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Abstract
In this paper, I argue that common data transformations used for statistical modelling are not inher-
ently problematic. Depending on the research question, transformation can be appropriate or even 
necessary. The paper also discusses the often-overlooked impact of decision-related processes (e.g., 
rhythmic timing) on behaviour and how such biases can often unintentionally confound research 
designs. More narrowly, the current paper considers a recent debate about the list-level proportion 
congruent (LLPC) effect, which is the finding that congruency effects (e.g., in the Stroop task) are 
reduced when most trials are incongruent relative to when most trials are congruent. The LLPC ef-
fect is typically interpreted as evidence for conflict-driven attentional control (conflict monitoring). 
However, another view proposes that a rhythmic responding bias (temporal-learning) explains the 
effect. In a recent article, Cohen-Shikora, Suh, and Bugg (2019) challenged some of the evidence 
for the latter account. One key question they raise is whether it is appropriate to inverse transform 
(essentially: de-skew) response times when using linear mixed effect modelling. The authors argued 
that this transform is problematic and presented a series of analyses that they argued demonstrate 
both (a) that there are minimal concerns about temporal-learning confounds, and (b) that conflict 
monitoring clearly contributes to the LLPC effect. The present article presents new analyses and 
demonstrates that neither of these two key conclusions of Cohen-Shikora and colleagues are justi-
fied. More global implications for linear mixed effect modelling are discussed, including an analysis 
of when data transformations should or should not be used.

Keywords 
Temporal learning, data transformations, conflict monitoring, cognitive control, attention, propor-
tion congruent effect, mixed models

Timing & Time Perception 9 (2021) 161–197

© Koninklijke Brill NV, Leiden, 2021 DOI: 10.1163/22134468-bja10019



162

1. Introduction

In experimental psychology, the influence of decision-based factors on perfor-
mance is often overlooked (see Grosjean et al., 2001). Frequently, for instance, a 
researcher might be interested in how quickly participants can respond to differ-
ent types of stimuli, where the influence of the content of the items on processing 
speed, attention, etc. is of interest. However, many popular manipulation types 
can also influence decision-based processes, such as the evidence accumulation 
criterion that participants set for themselves before accepting a potential response 
alternative and executing it. As will be discussed in the present report, one exam-
ple of this is studies in which the proportion of different filler item types is varied 
and researchers assess how performance on some target items is influenced by 
the type of filler. The typical experimental logic in this type of study is that perfor-
mance on target trials might be influenced by the content of fillers (e.g., congruent 
vs. incongruent, easy vs. hard, positive vs. negative, etc.). However, as I will argue 
in this manuscript, this type of design can also produce rhythmic timing biases. 
In particular, a faster pace in a condition with faster-to-identify fillers relative to a 
condition with slower-to-identify fillers can influence performance on target trials 
simply by virtue of the task rhythm. The current report will focus on one very spe-
cific example of this from the attentional control domain, but the same concerns 
equally apply to any other domain making use of similar manipulations.

The current report will also consider the appropriateness of data transforma-
tions when analysing data. In particular, this paper will consider a series of papers 
from Balota et al. (2013), Lo and Andrews (2015), and, more centrally, Cohen-
Shikora, Suh, and Bugg (2019) that have asked whether or not the typical process 
of applying inverse transformations (i.e., 1/observation) to heavily skewed data 
typical of response times is appropriate when making use of linear mixed effect 
(LME) models. While the abovementioned reports have been rather critical of this 
standard analysis approach, the present paper will present a defence of this anal-
ysis approach. More precisely, it will be argued that the preference for analyses 
on raw vs. transformed data often depends on the research question: sometimes 
transformation is not only acceptable, but also appropriate. Again, the present 
report will focus primarily on one specific research question from the attentional 
control domain, but the present manuscript will highlight how transformations of 
data are either merely acceptable or absolutely necessary for a wide range of prob-
lems. I will return to each of the two abovementioned broader issues shortly, but 
I will first outline the more specific question of interest in the following section.

2. Conflict Monitoring

One popular cognitive control theory of attention is the conflict-monitoring (or 
conflict adaptation) account (Botvinick et al., 2001). According to this account, 
each experience of conflict between competing response tendencies leads to an 
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upregulation of control, with a downregulation in the absence of conflict. For in-
stance, in a Stroop task (Stroop, 1935) participants respond to the print colour of 
colour words, which produces conflict on incongruent trials — where the word 
and colour mismatch (e.g., ‘red’ in green) — but not on congruent trials — where 
the word and colour match (e.g., ‘red’ in red) (see Note 1). According to the con-
flict-monitoring account, then, control is increased after incongruent trials and 
decreased after congruent trials. One particular strain of evidence for conflict 
monitoring is the proportion congruent (PC) effect (Logan & Zbrodoff, 1979; Logan 
et al., 1984), which is the finding that congruency effects are reduced when tri-
als are mostly incongruent (e.g., 80% incongruent) relative to mostly congruent 
(e.g., 80% congruent), as illustrated in Fig. 1. Although initially interpreted dif-
ferently, the conflict-monitoring account proposes that this effect occurs because 
control of attention away from the distracting word (and/or toward the colour) is 
increased when conflict is more frequent, thereby reducing the congruency effect 
(Cohen et al., 1990; Lowe & Mitterer, 1982).

Much debate has centred around whether PC effects like this are due to con-
flict monitoring or to other biases (for reviews, see Abrahamse et al., 2016; Bugg & 
Crump, 2012; Schmidt, 2013a, 2019). For instance, simple stimulus–response con-
tingency learning biases (Hazeltine & Mordkoff, 2014; Schmidt, 2013b; Schmidt 
& Besner, 2008) and binding biases (Risko et al., 2008) confound the PC effect. 
Relevant to the present article, however, one issue in the literature is whether there 
is a PC effect independent of any item-specific biases (Cheesman & Merikle, 1986; 
Glaser & Glaser, 1982; Kane & Engle, 2003; Lindsay & Jacoby, 1994; Shor, 1975; 
West & Baylis, 1998). This I will refer to as the list-level proportion congruent (LLPC) 
effect. Typically, LLPC is assessed by manipulating the PC of the list (e.g., averaged 
across all items for one group of participants or block of trials) with some biased (or 

Figure 1. Example proportion congruent effect. The congruency effect is smaller when most trials 
are incongruent relative to when most trials are congruent.
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inducer) items. For instance, ‘blue’ and ‘red’ might be mostly congruent (e.g., ‘blue’ 
most often in blue) in one condition and mostly incongruent (e.g., ‘blue’ most often 
in red) in another condition. Intermixed with these biased items are some other 
transfer (or diagnostic) items that are not directly manipulated. For instance, ‘green’ 
and ‘brown’ might be presented equally often in green and brown for all partici-
pants (i.e., the same congruent:incongruent ratio in both PC conditions). It is the 
PC effect for these transfer items that we term the LLPC effect.

Notably, a LLPC effect cannot be explained by contingency learning or binding, 
but could, in principle, be explained by transfer of control from the manipulated 
items to the transfer items. Some of the first, most straightforward manipulations 
of LLPC produced no effect (Blais & Bunge, 2010; Bugg et al., 2008). However, lat-
er reports have observed effects in a variety of tasks (e.g., Stroop, Simon, picture–
word, prime–probe; Bugg, 2014; Bugg & Chanani, 2011; Bugg et al., 2011; Gon-
thier et al., 2016; Hutchison, 2011; Schmidt, 2017; Spinelli & Lupker, in press), 
including across tasks (Funes et al., 2010; Torres-Quesada et al., 2013; Wühr et al., 
2015). There still remain alternative interpretations of these LLPC effects, how-
ever. For the present report, I will focus on one alternative mechanistic account of 
the LLPC effect: temporal learning.

3. Temporal Learning

Schmidt (2013c) first presented the notion that the LLPC effect might be due, 
wholly or in part, to temporal-learning biases (for a related idea in masked prim-
ing, see Kinoshita et al., 2011). The idea is not necessarily easy to grasp if one is 
used to thinking about the content of the items we manipulate (e.g., congruent vs. 
incongruent, high vs. low frequency, etc.). However, many times more systematic 
variance in response times is explained by how we time our responses than by the 
factors themselves (see Grosjean et al., 2001). For instance, we are highly biased 
to time our responses in a rhythmic way: my response time (RT) on the current 
trial will likely be similar to my RT s on very recent trials, and increasingly less 
similar to a given prior RT the further back in time it occurred. This systematic 
variability in response times is called pink noise, 1/f noise, or flicker noise. These 
autocorrelations in RT s are omnipresent in a broad range of cognitive paradigms, 
including mental rotation, lexical decision, visual search, and speeded classifica-
tion (Gilden, 1997, 2001; Gilden et al., 1995). In Fig. 2a, the data of one randomly 
selected participant from Bugg (2014) are presented (Participant 312) (Note 2) 
which demonstrates the typical pink noise pattern. To better visualize the pink 
noise, Fig. 2b presents simulated data showing how current RT correlates with 
RT s of previous lags in autocorrelated data. In particular, current RT becomes less 
and less correlated with prior RT s the larger the lag between the two RT s (Note 3).

