
confounds and shows that these problems extend even beyond the
experimental psychology literature.

Although the experiments discussed above illustrate that the
“nested design problem” is a pervasive one, we do not mean to
suggest that al of the conclusions drawn from these experiments
are incorrect. For instance, it appears quite reasonable to conclude
that participants are influenced by feedback when making size
judgments (Kirsch et al., 2014). Our point is simply to show that
there are clear misconceptions over the effectiveness of regression
approaches to controlling for confounds, particularly when nested
designs are employed in which higher order interactions involving
a confound cannot be modeled and may therefore continue to
influence the variable(s) of interest. In such situations, including a
regressor to code for a confound implies that an effect of interest
has been isolated in a“confound-free” manner, even though thisis
unlikely to be the case. In short, although ruling out confounds is
an important aim in experimental psychology, regression is not
necessarily the ideal way to accomplish this goal, particularly
when nested designs are employed. Furthermore, although lack-
of-fit tests can be employed to assess whether there is systematic
unmodeled variance in a data set that likely emanates from un-
modeled confounds, such tests are not a perfect solution to the
“nested design problem.” As mentioned before, whereas a signif-
icant lack-of-fit test gives clear evidence that the model is incor-
rectly specified, a nonsignificant lack-of-fit test is ambiguous.

Given the discussion above, one might conclude that regression
should never be employed to control for confounds. However, this
is not the case. In some situations, employing a regression ap-
proach to “regress out” the influence of a confounding variable
may not introduce a nesting problem because, unlike with the CSE,
it may be possible to collect data from all of the cells in the
factorial design. In other situations, a regression approach, even if
imperfect (i.e., for the reasons discussed in the present article),
may be the approach that allows the highest level of control over
confounds. For instance, if the feature repetition deletion technique
could not be employed to assess the CSE, then the NV regression
approach would be the best option available. For these reasons,
regression will in many cases provide a very useful data analysis
approach. We only aim to caution that the caveats of this approach
should be carefully considered and that easier-to-interpret anaysis
techniques (e.g., the repetition deletion technique) should be
sought out and preferred wherever possible.

Conclusion

Notebaert and Verguts (2007) correctly concluded that “the
explanatory value of afactor depends on the other factors included
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in the regression” (p. 1259). Furthermore, they correctly acknowl-
edged that the significance of the CSE regressor in their analysis
may have been driven by feature repetition effects that were not
coded in the regression model. Consistent with this possibility, the
present findings suggest that the NV regression approach may not
effectively isolate the CSE from feature repetition confounds. We
therefore suggest that investigating the CSE in complete alterna-
tion trias is the best approach to controlling for feature repetition
effects. A second goal of this article was to highlight the broader
problem of attempting to “regress out” the influence of a con-
founding variable in anested design. This practiceiswidespread in
experimental psychology and cognitive neuroscience and can lead
to false confidence that a variable of interest influences a depen-
dent measure independent of (incompletely modeled) confounding
variables. When clearer dissociation procedures exist, as they do
with the CSE, then regression should be employed with greater
caution or completely avoided.
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