
Topics in Cognitive Science 7 (2015) 206–216
Copyright © 2015 Cognitive Science Society, Inc. All rights reserved.
ISSN:1756-8757 print / 1756-8765 online
DOI: 10.1111/tops.12135

Interactive Effects of Explicit Emergent Structure: A
Major Challenge for Cognitive Computational Modeling

Robert M. French,a Elizabeth Thomasb

aUniversit�e de Bourgogne
bInstitut National de la Sant�e et de la Recherche M�edicale (INSERM U1093), Universit�e de Bourgogne

Received 1 August 2013; received in revised form 23 January 2015; accepted 23 January 2015

Abstract

David Marr’s (1982) three-level analysis of computational cognition argues for three distinct

levels of cognitive information processing—namely, the computational, representational, and im-

plementational levels. But Marr’s levels are—and were meant to be—descriptive, rather than inter-

active and dynamic. For this reason, we suggest that, had Marr been writing today, he might well

have gone even farther in his analysis, including the emergence of structure—in particular, explicit

structure at the conceptual level—from lower levels, and the effect of explicit emergent structures

on the level (or levels) that gave rise to them. The message is that today’s cognitive scientists

need not only to understand how emergent structures—in particular, explicit emergent structures

at the cognitive level—develop but also to understand how they feed back on the sub-structures

from which they emerged.
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1. Introduction

David Marr’s (1982) three-level analysis of computational cognition argues for three dis-

tinct levels of cognitive information processing—namely, the computational, representa-

tional, and implementational levels. It was a clear and powerful analysis of the

computational metaphor of disembodied mind. Marr was, however, not alone in his tripar-

tite analysis of information-processing systems (McClamrock, 1990). Pylyshyn (1984), one

of the leading philosophers of the symbolic artificial intelligence movement at that time

wrote about the symbolic, syntactic, and physical levels; in cognitive psychology, the dis-

tinction was one of content, form, and medium (Glass, Holyoak, & Santa, 1979). But among

cognitive scientists, Marr’s three-level analysis was, and remains, the most familiar.
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We need to briefly recall the state of cognitive science circa 1980 in order to better sit-

uate Marr’s famous distinction of levels. At that time the symbolic tradition was the king

of the heap. One of the underlying tenets of this tradition was that reality could be

encoded as symbols that referred to objects, situations, and actions in the world, and rules

consisting of relations between those symbols. While adherents of the symbolic tradition

obviously acknowledged the existence of an implementational level, it was considered

largely irrelevant to the level at which symbols and rules operated. In other words, a

“chair” had a list of properties that could be referred to (and instantiated), whether it was

being used to sit on, to reach an object on a high shelf, or to hold back a lion in a circus

act. And this list of properties did not depend on any particular “neuronal/implementa-

tional” level. What counted for these researchers were the computational and the algorith-

mic levels. Marr’s reintroduction of the neuronal level was, therefore, a significant step

and a harbinger of neural network approaches to cognition.

But Marr’s levels are—and were meant to be—descriptive, rather than interactive and

dynamic. For this reason, we suggest that, had Marr been writing today, he might well

have gone even farther in his analysis. He would, we believe, have included a discussion

of the following issues (or at least he would have agreed with them): (a) the notion of

embodiment, that is, the notion that the computational modeling of intelligence must also

take into account the physical specificities of our bodies that allow us to interact with the

world around us, (b) the essential blurriness of the boundaries between levels of informa-

tion processing, (c) the emergence of structure—in particular, explicit structure at the

conceptual level—from lower levels, and (d) the effect of explicit emergent structures on

the level (or levels) that gave rise to them.

2. Emergence

Emergence has been studied by philosophers since at least the middle of the 19th cen-

tury (e.g., Mill, 1858) with many significant contributions made in the early decades of

the 20th century (e.g., Alexander, 1920; Broad, 1925). After a hiatus from the spotlight,

emergence is once again all the rage. Everything from human language to speciation,

from economic recessions to political upheavals, from the human eye to the origin of life,

and much, much more is described and studied in the framework of emergence. More

recently philosophers have discussed emergence in the context of complexity theory and

a non-Laplacian universe (e.g., Bedau, 1997).