At first glance, this sort of rhythmic timing bias may seem to be orthogonal 
to the experimental manipulation of content (e.g., the proportion of congruent 
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trials), but it is not. It has been repeatedly observed in a number of domains that 
timing biases produce interactive effects between study factors that have rela-
tively little to do with the factor manipulations themselves (Kinoshita & Lupker, 
2003; Kinoshita et al., 2008, 2011; Lupker et al., 1997; Mozer et al., 2004; Schmidt, 
2014, 2016a). Indeed, Kiger and Glass (1981; see also, Kinoshita et al., 2011) stress 
that such decision-related (rather than content-related) effects ‘will continue to 
be rediscovered in many circumstances … and will be mistakenly attributed to a 
multiplicity of causes’ (p. 697).

Rhythmic timing biases can produce a LLPC effect because such biases can 
affect congruent and incongruent trial types differentially in conditions with a 
faster vs. slower task pace. Naturally, the task pace in a mostly congruent list will 
be much faster than in a mostly incongruent list (i.e., more fast congruent tri-
als in the former). This is illustrated in the top panels of Fig. 3 with imagined 
data: because there are so many congruent trials in the mostly congruent list, 
incongruent trial RT s largely fall in the right tail of the overall distribution as 
outliers, whereas the reverse is the case in the mostly incongruent list. Schmidt 
(2013c) argued that timing biases will benefit response speed selectively for tri-
als in which participants have sufficient evidence to select a response at the ex-
pected time. A simplified illustration is presented in the bottom panels of Fig. 
3. In particular, the threshold for selecting a response is decreased (i.e., the trig-
ger to respond is loosened) at the expected time, allowing for faster responses if 
the task pace can be maintained (i.e., if there is sufficient evidence to cross the 
temporarily-decreased threshold). When the task pace is fast (e.g., mostly con-
gruent), congruent trials will tend to benefit from temporal expectancies. That 
is, participants will have enough evidence to select a response at the expected 
time and maintain their task pace. For the occasional incongruent trial, however, 
there will typically not be enough evidence for a response at the expected time 
(e.g., due to ongoing resolution of conflict), and responding will therefore be  

Figure 2. (a) Classic 1/f (or pink/flicker) noise in a participant from Bugg (2014). Note the local 
correlations [similar adjacent response times RT)] with both short and long-term fluctuations in 
response times. The insert displays the same data randomized to produce zero-correlation white 
noise. (b) Simulated data showing an autocorrelation between current RT and prior RT s of varying 
lags.
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delayed. The net effect is an inflated congruency effect. In the mostly incongru-
ent condition, the situation is largely reversed. The task pace is slower and an 
early response is therefore not expected. Expectancy for a later response might 
therefore benefit incongruent trials. The occasional congruent trials, however, do 
not benefit in the same way as in the mostly congruent condition. The net effect 
is a smaller congruency effect.

At a very rough level, the notion is that the faster the ‘pace’ of responding, the 
more likely it is that a given congruent trial will benefit from temporal expectan-
cies (i.e., the temporarily reduced response threshold) and the less likely that a 
given incongruent trial will benefit. We could therefore consider previous trial RT 
as a rough proxy for pace, with the prediction that the congruency effect should 
be overall larger the faster the previous RT. As one of several lines of evidence for 
temporal-learning biases in the LLPC effect, Schmidt (2013c) tested this notion. 
In particular, congruency, PC, previous trial RT, the interaction between congru-
ency and PC, and the interaction between congruency and previous RT were 

Figure 3. Top panels illustrate the different frequencies of fast to slow responses in the mostly 
congruent (left) and mostly incongruent (right) lists. Bottom panels present a simplified illustration 
of how temporal expectancies can produce a list-level proportion congruent (LLPC) effect. Dotted 
line = response threshold; slopes indicate rate of evidence accumulation for the correct response.
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used as predictors of current-trial RT (along with subject and item random ef-
fects) in a LME regression on LLPC data from Hutchison (2011). The predictions 
of the temporal-learning account were met. First, the standard autocorrelations 
in response times were observed (i.e., a sizeable interaction between previous 
and current RT). Second and more importantly, previous RT and congruency in-
teracted. That is, the faster the previous trial RT, the larger the congruency effect 
on the current trial. Third, this previous RT by congruency interaction explained 
variance in the LLPC effect, with the latter effect diminishing after accounting 
for previous RT biases. The LLPC effect (i.e., interaction between PC and congru-
ency) was still significant, but (as explained later) this was expected. As will be 
expanded on in further detail in sections to follow, these analyses were a far from 
perfect test of the temporal-learning account, but did provide positive evidence 
of temporal learning (e.g., the conflict adaptation account should not have pre-
dicted the observed results).

4. Challenge to the Temporal-Learning Account

In a recent report, Cohen-Shikora and colleagues (2019) presented a strong chal-
lenge to the temporal-learning account of the LLPC effect. As a one key point of 
their critique, they question a particular detail of the LME analyses in Schmidt 
(2013c): previous- and current-trial RT s were inverse-transformed (−1000/RT) 
(Note 4). This transform was used for three reasons. First, this transform (along 
with all other data treatments) was based directly on past reports (esp., Kinoshita 
et al., 2011). Second, an inverse transform normalizes the response time distri-
bution (Gamma and log transforms are also relatively effective and similar, but 
inverse is typically the most optimal). The typical response time distribution is not 
normal, but rather ex-Gaussian in shape, with a heavy positive skew. This violates 
the distributional assumptions of LME, so it would be inappropriate to interpret 
the LME results without a correction. As illustrated in Fig. 4, an inverse transform 
normalizes the distribution by reducing the right tail and increasing the left tail, 
thereby resolving the problem. The third reason for using an inverse transform 
relates to the reason why raw RT is ex-Gaussian-distributed in the first place and 
will be returned to later.

Cohen-Shikora and colleagues (2019) reproduced the LME analyses of Schmidt 
(2013c) and further replicated the analyses on two more datasets from Bugg 
(2014) and Gonthier and colleagues (2016). The Hutchison (2011) dataset was a 
colour–word Stroop task with 226 participants (Note 5) each of which performed 
180 trials in either a mostly congruent or mostly incongruent condition. The Bugg 
dataset was also a colour–word Stroop task with 72 participants from their Experi-
ments 1a and 2a, and each participant completed 320 trials in either the mostly 
congruent or mostly incongruent condition. The Gonthier dataset was a picture–
word Stroop task with 93 (Note 6) participants from their Experiments 1a and 
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1b, and each participant performed 384 trials in both the mostly congruent and 
mostly incongruent conditions. In all three datasets, all of the original predictions 
of the temporal-learning account were met in the LME as originally performed by 
Schmidt (2013c). Specifically, in all three datasets (a) previous trial RT was sig-
nificantly correlated with current-trial RT, (b) previous trial RT was significantly 
negatively correlated with current-trial congruency, and (c) the LLPC effect beta 
was reduced after accounting for (a) and (b).

However, the authors argued that the use of an inverse transform on current 
RT (and, of less importance, previous RT) was problematic. Although inverse (or 
similar) transforms are increasingly being adopted in LME analyses as standard 
practice (e.g., Andrews & Lo, 2012; Kinoshita et al., 2011; Kliegl et al., 2010; Mas-
son & Kliegl, 2013), there are scenarios in which this might be undesirable (Balota 
et al., 2013; Lo & Andrews, 2015), as I will expand on in a section to follow. Cohen-
Shikora and colleagues therefore re-conducted the analyses on raw RT s (for both 
previous and current RT) with a generalized linear mixed model (GLMM), which 
can correct for the skewed distribution by modelling the skew (subsequently also 
applied by Spinelli et al., 2019, which will be discussed later in the manuscript). 
This was done with a Gamma distribution (similar to an inverse) and an identity 
link function (which specifies that factors should have a linear relationship with 
the dependent variable, as in an ANOVA or simple linear regression). Unlike the 
LME results with the inverse transform, the results with GLMM on raw RT s can 
best be described as inconsistent, with no clear evidence for a temporal-learning 
bias in the LLPC effect across datasets (e.g., the beta for the LLPC effect actually 
increased in two of the three datasets).

The authors also fairly pointed out that the influence of timing biases on the 
LLPC interaction was merely eyeballed in Schmidt (2013c). That is, the beta for 
the interaction was reduced with temporal-learning controls (as predicted), but 
this decrease was not tested statistically. Because of this, Cohen-Shikora and 
colleagues (2019) performed a series of additional analyses, which (for the most 
part) provided better support for the temporal-learning account in the LME 
than in the GLMM. For instance, the Akaike information criterion (AIC) and the 

Figure 4. Ex-Gaussian simulated data (left) and the same data after an inverse transform (right). 
Arrows illustrate how the transform moves the tails of the distribution.
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Bayesian information criterion (BIC) improved with previous trial RT in the LME 
for all three datasets but reversed in two of the three datasets in the GLMM.

Although both approaches have limitations, they also observed in the LME that 
variance explained by the LLPC interaction increased in one dataset (Hutchison, 
2011) and the change in R2 by adding the LLPC interaction was not reduced with 
temporal-learning metrics in this same dataset (for the other two datasets, these 
metrics were consistent with the temporal-learning account). The authors them-
selves pointed out a limit with the former approach (see their Footnote 12): variance 
explained for the LLPC interaction increased in this one dataset when including 
timing controls, even though the beta got smaller. This may seem contradictory, but 
only if the analysis of Cohen-Shikora and colleagues is misunderstood as a test of 
change in the size of the LLPC with the introduction of a temporal-learning control. 
Instead, their contrast tests whether there is a change in variance explained, which 
is influenced not only be the size of the effect, but also its precision. And, indeed, 
the LLPC estimates did become more precise (i.e., reduced standard errors) when 
modelling away the substantial noise variance introduced by pink noise. A similar 
concern also applies to the R2-change analyses, where the authors tested whether 
the increase in variance explained by introducing the LLPC interaction was smaller 
in a model with previous RT controls than in a model without previous RT controls: 
again, this models variance explained, rather than the effect magnitude.

Indeed, none of the supplementary tests that these authors provided directly 
tested the significance of the change in beta weights for the LLPC interaction by 
introducing temporal-learning metrics, which is the actual question of interest. 
For this, we can use a test for beta changes with nested data (Clogg et al., 1995), 
which is designed to directly measure the significance of a change in betas with 
the introduction of one or more additional control factors to the regression. Con-
sistent with the temporal-learning account, the beta did significantly reduce in all 
three LME datasets when previous RT and the interaction with congruency were 
added to the regression: Hutchison (2011), t(223) = 4.116, SE = 0.002, p < 0.001; 
Bugg (2014), t(69) = 5.057, SE = 0.003, p < 0.001; and Gonthier and colleagues 
(2016), t(86) = 3.729, SE = 0.002, p < 0.001.

The authors also performed analyses on the three-way interaction between 
previous RT, congruency, and PC, with the notion that the temporal-learning ac-
count should predict such an interaction (not observed in two of the three data-
sets). However, they appropriately acknowledge that no claims have been made 
about the presence or absence of this interaction in past argumentation for the 
temporal-learning account. Indeed, the present author is unsure why the tempo-
ral-learning account should make any strong predictions about this three-way in-
teraction and said interaction does not speak directly to the LLPC effect, anyway.

Also interesting, the authors aimed to improve the proxy for pace by averag-
ing three previous response times (first in an unweighted average and then in an 
exponentially-weighted average). Although the authors suggested that improving 
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the temporal-learning proxy in this way should have eliminated the LLPC effect if 
the temporal-learning account is correct, this is not justified. The influence of tim-
ing on the LLPC effect would have to be modelled perfectly for this to be true, but, 
as will be explained in section 6 Previous RT and Pace, this is much more difficult to 
achieve than the simple addition of a few more prior RT s. What certainly could be 
predicted from the temporal-learning account, however, is that adding extra prior 
RT s to the regression should explain a bit more variance. Consistent with this, there 
was a further decrease in the beta for the LLPC effect in the LME in all three datasets. 
Again, results with GLMM were less favourable to the temporal-learning account, 
with an increase in the LLPC beta in two of the three datasets. Globally, then, the 
temporal-learning account fared much worse in the GLMM analyses than in the 
LME. Indeed, with LME, the temporal-learning predictions were met in all three 
datasets with the original analyses in addition to the newly-introduced AIC/BIC 
measures and the improved timing measures introduced by Cohen-Shikora and 
colleagues (2019), but this was definitely not the case with the GLMM analyses. As 
I also demonstrated above, the betas for the LLPC effect also significantly decrease 
with the introduction of a temporal-learning control, which is the most direct test 
of the temporal-learning account. The present report will focus primarily on the 
differences between LME and GLMM in the simple analyses as performed initially 
by Schmidt (2013c), but will return to some of these additional analyses later. I will 
also introduce some new ways of statistically assessing the impact of temporal-
learning biases on the LLPC effect, including on raw response times.

Based on the above analyses, the conclusion of Cohen-Shikora and colleagues 
(2019) was that there is no clearly established evidence for temporal-learning con-
founds in LLPC effects and that such confounds can be safely ignored. This seems 
surprising to the present author, as the LME data clearly seem to provide consis-
tent support for the temporal-learning account. The strong claims of Cohen-Shi-
kora and colleagues, therefore, seem to be based on a favouring of the GLMM data 
(which were much less favourable for the temporal-learning account) and a dis-
missal of the LME data (but with no explanation for the consistent patterns across 
datasets). The authors further pointed out that the LLPC effect (i.e., congruency 
by PC interaction) remains robust regardless of how the data are analysed, with 
the implication that this is inconsistent with a pure temporal-learning account of 
the LLPC effect and that a conflict-monitoring contribution is difficult to contest.

5. Response to the Challenge

Cohen-Shikora and colleagues (2019) thus present a challenge to the temporal-
learning account and in the rest of this paper I will address this challenge. In 
particular, I will attempt to convince the reader of five things. First, the fact that a 
LLPC effect remains after modelling pace with previous RT (or even a weighting 
of several past RT s) does not argue against a pure temporal-learning account. This 
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is because the temporal-learning account predicts a priori that previous trial RT 
is only a weak proxy of ‘pace’ and will therefore only capture a small part of the 
true rhythmic timing bias. In fact, if previous RT completely explained away the 
LLPC effect, this would actually be inconsistent with the temporal-learning ac-
count explained above. Second, inverse transforms are not inherently problematic 
and may even be regarded as a more sensible metric than raw RT analyses, par-
ticularly for the present case. Third, the reason that GLMM with raw RT s produced 
notably ‘worse’ results than LME with transformed RT s was due to distortion of 
the autocorrelation in response times in a raw RT scale relative to the inverse 
scale. The difference is not, in contrast, due to a distortion of a true effect of LLPC. 
Fourth, even in raw RT s one can still observe clear evidence for temporal-learning 
confounds in the LLPC effect if previous RT is allowed to predict variance in the 
correct way. Fifth, there are compelling lines of empirical evidence that provide 
convergent support for temporal learning in the LLPC effect. Each of these points 
will be addressed in a separate section below. Most importantly, this report will 
provide an explanation for why one approach (LME) provides relatively consis-
tent support for temporal learning across multiple datasets, whereas another ap-
proach (GLMM) finds only noise. That is, if the GLMM results — which provide 
no clear evidence of temporal learning — are to be trusted as the true story (i.e., 
that there is no temporal-learning bias), then there should be some account of 
why the LME results provide clearer support for temporal learning. That is, how 
are the inverse-scaled response times repeatedly providing evidence for temporal 
learning if there is no temporal-learning bias to start with?

6. Previous RT and Pace

Let me first start by agreeing with one aspect of the conclusions of Cohen-Shikora 
and colleagues (2019): attempting to ‘model away’ temporal-learning biases with 
an LME (or GLMM) using previous RT as a proxy for temporal learning is unlike-
ly to work very well. In fact, this was my conclusion from the outset (Schmidt, 
2013c). Indeed, it was predicted on an a priori basis that including previous RT in 
the LME would reduce but not eliminate the LLPC effect. The temporal-learning 
account predicts this because previous RT is only a weak proxy for pace, mean-
ing that (a) much of the temporal-learning bias will not be captured by previous 
RT, and (b) the LLPC interaction will continue to ‘steal’ this unmodelled timing 
bias. These two conclusions follow from theory, and were also demonstrated with 
a computationally modelled implementation of the theory. In particular, a large 
simulated dataset was created with the Parallel Episodic Processing (PEP) model. 
The PEP model implements the temporal-learning mechanism discussed above 
and produces the LLPC effect as a direct result of this temporal-learning mecha-
nism exclusively (e.g., with appropriate lesion studies to localize the effect to this 
specific mechanism). When these simulated LLPC data were analysed in the same 
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way as the participant data, the LME revealed the same previous RT effects as in 
the participant sample, and a large remaining LLPC effect.

This finding in the simulated data itself was expected: the temporal-learning 
account simply does not predict that inclusion of previous RT in the LME should 
eliminate the LLPC effect. This is because the LME effectively tests the hypoth-
esis that the magnitude of the congruency effect linearly increases with a linear 
decrease in previous RT (or inverse RT, as the case may be). For instance, follow-
ing an unusually fast RT, the congruency effect should be unrealistically gigantic 
(i.e., as the congruency effect should continue to grow the faster and faster the 
prior RT), whereas following an unusually slow RT the congruency effect should 
be trivially small or even negative (i.e., the congruency effect should continue to 
shrink the slower the prior RT, eventually crossing zero and reversing sign). This 
is simply not what the temporal-learning account predicts (especially a negative 
congruency effect). In fact, the specific notion implemented in the PEP model 
(and represented visually in Fig. 3) predicts that most of the ‘movement’ should 
be around the peak pace of the RT distribution (which can be observed in changes 
in skewness and kurtosis; see Schmidt, 2016a, for detailed analyses), with much 
less movement in the tails. Thus, a priori, there is not a one-to-one relationship 
between previous RT and current-trial congruency effects. The test for a linear 
slope therefore only partially captures the temporal-learning bias and the LLPC 
interaction term should continue to ‘steal’ some of this missed variance. In fact, 
if the LLPC effect were eliminated by controlling for previous RT then it would 
indicate that the temporal expectancy account explained above is wrong (e.g., 
being inconsistent with the PEP model data and the logical implications of the 
verbal model, as explained above). As such, the persistence of a LLPC effect in 
such analyses should not be taken as strong evidence against a pure temporal-
learning view nor as strong evidence for a conflict-monitoring contribution to the 
effect. Instead, it is ambiguous, favouring neither the temporal-learning nor the 
conflict-monitoring account. This ambiguity, of course, is problematic, but the re-
sults from the statistical modelling analyses do provide some evidence in favour 
of a temporal-learning contribution to the LLPC effect (see also section 10 Other 
Lines of Evidence for Temporal Learning).