Our goal in the present article, however, is not to comment on the work of these phi-

losophers, but rather to consider the question of emergence as it applies to Marr’s three-

level distinction of computational cognition, in general, and to neural-network models of

cognition, in particular. Our use of the term “emergence” is close to a recent definition of

Goldstein (1999): “the arising of novel and coherent structures, patterns and properties

during the process of self-organization in complex systems. Emergent phenomena are

conceptualized as occurring on the macro level, in contrast to the micro-level components

and processes out of which they arise.”
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Bedau (1997) further elaborates on two “useful hallmarks” of emergence. Emergent

phenomena, he writes, are (a) somehow constituted by, and generated from, underlying

processes and (b) are somehow autonomous from underlying processes. Both of these

properties are very much in line with the approach taken in the present paper. The

emergence in a cognitive system of rules—for example, the “vowel-consonant-e”

pronunciation rule and the “if beak then bird” rule that will be discussed later in this

paper—provide examples of the latter criterion, although in our case perhaps

“semi-autonomous” should replace “autonomous” in Bedau’s definition.

Curiously, the notion of emergence—for example, how the algorithmic/representational

level might emerge from the neuronal level—is largely absent from Marr’s three-level

analysis. Marr’s vision, at least for what he called “Type 1” systems, is largely a top-

down one that starts at the level of abstract concepts and considers what representations

or algorithms are needed to handle those concepts, and then explores how these particular

representations and algorithms might be implemented in hardware. In short, the flow of

Marr’s analysis is, for the most part, from high-level abstractions to hardware.

3. Emergence and neural network models of cognition

When neural network models took cognitive science by storm in the mid-1980s, there

was a tendency on the part of some (excessively enthusiastic) researchers and philoso-

phers of connectionist cognition (e.g., Churchland, 1995) to switch the focus from the

computational level almost entirely to the implementational level. Although most propo-

nents of the connectionist movement were not nearly this extreme, the underpinning of

this movement was that higher levels of organization arose from lower levels of organiza-

tion and that the explanation of the former resided in the latter. The point on which there

was almost universal agreement was that explicit rules of high-level behavior (e.g., “To

form the past tense of a regular verb, add the suffix -ed to the verb”) were unnecessary in

the sense that there was no need to hard-wire them into the system.

But however successful this approach proved to be in many cases, it frequently pro-

vided little or no insight into the underlying processes driving cognition, beyond the

bland (non-)explanation that “changes in the weights between nodes in the network pro-

duced the outcome.” Ultimately, to understand cognitive processing, we need to be able

to observe the many intermediate levels in which the patterns derived from raw neural fir-

ings are consolidated, organized, augmented, compressed, and correlated with other pat-

terns. In other words, we need to have access to these intermediate levels and to their

effects on other levels of processing.

The point is that neither a decomposition from the computational level to the implemen-

tational level nor a purely emergent approach in the opposite direction tells us that much

about how cognition actually works. This leads us to the main point of the present article:

cognitive scientists need not only to understand how emergent structures develop—in

particular, explicit emergent structures at the cognitive level—but also to understand how

they feed back on the sub-structures from which they emerged.
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4. Emergence is interesting; interactive emergence is really interesting

A stalagmite emerges from the floor of a cave, the product of untold millions of drops

of water falling on it, each one leaving behind a tiny deposit of calcium. But once it has

emerged, it just stands there, looking beautiful but influencing nothing. This is not, by

and large, the kind of emergence that we are interested in. Rather, we are interested in

what might be called “interactive emergence”—that is, the study of emergent structures

that influence, among other things, the lower levels from which they emerged—and we

believe creating computational cognitive models that embody its principles will constitute

one of the major challenges of 21st-century cognitive science.