7. The Scale of Time

The previous section explored why previous RT only roughly measures what it 
serves as a proxy for. In the section to follow, I will demonstrate that analyses 
on raw (rather than inverse) RT distort this proxy even further. First, the pres-
ent section will explore what an inverse transform actually does and when such 
transforms are and are not problematic. Cohen-Shikora and colleagues (2019) 
rightly point out that inverse transforming RT s changes the nature of the question 
being assessed:
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“Furthermore, these transformations change the nature of the variable being ex-
plored; what was an analysis of raw RT (response time, what researchers are typi-
cally formulating predictions about, as in the case of Schmidt’s (2013c) predictions) 
becomes an analysis of response rate (a different DV) once transformed to inverse 
RT. As Lo and Andrews (2015) and Robidoux (2017) pointed out, researchers should 
take this into account when justifying a transformation that is appropriate for their 
predictions.”

Indeed, there are clear cases in which transforming data makes the test of a spe-
cific hypothesis inappropriate. That is, the transform can distort the original scale 
of a variable in a potentially undesirable way (Stevens, 1946). In these cases, we 
should indeed prefer analyses on non-transformed data. In other cases, the reverse 
is true: raw RT s do not test the theory appropriately and transformed data do.

First, let us consider an instance of the former case: tests for additive main 
effects. Lo and Andrews (2015; see also, Balota et al., 2013) were specifically 
concerned with word-reading models, some of which explicitly propose additive 
relations between factors. In other words, said models adhere to additive factors 
logic (Sternberg, 1969), proposing, for instance, that word frequency and stimu-
lus quality should each have an independent influence on naming times, with no 
interactions between the two factors (e.g., the effect of stimulus quality should 
be equivalent for high- and low-frequency words). The idea is that the processes 
that produce one effect (e.g., stimulus quality) are separate from the processes 
that produce another effect (e.g., word frequency), so the two should not interact. 
Prima facie, it may seem like a null interaction is necessary with independent 
mechanisms, though this is not necessarily the case (e.g., in a cascading system; 
see Ridderinkhof et al., 1995; Smid et al., 1991). Some word-reading models do 
assume strong additivity whereas others (e.g., Borowsky & Besner, 2006) do not. 
When testing these sorts of additive-factor models, we do want to ensure that 
response times are not distorted by a transform. For example, with an inverse 
transform, longer response times from the extended right tail of an ex-Gaussian 
distribution are ‘squished’ toward the centre of the distribution and faster re-
sponse times from the left tail are ‘stretched out’ (see Fig. 4). When you have two 
factors with a large main effect, the result of such a transform will be a relative 
decrease in the differences between the slower cells of the design relative to the 
faster cells. This can change the effective form of the interaction, as illustrated 
in a simplified example with one observation per cell in Fig. 5 (see also Balota  
et al., 2013).

First, it is noteworthy that the above-discussed issue with transformed data is 
applicable to assessing noncrossover interactions in which there is a main effect 
for both factors. The same concern is not applicable to crossover-type interactions 
(Loftus, 1978), which the LLPC effect is (Note 7). That is, a test for the additivity 
of two main effects can change direction (positive, negative, or additive) with a 
transform. However, this is not true of a crossover interaction, which will remain 
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a crossover interaction (in the same direction) after a transform. It is similarly not 
true of a simple main effect (Kliegl et al., 2010), which will also maintain its direc-
tion after a transform. In this sense, the issue with inverse transforms discussed 
in Lo and Andrews (2015) and Balota and colleagues (2013) is not applicable to 
the LLPC effect and does not argue for a switch from inverse to raw RT (though 
I will return to a different scenario in LLPC data later that might raise a related 
concern).

More generally, analyses on transformed data are not inherently problematic. 
In fact, there are scenarios in which raw RT is clearly the wrong scale. Lo and An-
drews (2015) give a clear example of this. Certain theories of cognitive ageing 
propose a general slowing with age, whereby a given effect (e.g., a Stroop effect) 
will be larger in an ageing population simply because response time effects scale 
up with slower responses (e.g., Salthouse, 1985). In this case, we are interested 
in knowing whether the magnitude of an effect-proportional-to-mean RT is any 
different in young and elderly populations. A log or similar transform (e.g., effect-
proportional-to-mean or z transformations; Note 8) is thus the only way to assess 
the viability of this general cognitive slowing theory (i.e., that the effect-propor-
tional-to-mean RT is no larger or smaller in an elderly population), and analyses 
on raw RT are inappropriate.

Also outside of the speeded response time domain, there are a number of do-
mains in which an inverse scale is theory-appropriate. For instance, Weber’s law 
states that the just-noticeable difference between two things — in many sensory 
modalities, such as luminance, length, mass, or sound perception — is propor-
tional to the reference level (though not always perfectly; see Holway & Pratt, 
1936). For instance, if a temporal duration (e.g., of a tone) x is just noticeably 

Figure 5. Simplified example of how an inverse transform can influence an interaction. Note that 
while the raw response times (left) are additive, an underadditive interaction is present in the 
transformed data (right).
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different from a temporal duration i∙x, then durations y and i∙y will be similarly 
distinguishable. That is, any multiplicative difference of i will be just noticeable. 
Similarly in memory for temporal order, a larger difference in time is required to 
distinguish two events at a comparable rate the farther ago the events occurred — 
termed temporal distinctiveness — ranging all the way from the scale of milli-
seconds for very recent events to the scale of years for very distant events (Brown 
et al., 2007). There are many other examples of inversed scaling, such as the scalar 
property of time estimation (e.g., French et al., 2011), where accuracy in time es-
timation scales with the reference duration.

By convention, most cognitive theories are developed and tested on raw RT. 
This does not imply, however, that raw RT is the most sensible metric for a given 
theory. Though views differ (cf. Balota et al., 2013; Lo & Andrews, 2015), there is 
even an argument as to why inverse RT is actually a better metric for most ques-
tions we might ask. This is related to the very reason why RT data are likely ex-
Gaussian-distributed in the first place. Consider a simplified (Note 9) example of 
the drift-diffusion model (Ratcliff, 1978), presented in Fig. 6. Note how arithmetic 
increases in the slope (i.e., speed of processing information) do not translate into 
arithmetic increases in RT (or variance). Put a different way, a Gaussian distribu-
tion of slopes (or ‘drift rates’ in diffusion model terms) will produce an ex-Gauss-
ian distribution of response times. This is why the diffusion model fits raw RT dis-
tributions (Wagenmakers & Brown, 2007). Though Balota and colleagues rightly 
point out that an inverse transform would be inappropriate for standard diffusion 
model analyses, an inverse transform is akin to transforming RT s back into their 
underlying parameter value (viz., slope).

More globally, response time effects and variances tend to ‘scale up’ the slower 
one responds (Schmidt, 2016b; Schmidt & De Houwer, 2016; Stevens et al., 2002; 
Urry et al., 2015), also linearly in relation to one another (Wagenmakers & Brown, 
2007). Thus, if we want to know whether there are differences in the underlying 
learning or (as the case may be) attentional control in a given response time ef-
fect, then inverse-transformed RT (which corrects for the abovementioned mean 
and variance scaling) is probably a better measure of the underlying processes 
of interest than raw RT. Indeed, the conflict-monitoring account is exactly about 
processing rate: evidence accumulation for the target and distracting dimensions 
proceeds at different rates (slopes) depending on attentional control settings. The 
typical analyses may be on raw RT, but this does not necessarily mean that raw 
RT analyses best reflect the underlying theory (argumentum ad antiquitatem). Of 
course, this drift-diffusion example illustrates why, from many theoretical per-
spectives, transforming data may make more sense than one initially imagines, 
but this will not be the case in all instances. For instance, accounts that assume 
additive effects of two or more discrete processes (discussed earlier) are funda-
mentally incompatible with this sort of thinking in terms of a single drift process 
(except, perhaps, if there are two separated drifts).
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How frequently we might prefer analyses on inverse or raw RT (or yet another 
scale) is open for debate. Indeed, there has been a long discussion of the up- and 
downsides of restricting analyses to simple means (Sternberg, 1969) vs. consider-
ing the distribution of effects (Heathcote et al., 1991) and/or performing trans-
formations of non-normal data (Kliegl et al., 2010). At minimum, however, this 
section aimed to show that (inverse) transformed response times are not merely 
a distortion of what we should (always) be interested in. It is true that in some 
cases inverse transforms clearly are undesirable (e.g., when aiming to assess addi-
tivity of two main effects). However, in many cases transformation is appropriate 
or even necessary. Most critically, concerns about distortion of an interaction are 
not applicable to the crossover-type interaction observed in the LLPC. The reader 
may therefore wonder why LME on inverse RT and GLMM on raw RT produced 
seemingly contradictory results in Cohen-Shikora and colleagues (2019). The next 
section will explain this discrepancy and why analyses on inverse RT s are more 
appropriate for assessing the temporal-learning account.

8. Inverse RT Better than Raw RT for Assessing Autocorrelations

While transforming response times can influence the nature of an interaction, 
particularly between two factors with a large main effect for each, this is not 
the reason why LME and GLMM seemingly gave different answers to the same 
question in Cohen-Shikora and colleagues (2019). More precisely, the decision 
whether to transform does not meaningfully influence the PC by congruency in-
teraction. Instead, analyses on raw (rather than inverse) current and previous RT 

Figure 6. Simplified example of why diffusion models produce ex-Gaussian response times. Linear 
increases in drift produce greater-than-linear increases in response time (RT) and variance. Black 
lines indicate mean trajectory and the surrounding grey lines indicate variances.
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distort the autocorrelation between previous and current RT. These two assertions 
will be clearly demonstrated in this and the following section.

The distortion of the response time autocorrelation can most easily be visual-
ized with scatterplots of the relation between raw previous and current RT and 
between inverse previous and current RT, presented in Fig. 7 for each of the three 
datasets used by Cohen-Shikora and colleagues. Note that in the transformed data 
the scatterplots are relatively normal, with most observations in the centre oval 
with a positive slope indicating the standard autocorrelation. The exact same cor-
relations in the raw RT s, however, are very atypical. Most of the observations are 
‘squished’ into the bottom left corner of the scatter plots and the relatively slower 
(previous and current) response times are spread out distantly from this in a fan. 
This is a predictable consequence of correlating two ex-Gaussian-distributed vari-
ables with exactly the sort of autocorrelation predicted by the temporal-learning 
account. What this pattern means is that most of the trials simply anchor the 
regression line (bottom left) and the slope is almost exclusively determined by 
massively outlying response times in the right tails of the previous and current 
RT distributions. That is, by asking the regression to plot a straight line through 
this ‘fan’ pattern, very little weight is given to the bulk of the observations and a 
very large weight is given to severely-outlying slow RT observations. We are essen-
tially asking the regression to fit the outliers and not the rest of the data. This is 
related to the familiar textbook example of the heavy oversensitivity of Pearson’s 
r to outliers.

The raw RT scatter plots are not only atypical but are also diagnostic for why 
the LME results on the normalized RT s produce different results than the GLMM 
on raw RT. Put simply, the raw scale is not the right metric for the hypothesis. The 
temporal-learning account does not predict effects to be localized primarily in 
the extreme right tail of the distribution, but this is exactly what is tested with 
the identity link function on raw RT in the GLMM (Note 10). Indeed, as men-
tioned earlier, the temporal-learning account actually predicts most of the move-
ment to be around the peak of the response time distribution, not in the right 
tail. This can also be observed in the amount of autocorrelation between previ-
ous and current RT. This was done by first removing subject and item noise using 
LME to get residual RT and previous RT estimates for each participant in both 
raw and inverse data. The resulting correlation between previous RT and cur-
rent RT was significantly larger in the inverse scale by 27% in Hutchison (2011), 
z = 5.978, p < 0.001, 14% (Note 11) in Bugg (2014), z = 2.262, p = 0.024, and 
19% in Gonthier and colleagues (2016), z = 5.016, p < 0.001 (the z modifica-
tion from Silver et al., 2004, is reported, but all six tests from the cocor package 
converge on the same inference for all reported tests). There are two important 
things to note about these changes. First, the autocorrelation is significantly re-
duced, but certainly not eliminated in the raw scale. Second, note that the au-
tocorrelation between previous and current RT, while a strong prediction of the 
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Figure 7. Scatterplots of the relation between current and previous response time (RT) on raw (left) 
and inverse-transformed (right) scales.
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temporal-learning account, is not how the temporal-learning account explains 
the LLPC effect. Instead, the temporal-learning account explains the LLPC ef-
fect via the previous RT by congruency interaction. Importantly, a much larger 
increase in the correlation for the interaction between previous RT and congru-
ency is observed in the inverse scale of 149% in Hutchison (2011), z = 8.722, 
p < 0.001, 109% in Bugg (2014), z = 5.229, p < 0.001, and 351% in Gonthier and 
colleagues (2016), z = 7.038, p < 0.001. That is, the correlations in the inverse RT 
scale (0.084, 0.079, and 0.050, respectively) are substantially larger than those in 
the raw RT scale (0.034, 0.038, and 0.011, respectively). Thus, while the simple 
autocorrelation is decreased moderately, what is lost in the autocorrelation is 
exactly the variance that the temporal-learning account predicts is important for 
explaining the LLPC effect.

Indeed, what changes between the LME and GLMM analyses is not the pres-
ence of a LLPC effect (this remains stable with or without a transform). The di-
rection of this crossover interaction (along with the main effects of congruency 
and PC) is simply not impacted by an inverse transform. What changes, instead, 
is how well previous RT predicts current RT and, more critically, congruency 
(and indirectly: LLPC). That is, a continuous predictor (like previous RT) will 
be influenced strongly by the scaling of the variable. When response times are 
adjusted to their theory-anticipated inverse scale (see section 7 The Scale of 
Time), the continuous previous RT variable does a good job of explaining vari-
ance in both current RT and congruency. We should naturally expect that this 
effective predictive power should be undermined when distorting this continu-
ous predictor to a heavily skewed scale (along with the continuous dependent 
variable).

It is further important to note that a correlation that does not exist will not 
emerge out of a transform. That is, if previous RT s are not actually related to the 
LLPC effect, then a transform will not make it appear as if they are. Any changes 
in slopes will simply be random (i.e., not systematic). In contrast, a correlation 
that does truly exists can be distorted, even eliminated entirely, by a transform. 
Analogically, this is similar to trying to fit a straight regression line to an inverted-U 
shaped curvilinear relationship, or vice versa. As a logical consequence, correla-
tions will necessarily be weaker in a scale that more poorly reflects the true rela-
tionship between two variables (Note 12). As with standard model-fitting tech-
niques, then, the results reported here demonstrate that the inverse scale better 
fits the true relationship of previous RT to current RT and congruency. Thus, the 
inverse scale should be preferred. Of course, while a better-fitting model provides 
evidence against a worse-fitting model, the better-fitting model can still be wrong. 
The next section will consider (but eventually reject) a potential caveat with the 
conclusions thus far.
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9. Corrected Raw RT Analysis

It is never explicitly stated by Cohen-Shikora and colleagues (2019) why the 
GLMM results provided notably different results than LME. The authors do refer-
ence Lo and Andrews (2015) as a reason to be sceptical of analyses on inverse-
transformed data. The concerns raised in that paper, however, are that the di-
rection of an interaction might be reversed (or otherwise qualitatively changed) 
by ‘stretching’ of the response time distribution with a transform. Although this 
should not apply to the LLPC effect (as explained in section 7 The Scale of Time) 
one might nevertheless propose that the variance that inverse previous RT ex-
plains in the LLPC effect in inverse RT s does not ‘stretch out’ to the raw RT scale. 
For example, a reviewer (Giacomo Spinelli) notes that the interaction between 
previous RT and congruency (critical for the temporal-learning account in ex-
plaining the LLPC effect) is between two factors with a main effect. Hypothet-
ically then, if we assume that an autocorrelation does exist in response times 
(as proposed by the temporal-learning account), but that this autocorrelation is 
equivalent for congruent and incongruent trials (unlike the temporal-learning 
account prediction), then an inverse transform could reduce the slope for the 
(typically slower) incongruent trials relative to the (typically faster) congruent 
trials. This would create an underadditive interaction between previous RT by 
congruency in the inverse scale that does not exist in the raw scale. That is, pre-
vious RT may be explaining an effect that only ‘exists’ in the inverse scale (Note 
13). According to this view, the apparent temporal-learning effect in the inverse 
scale is an artefact that is not applicable to the LLPC effect in the raw scale. In the 
present section, I will perform an analysis that tests this notion directly. This sec-
tion will additionally demonstrate that previous RT does explain the LLPC effect 
in the raw RT scale.

Admittedly, it is difficult to test for a potential impact of previous RT on the 
LLPC while both (a) allowing previous RT to predict variance on the inverse time 
scale and (b) measuring the LLPC on the raw RT scale. There is, however, a two-
step analysis approach that can achieve these goals, which was applied to each of 
the three datasets separately. To avoid confusion, the procedure is illustrated in Fig. 
8. The first step involves computing raw RT residuals from the temporal-learning 
model assessed on the inverse scale. To do this, previous and current RT were first 
inverse-transformed (Fig. 8a). As in Cohen-Shikora and colleagues (2019), current 
and previous RT s faster than 300 ms were trimmed (i.e., to normalize the Q-Q 
plots) and previous RT was centred on the mean. Next, an LME was performed 
as before, but without PC as a factor. That is, previous RT, congruency, and the 
previous RT by congruency interaction were entered as fixed factors, with subject, 
item, and (for the applicable datasets) experiment random intercepts. This initial 
LME is used for only one purpose: to compute individual-trial-predicted inverse 
RT (Fig. 8b). This predicted inverse RT can then be simply transformed back to the 
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raw RT scale (i.e., by applying the −1000/RT transform again) to get a temporal-
learning-predicted RT on the raw scale (Fig. 8c). Next, this predicted RT can be 
subtracted by the observed raw RT for each observation to get a raw residual RT 
(Fig. 8d). The net result of this first step is simply to subtract out the temporal-
learning prediction from the raw response times.