During the course of learning, we acquire, implicitly or explicitly, certain cognitive

and subcognitive structures that help us improve the efficiency of future data processing.

By “structures” we mean patterns of organization at the levels of neurons, representations,

and concepts that make us better adapted to our environment. At the highest level, these

structures include stereotypes of all kinds, mathematical constructs, grammatical rules,

and associative regularities and, at the lowest level, they are clusters of neurons within

which neural firings are facilitated and between which they are inhibited. These structures

invariably will have a significant influence on our perception of new data. Once we have

acquired, say, a cognitive-level stereotype, such as “New Yorkers are unfriendly,” our

perception of the actions of New Yorkers, even otherwise innocent actions that would not

even be noticed if we were observing people in Maine, will be colored by this stereotype.

And descending to the cortical level, as cortical maps emerge, they, too, can have a radi-

cal effect on the perception and organization of new incoming data.

5. The ubiquity of interactive emergence in human cognition

Let us start by considering the image in Fig. 1, an image well known to virtually all

cognitive scientists. If you have never seen this image by the photographer R. C. James

before, it is very difficult to decipher what it depicts. On the other hand, once you have

recognized it as a Dalmatian sniffing the ground near the shadow of a tree, you can no

longer not see the Dalmatian. In other words, the raw visual input from this image (i.e.,

the neuronal level) is automatically and correctly chunked every time you encounter it,

once you have recognized the Dalmatian (i.e., the cognitive level).

6. Explicit versus implicit emergent structure

The important thing to notice in the above example is the explicit nature of the emer-

gent structure formed. We will make a distinction between explicit and implicit emergent

structure. What distinguishes explicit from implicit structure is that, in the former there is

the emergence of some explicit new structure, something that one was not aware of

R. M. French, E. Thomas / Topics in Cognitive Science 7 (2015) 209



before, something that will then have a separate encoding in the system that will be dis-

tinct from the structure that gave rise to it. An explicit emergent structure corresponds,

roughly, to an explicitly describable (verbalizable) insight about something.

An example from computational cognition that has caused much ink to flow in the last

three decades is the question of past-tense formation. Even very young native speakers of

English generally form the regular past tense of verbs correctly and do this long before

they are taught the explicit rule: “Add -ed to the verb.” The point of Rumelhart and

McClelland (1986) was to show that, in fact, there was no need for an explicit rule any-

where in the system to produce regular past-tense rule-following behavior. Regardless of

where one stands on this question, something is still left out of the discussion and that is:

What are the effects of acquiring the “Add -ed” rule explicitly? What influence does the

presence of this explicit rule—which is necessarily encoded in addition to the bottom-up

structure that, alone, previously gave rise to the past-tense rule-following behavior—have

on future past-tense formation behavior?

7. Interactive emergence with implicitly emergent structures

It is certainly reasonable to say that any model that learns through feedback with its

environment is displaying interactive emergence, even if this emergence is not expressed

in the form of an explicit (verbalizable) rule.

Edelman (1987) argued for exactly the kind of “linked levels” that we are talking

about here. He called it reentrant connectivity, which he defined as “Changes in any one

level must result in readjustment of all ‘linked’ levels.” In the brain, for example, synap-

tic changes in response to input will have an effect on future input. So, for example,

Fig. 1. Once you have seen what is represented in this degraded photograph, you can never again not see it

when you see the image.
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Jenkins, Merzenich, Ochs, Allard, and Guic-Robles (1990) looked at how the cortical

map is reorganized as a result of learning. In adult mammals there is a separate represen-

tation for each finger of the hand in the somatosensory cortex. This separation on the cor-

tical map plays an important role in the capacity to discriminate touch on each individual

finger. It was found that if the monkeys were trained to repeatedly touch a wheel with

the same finger, the cortical representation for this finger grew bigger. The receptive

fields of the neurons in these now expanded cortical zones were also smaller. Having

smaller receptive fields is the equivalent of having a finer grained representation for the

type of stimulus in question. The bigger cortical map and the smaller receptive field lead

to a higher sensitivity for the finger that was repeatedly stimulated. This greater “cortical

priority” given to the preferred finger would now change the manner in which stimuli

delivered to the fingers is perceived. In short, equivalent stimuli at the fingers would now

be perceived with the filter of a priority given to one finger.