The second step of the analysis merely involves comparing the magnitude of 
the LLPC effect in the pure raw scale to that in the raw residuals. That is, the im-
pact of previous RT on the LLPC effect is being assessed on the raw scale (as in the 
GLMM analyses), except that previous RT has been allowed to predict variance 
in current RT and congruency in an inverse scale. At this point, previous RT has 
already been allowed to explain what variance it can, so neither an LME nor a 
GLMM are needed. Instead, we can simply compute the congruency effect (i.e., 
incongruent − congruent) for each participant on raw RT s and the raw residual 
RT s and run an ANOVA on the PC (mostly congruent vs. mostly incongruent) by 
scale (raw vs. residual) congruency effects (Fig. 8e). This produces a significant 
decrease in the LLPC effect in the residual relative to raw scale of 30% (6.49 ms) 
in Hutchison (2011), F(1,224) = 4.437, MSE = 57627, p = 0.036, 20% (6.34 ms) 

Figure 8. Illustration of the two-step modelling procedure: (a) current response time (RT) is 
inverse-transformed (InvRT) and Previous RT is inverse-transformed and centered (InvPrevRT); 
(b) Subject, Congruency, and InvPrevRT are entered into a linear mixed effect (LME) model to 
generate predicted InvRT values (InvPred); (c) InvPred is inverse-transformed back to the raw scale 
(RawPred) to have the temporal-learning prediction in the raw scale; (d) RT (raw) is subtracted from 
RawPred to get a raw residual (RawResid); (e) the congruency effect as a function of proportion 
congruent (PC) is computed separately in RawResid and simple (raw) RT, and a simple PC × Scale 
ANOVA is conducted to see whether the list-level proportion congruent (LLPC) effect is reduced in 
raw residuals.
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in Bugg (2014), F(1,70) = 4.761, MSE = 5324, p = 0.032, and 11% (2.85 ms) in 
Gonthier and colleagues (2016), F(1,88) = 20.051, MSE = 794, p < 0.001.

What these analyses show is that the variance that (inverse) previous RT is ex-
plaining in the LLPC effect is not only within the inverse scale of response times. 
Instead, it also ‘transforms out’ to the raw RT scale. Stated more simply, control-
ling for temporal-learning biases does significantly decrease the LLPC effect in raw 
RT s as long as the temporal-learning assessment is fair. Thus, we can clearly see 
that the reason why a GLMM on raw RT s produced different results was simply 
because of the negative impact of the skew in the key predictor variable (previ-
ous RT) and dependent variable (current RT): the effect is present in raw RT s, 
but it simply is not captured well when previous RT is asked to predict variance 
in a purely linear way in abnormal scatterplots. Together, these results provide a 
clear explanation for the discrepancies between the LME and GLMM analyses in 
Cohen-Shikora and colleagues (2019) (Note 14).

10. Other Lines of Evidence for Temporal Learning

The previous section demonstrated that previous RT does explain variance in the 
LLPC effect in the raw response timescale if predictions are generated from the 
theory-anticipated and data-supported inverse form. Notably, however, the LLPC 
effect remains robust in all datasets with this approach. As already mentioned, 
this is anticipated a priori from the temporal-learning account, as previous RT is 
only a rough proxy of pace. The same applies to the other analyses performed 
by Cohen-Shikora and colleagues (2019): attempts to eliminate the LLPC effect 
with previous RT, or even multiple previous RT s (see their Analysis 3), should not 
succeed unless timing biases are completely modelled (which they should not be 
according to the temporal-learning account). The obvious limitation, however, is 
that it is difficult to determine whether the remaining LLPC effect is due to tem-
poral learning or conflict monitoring, as both accounts predict the same effect. 
In that sense, the current data are not sufficient to argue against a contribution 
of conflict monitoring to the LLPC effect. Instead, they demonstrate that concern 
is warranted. In this final section, I will discuss both converging evidence for a 
temporal-learning bias in the LLPC effect and some potentially problematic data 
for the simple learning view. In my view, some of the empirical lines of evidence 
provide compelling support for the temporal-learning view, though other results 
raise questions and further research will certainly be needed.

First, I have shown in a series of reports that one does not have to manipulate 
conflict proportions to produce a PC-like interaction. Simply manipulating the 
pace of the task with more ‘easy’ relative to ‘hard’ items, and vice versa, produces 
the same interaction pattern. As one example, Schmidt (2013c) used a simple let-
ter identification task. On each trial, participants saw only a letter (D, F, J, or K) 
and were simply required to press the corresponding key on the keyboard. Unlike 
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a conflict task (e.g., Stroop), there were no distracting stimuli and thus no conflict. 
The only manipulations were the contrast of the target digit on a given trial (high 
vs. low) and the proportion of high- vs. low-contrast trials (mostly easy vs. mostly 
hard). Of course, participants respond faster to high-contrast (easy to see) targets 
than to low-contrast (slightly harder to see) targets, but this contrast effect was 
also moderated by proportion easy. Just like a PC effect, the contrast effect was 
larger in the mostly easy context relative to the mostly hard context. This is ex-
actly what the temporal-learning account would predict. Conflict is not relevant, 
only the pace, and the pace is faster in the mostly easy condition. The conflict-
monitoring account, of course, cannot explain this finding, as there is no conflict 
to monitor or adjust to. Schmidt (2014) further confirmed that this proportion-
easy effect is not specific to items by using the same sort of biased/transfer item 
design as described earlier for the LLPC procedure. What these results illustrate is 
a relatively pure example of why we should expect a PC-like interaction in a LLPC 
procedure even without conflict monitoring.

Of course, observing a temporal-learning effect in one procedure does not nec-
essarily imply that the same learning effect will be observed in another procedure. 
On the other hand, at least some post hoc explanation seems necessary to ex-
plain why a general impact of trial pace on performance would be eliminated in a 
conflict task environment. Still, even if we assume that temporal-learning biases 
should equally well apply in proportion congruent experiments as they do in pro-
portion-easy experiments, it does not necessarily follow that said learning biases 
explain all of the LLPC effect. Of course, this caveat should not lead us to either 
favour or disfavour the idea that conflict monitoring additionally contributes to 
the LLPC effect, but does leave open the possibility.

In that vein, a recent set of experiments by Schmidt (2017) aimed to more 
clearly adjudicate between a pure temporal-learning view and conflict moni-
toring. Prime-probe conflict tasks with direction word distracters and targets 
(essentially word–word direction Stroop) were conducted with the typical 
LLPC design. That is, some biased words (e.g., ‘up’ and ‘down’) were manipu-
lated for PC and some intermixed transfer items (e.g., ‘left’ and ‘right’) were 
not manipulated. In a control condition, this produced a robust LLPC effect. 
In the critical ‘long wait’ condition, however, task pace was manipulated by 
presenting ‘wait cues’ on some of the biased item trials. Participants had to 
wait for a brief amount of time (until the cue disappeared) before making a 
response. This, at least roughly, served to match response speed and accuracy 
in the mostly congruent and mostly incongruent conditions. This eliminated 
the LLPC effect. Note that in the control (short wait) condition, the same wait 
cues were presented but more briefly. These experiments provided a clear dis-
sociation between the pure temporal-learning and control views. According to 
the temporal-learning account, only the pace of responding matters. Thus, the 
LLPC effect should be eliminated. According to the conflict-monitoring view, 
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however, conflict matters. The long wait manipulation preserved the conflict 
proportions, so a LLPC effect still should have been observed.

It might be argued that the wait cues somehow interfered with conflict pro-
cessing or control adjustments (albeit only in the long wait condition). It is not 
clear why the conflict-monitoring account should predict this a priori, however. 
It is also worth noting that Cohen-Shikora and colleagues (2019) incorrectly 
state that ‘there was no congruency effect in the longer-wait condition that elim-
inated the list-wide PC effect’, such that there was no conflict to adjust to. This 
is incorrect. The speed of responding to congruent and incongruent trials was 
only equated for the filler ‘wait trials’, not by eliminating conflict but by requiring 
temporary withholding of the selected response. Congruency effects were large 
and robust for the critical test trials, and this congruency effect merely did not 
change in magnitude across the mostly congruent and mostly incongruent lists. 
One might alternatively assume that matching response times on the filler trials 
equates conflict in the two lists, but it is difficult to see how this should be the 
case. Response times were effectively matched for congruent and incongruent 
items with the wait manipulation, but not by eliminating the mismatch in stimu-
lus or response information on incongruent trials (and also not by introducing 
a mismatch for congruent trials). One might postulate that the wait duration 
prevents conflict from occurring, but the timings of the stimulus events in the 
wait cue procedure seem to present difficulties for this view. For instance, the 
distracter was presented in advance of the target, and then removed from the 
screen (after 133 ms). After an additional blank screen (67 ms), the target was 
then presented briefly (133 ms) along with the wait cue, only the latter of which 
remained on the screen. Thus, participants could not know whether or not they 
could ‘wait’ while the distracter was on the screen and only had a brief amount 
of time to process the target. As such, it is not clear why conflict should not oc-
cur while processing said target. At minimum, supplemental ad hoc assumptions 
seem necessary to explain why conflict monitoring would not occur under these 
conditions. The wait cue data may not be the last word on the subject, but do 
currently favour a pure temporal-learning view. Another critique might also be 
that the wait cue data were from a prime-probe task, rather than, say, Stroop. 
The present author sees no compelling reason to favour Stroop, however, particu-
larly when a robust LLPC effect was observed in prime-probe, then eliminated 
with the same materials. Follow-up research with different task procedures (e.g., 
Stroop, Simon, flanker, etc.) is certainly welcome, of course.

These added lines of evidence for temporal-learning biases supplement evi-
dence from the modelling approach. With one exception to be discussed shortly, 
these studies represent the only investigations (that I am aware of) directly aiming 
to put the temporal-learning account of the LLPC effect to an empirical test, and 
all data point in one direction. Until conclusive evidence can be presented that are 
contrary to the pure temporal-learning view (along with some alternative expla-
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nation for the modelling results above), these findings should therefore be worry-
ing for the conflict-monitoring perspective.

Another series of studies by Spinelli et al. (2019), however, took a different ap-
proach to controlling for temporal-learning effects, which produced results less fa-
vourable for a (pure) temporal-learning view. Their first two experiments made use 
of picture–word Stroop tasks, where participants either identified the category of 
(Experiment 1a) or named (Experiment 1b) pictures and ignored superimposed 
words that were either congruent or incongruent in meaning with the picture. 
Their primary evidence against a contribution of temporal learning to their LLPC 
effects was the absence of a congruency by previous RT interaction. However, they 
conducted their analyses with GLMM (in the identical fashion as Cohen-Shikora 
et al., 2019), which the present paper has shown to be problematic. An additional 
potential complication is that they did not use an inducer-diagnostic type design, 
but instead used a large set of non-repeated stimuli. Their reasoning for this is that 
eliminating stimulus repetitions eliminates the contingency biases. However, this 
is only true at the level of exact stimulus matches. At a categorical level, a contin-
gency still exists, as illustrated in Table 1. In the categorization experiment, the 
distracting word category is predictive of the categorization response, similar to 
non-conflict categorical contingency learning experiments (Schmidt et al., 2018). 
Granted, in the naming experiment, the distracting word category is not predic-
tive of a particular response, but rather only of the category of potential target 
responses. Thus, in addition to limitations with the control for temporal-learning 
biases, it is not completely clear whether the measured LLPC effect is free of indi-
rect contingency biases. Interestingly, in a second experiment the authors failed 
to find ‘proportion-easy’ effects (discussed above) with a resolution manipulation 
(i.e., high- vs. low-resolution stimuli), similar to the abovementioned contrast ma-
nipulations, on their picture stimuli (i.e., with the distracting words removed) us-
ing a naming response. They did find evidence of timing biases in the proportion-
easy experiment, but not of the same form as observed by Schmidt (2013c, 2014, 
2016a). In particular, participants were overall slower in the mostly hard list, but 
the resolution effect was not modulated by proportion easy. This suggests that, at 
least in the context of their experiments with naming of a large set of non-repeat-
ed stimuli, the response criteria are set by participants in a different manner. In 
particular, the results seem consistent with the time criterion account (Lupker et 
al., 1997), according to which a fixed (i.e., rather than dynamic) criterion is set for 
each of the mostly easy and mostly hard lists. If so, then this could indeed prove 
to be a less problematic approach to controlling away temporal-learning biases: 
a timing effect is certainly present, but not one that should produce a spurious 
LLPC effect.

Globally, the interactive effects in proportion congruent and proportion-easy 
experiments are consistent with other findings in the timing literature, such as 
mixing costs. A mixing cost is the observation that performance on easy and hard 
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items is reduced in mixed lists (i.e., with both easy and hard items intermixed) 
relative to pure lists (i.e., with pure easy and pure hard lists; Forrin, 1975; Grice, 
1968; Grice & Hunter, 1964; Los, 1994, 1996, 1999a, b; Lupker et al., 1997; Ni-
emi, 1981; Sanders, 1977; Van Duren & Sanders, 1988). The PEP model simulates 
mixing costs with the same mechanism that produces LLPC effects (Schmidt, De 
Houwer & Rothermund, 2016). Roughly, (fast) congruent trials in the mostly con-
gruent list are akin to the (fast) easy trials in pure easy lists and (fast) incongruent 
trials in the mostly incongruent list are akin to the (fast) hard trials in pure hard 
lists. The (slower) congruent and incongruent trials in mixed lists are comparable 
to (slower) easy and hard items in mixed lists. Thus, the literature with such list 
mixing manipulations is also generally consistent with the basic premise of the 
temporal-learning account presented here. In some cases, though, an overall mix-
ing cost is not observed, and homogenization is observed instead: easy items are 
notably faster in the pure easy lists relative to mixed lists, whereas hard items are 
somewhat slower in the pure lists (Chateau & Lupker, 2003; Kinoshita & Mozer, 
2006; Lupker et al., 1997; Lupker et al., 2003; Rastle et al., 2003; Taylor & Lupker, 
2001). This is effectively the same interaction minus the main effect of mixing, 
but this pattern is inconsistent with the LLPC effect and with the predictions of 
the temporal-learning account: incongruent trials should be responded to more 
slowly (not more quickly) in the mostly incongruent list if this homogenization 
pattern (without a mixing cost) is present.

The resolution data of Spinelli and colleagues’ (2019) data are consistent with 
this homogenization-only pattern of results (i.e., slower responses to hard items 
in the mostly hard list). Notably, the homogenization-only pattern seems to only 

Table 1.
Contingency manipulation of Spinelli and colleagues (2019).

Picture category Word category

 Animal Human being Food Man-made object

Mostly congruent     
 Animal 27 3 3 3
 Human being 3 27 3 3
 Food 3 3 27 3
 Man-made object 3 3 3 27
Mostly incongruent     
 Animal 9 9 9 9
 Human being 9 9 9 9
 Food 9 9 9 9
 Man-made object 9 9 9 9
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occur in studies with a large stimulus set, often but not exclusively with naming 
responses (Lupker et al., 2003), similar to that of Spinelli and colleagues, which 
may explain the discrepancy. The typical conflict paradigm used to study conflict 
monitoring is more akin to the procedures that have produced mixing costs and 
proportion-easy interactions than those that have found homogenization-only ef-
fects and that of Spinelli and colleagues. Indeed, as one added caveat, naming 
with large stimulus sets does not even produce a typical ‘conflict’ effect: congru-
ent trials are responded to faster than incongruent trials, but both are responded 
to faster than neutral (Schmidt et al., 2013). This suggests positive priming, even 
for incongruent stimuli, and not conflict-driven interference. Whether it makes 
sense to talk about conflict monitoring when there is seemingly no conflict is thus 
uncertain, which may therefore be another reason to be cautious in interpreting 
findings with large stimulus lists like in Spinelli and colleagues.

On the other hand, Cohen-Shikora and colleagues (2019) discuss other empiri-
cal work that, though not directly related to temporal learning, may be interpreted 
in favour of the conflict-monitoring view. For instance, in completely unbiased 
lists (i.e., no PC manipulations) an ‘LLPC effect’ can be created via instructions 
that misleadingly tell participants about congruency proportions or attentional 
needs (Bugg et al., 2015; Entel et al., 2014). It is important to note, however, that 
the ‘simple learning’ view of LLPC effects does not propose that attention is, glob-
ally speaking, uncontrollable. Indeed, this would be an unsupportable view. The 
Stroop literature provides clear evidence of attentional control: participants can 
follow instructions to attend to the colour while ignoring the word or, conversely, 
to attend to the word and ignore the colour (i.e., in reverse Stroop; e.g., Blais & 
Besner, 2006). That instructions which (explicitly or implicitly) tell participants 
to increase or decrease attention to distracters lead to adjustments of attention 
(and thus the Stroop effect) is not surprising. It is also a different question than 
whether participants given a fixed goal of attending as best as they can to the 
target (while ignoring the distracter) dynamically adjust attention in response to 
monitored conflict.

Cohen-Shikora and colleagues (2019) also point to modulations of LLPC relat-
ed to other factors which may be easily regarded as control-related. For instance, 
the LLPC effect in Hutchison (2011) was modulated by the working-memory ca-
pacity of participants. High-span participants produced a smaller LLPC effect, 
likely indicating more stable control of attention. Although only indirect, this 
might suggest that what the LLPC effect is measuring is related to attentional 
control. On the other hand, working-memory span could equally well influence 
temporal learning. Indeed, it has been observed that high working-memory ca-
pacity participants maintain focus on the target task better, whereas low working-
memory capacity participants are less narrowly focused on the target task and 
can, perhaps unintuitively, learn more about task-irrelevant information such as 
timing regularities (Woehrle & Magliano, 2012). Alternatively, LLPC effects may 
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have been reduced simply because congruency effects were much smaller in high 
working-memory capacity participants (e.g., due to better filtering of the distract-
er), leaving a smaller effect to be modulated by timing (or other mechanisms such 
as conflict monitoring). The above accounts, of course, assign a role of attention 
on working-memory capacity, but it does not clearly follow that modulations of 
LLPC effects by working-memory capacity imply that the base LLPC effect is due 
to conflict monitoring.

Relatedly, influences of the LLPC of one task can be observed on other tasks 
(Funes et al., 2010; Torres-Quesada et al., 2013; Wühr et al., 2015). For instance, 
Wendt et al. (2012) observed that the time to complete visual search of stimuli in 
normal flanking distracting positions was increased in mostly incongruent lists. 
Findings such as these might be less easy to explain in terms of simple temporal-
learning biases, especially if the overall task pace is different for the two tasks. On 
the other hand, decisional processes (like temporal learning) have been proposed 
for a wide range of cross-task conditions like this outside of the conflict task do-
main (Kiger & Glass, 1981). For instance, response times on easy and hard math 
problem assessments are influenced by whether intermixed sentence verifica-
tion trials are either uniformly easy or mixed easy and difficult (mixing cost). As 
stressed in the previously mentioned quote by Kiger and Glass, such observations 
are repeatedly observed in differing publications and paradigm-specific explana-
tions (such as conflict monitoring) are repeatedly proposed that only explain the 
narrow effect of interest (e.g., LLPC effect) and not the trend across multiple un-
related paradigms.

Taken together, some of the most direct tests of timing biases on LLPC effects 
suggest strong support for the temporal-learning account. Other findings, though 
perhaps less direct tests of the dissociation between temporal learning and con-
flict monitoring, may or may not be as easily integrated into a simple learning 
view. For these reasons, further research is certainly needed. Indeed, the current 
picture is muddied by the inherent difficulty in controlling for a complicated in-
fluence like rhythmic timing. The hope of the present work is merely to highlight 
reasons why the temporal-learning account should not be tossed aside, as suggest-
ed by Cohen-Shikora and colleagues (2019; and as echoed by Spinelli et al., 2019).

11. Final Thoughts

In summary, the present article has aimed to show several things. First, the fail-
ure of previous RT to eliminate the LLPC effect in modelling approaches should 
not be taken as evidence in favour of conflict monitoring. The temporal-learning 
account (unlike the conflict-monitoring account) does predict that there should 
be some variance to capture in this way, but simply does not predict that this ap-
proach should work to fully eliminate the LLPC effect. Second, inverse (or similar) 
transformations of data are not inherently bad and can often even be the pre-
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ferred or necessary approach. The specific application to LLPC effects is arguably 
the correct approach. Indeed, although certainly not convention, one may even 
argue that ‘response rate’ (with transformed data) is the more sensible way to as-
sess response time data by default, or at least when investigating intertrial auto-
correlations. Third, the inverse scaling does not actually distort the LLPC effect 
itself, but analyses on raw RT do distort the relation between previous and current 
RT s and this is supported by the significant decreases in the autocorrelations ob-
served in the present report. Of particular import, the relationship between previ-
ous RT and the current-trial congruency effect is substantially decreased in the 
raw relative to inverse RT scale. It is this fact that explains why GLMM seemingly 
produces little more than noise in the temporal-learning tests, whereas the LME 
on transformed data provides clear and consistent evidence for temporal-learning 
biases across multiple datasets. Indeed, it is difficult to support the notion that we 
should prefer to quantify any variable on one scale (e.g., raw RT) when the same 
variable on another scale (e.g., inverse RT) explains notably more variance (using 
the same number of degrees of freedom). Fourth, even on raw RT s, an effect of 
temporal-learning biases is still observed if previous RT is allowed to first explain 
variance on the inverse scale. Thus, the variance that inverse previous RT explains 
in the LLPC effect does ‘transform out’ to the raw RT scale. Fifth, there are lines 
of converging evidence for a temporal-learning bias in the LLPC effect. While the 
literature as a whole paints an ambiguous picture as to whether the simple learn-
ing view is completely or only partially true, data do exist that seem problematic 
for the conflict-monitoring view.

In the concluding paragraph of Cohen-Shikora and colleagues (2019) the au-
thors make a strong assertion:

‘[W]e cannot justify recommending that researchers adopt additional controls to 
account for temporal learning when investigating list-wide PC effects.’

Globally, I find it too strong to suggest that temporal-learning biases can be safely 
ignored on the basis of the extant data. It seems especially strong to favour results 
from one approach that produce largely null findings (GLMM) over another ap-
proach that produces relatively consistent evidence in favour of temporal learning 
(LME), especially without an explanation for why such a discrepancy in the results 
of two approaches exists in the first place. While I do agree that attempts to ‘model 
away’ temporal-learning biases with statistical models are challenging, compel-
ling evidence for a temporal-learning bias does exist across a range of statistical 
modelling and experimental approaches, both inside and outside the attentional 
control domain. Of course, even if a temporal-learning bias does exist, said bias 
may or may not explain the entirety of the LLPC effect. Some early datasets are 
suggestive (esp., Schmidt, 2017) and others raise questions. I look forward to fu-
ture results to further clarify this intriguing issue.
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At a more general level, the present paper aimed to draw attention to two key 
considerations that are often overlooked in the literature. Firstly, decision-based 
processes, such as the setting of evidence accumulation criteria (e.g., as proposed 
by the temporal-learning account), have substantial influences on speeded re-
sponse time behaviour. Unfortunately, such influences are often not orthogonal 
to manipulations of content. The present manuscript discussed the particular 
case of proportional manipulations of filler items in a LLPC manipulation, but the 
same concern can apply to other proportion/filler manipulations, along with oth-
er popular design types, such as with sequential manipulations (e.g., see Schmidt 
& Weissman, 2016). Indeed, as hinted at above by the warning of Kiger and Glass 
(1981), there is a very real danger that the same wheel will continue to be re-
invented in numerous domains when the role of decision-related processes are 
eventually appreciated. Or, even more problematically, the role of decision-relat-
ed processes may never be realized in many areas. To avoid such problems, more 
systematic consideration of decision-related processes seems warranted.

The second broader aim of the present work was to present a different view 
on data transformation. As I have argued in the present report, transformed data 
need not be viewed as a ‘corruption’ of a true raw effect. Depending on the re-
search question, transformed data may be inappropriate in some cases, absolutely 
necessary in other cases, and in yet other cases the choice of whether to use raw 
or transformed data may be of little import. Though some have rightly pointed out 
scenarios in which transforms (such as inverse or log) are inherently problematic 
(Balota et al., 2013; Lo & Andrews, 2015), capable of inversing the direction of 
certain types of interactions, it is important to note that this concern is only ap-
plicable to certain scenarios.
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Notes

1. Note this is somewhat of a simplification, as conflict might vary along a con-
tinuum (Yeung et al., 2011), though this description captures the rough idea.

2. This participant actually shows a below-average autocorrelation relative to 
the sample as a whole.

3. Readers interested in how these data were simulated can contact the author 
for more information.
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4. Note that the negative sign is merely to preserve the original direction of 
the distribution and the 1000 in the numerator is simply to remove some of 
the decimal places from the inverted RT s. Changes to the numerator are not 
relevant for actual model fit (e.g., 1/RT is mathematically equivalent).

5. This was misreported in Schmidt (2013c) as 230, likely due to counting 
unique participant numbers on a participant list provided by Hutchison, 
which contained a different number of participants than the actual dataset 
for unknown reasons.

6. A dataset posted on the Open Science Framework (https://osf.io/b9zyv/) 
seemingly has 95 participants, but I used the same data as Cohen-Shikora 
and colleagues (2019). It is uncertain where the two extra participants (in 
Experiment 1b) come from.

7. As normally plotted with PC as the x-axis categories, the bars/lines for con-
gruent and incongruent trials do not touch each other, but the interaction is 
still crossover because the lines do cross when switching congruency and PC 
in the plots (see Loftus, 1978, for further explanation).

8. Which transform to use, of course, depends on the specific assumptions of 
how general slowing impacts observed effects. The choice of transforms may, 
therefore, be ambiguous, unless the model of cognitive slowing directly im-
plies a specific transform.

9. For instance, I only consider drift rate to a fixed boundary, and do not discuss 
nondecision time, starting points, etc.

10. Note that the Gamma family corrects the statistical assumptions of the re-
gression, but the identity link function does explicitly specify that previous 
and current RT should be related to each other linearly, as depicted in the 
scatterplots.

11. The difference in correlations is even larger for this dataset (27%) if the 
Q–Q plots are better normalized with a 375 ms trim, but I have stuck 
with a 300 ms trim for consistency with Cohen-Shikora and colleagues 
(2019).

12. See an Excel document in the OSF link with an example demonstration of 
this.

13. Giacomo Spinelli suggested some simulated data to illustrate this point, 
which I have reproduced and extended (see Excel document in the OSF re-
pository). In particular, it is possible to create a situation (albeit somewhat 
artificial) in which there is an autocorrelation in RT s and a main effect of 
congruency that are additive, which results in a more underadditive interac-
tion after an inverse transform. On the other hand, these artificial situations 
do not produce the large modulations of the LLPC effect when analyzed like 
in the analyses to follow.
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14. It might also be worth mentioning that the GLMM consistently failed to con-
verge in all analyses including previous RT, albeit less severely in random 
intercept models. In contrast, the model converges with inverse-transformed 
data in all LME models.
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