Similarly, in artificial networks (e.g., backpropagation networks) that learn to catego-

rize, changes in the weights of the network during learning allow them to correctly clas-

sify new input into one of the learned categories, something that they were unable to do

before learning. In this way feedback (in this case, from a “teacher” signal that contains

the desired response) causes changes in the synaptic weights of the system, which in turn

affect how future input to the network is categorized.

It is clear, then, that many current systems, especially connectionist and other neural

network systems already implement implicit interactive emergence.

8. Explicit interactive emergence

Let us start with a number of examples, running from the grandiose to the mundane,

where the emergence of an explicit high-level concept (a rule, a previously unrecognized

pattern, etc.) can have a radical effect on the representational level.

Once Charles Lyell (1830) realized that large-scale geological changes were due to the

gradual accumulation of small changes over enormous time spans, he would not have

been able to see geological features in the same way as he did before. For example, he

would no longer have been able to see rivers in valley bottoms without representing the

valleys as having been carved out by the rivers. In short, every geological formation he

would have subsequently come across, he would have viewed through his “uniformitar-

ian” lens and would have represented it accordingly.

An example from the life of Helen Keller (1905) is particularly salient. Helen Keller,

who became completely blind and profoundly deaf at the age of 19 months, came under

the tutelage of Anne Sullivan, who tried to find a way to communicate to her that things

in the world had names. The 6-year-old girl was unable to make that connection until

one day Sullivan held her hand under a stream of water from a pump, over and over sign-

ing the word “water” into the palm of her hand. The little girl finally understood the con-

nection (i.e., emergence at the computational level: “everything in the world around me

has a name”) and this radically affected her subsequent representations of things in her
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environment. On the day of this breakthrough she spent the rest of the day having Sulli-

van spell the names of objects and actions in her palm, learning 30 words that day.

But these examples, while they clearly illustrate the phenomenon of explicit interactive

emergence, tend to obscure its universality. Let us turn to some “mundane” examples

from our everyday experience.

In Western Europe old stone churches are everywhere, thousands of them. At the com-

putational level, a “church” is “a building in which religious ceremonies are conducted.”

Now, these European churches were built at different times over a period of more than a

thousand years. After having visited a number of them throughout Europe, one gradually

becomes aware of a number of differences between the oldest of them (Romanesque

churches) and those built later (Gothic churches). The former are dark inside with small

windows, have square towers with no steeples and semi-circular vaulting; the latter are

much brighter inside with big, stained-glass windows, have flying buttresses on the out-

side and have vaulting that comes to a point in the center. Once you have become explic-

itly aware of these features, you can never see a European church in the same way again.

Just like the degraded-Dalmatian image, once you have seen and explicitly chunked these

regularities, you can never return to your original perceptions of European churches.

Thus, as for the Dalmatian in Fig. 1, your perception of European churches is forever

changed—you cannot look up at the ceiling of the nave of a church and not explicitly

notice the shape of its arches, something that initially you were completely unaware of.

Examples from language also abound and are as close at hand as the previous sen-

tence. Sentences in correct English are not supposed to end in prepositions and educated

English speakers, without ever thinking about it, generally do not do so. This is, no

doubt, the origin of the explicit rule that one must not end a sentence with a preposition.

Of course, this explicit rule, once we become aware of it, sometimes causes cognitive

conflicts. The hesitation we feel when writing a sentence like the one that concludes the

previous paragraph is due to a conflict between the rule (instantiated somewhere in our

neural hardware) and our bottom-up mastery of written English. This conflict between

our bottom-up English usage and the formal rule can also be the source of humor, as in

Winston Churchill’s famous quip, “Ending a sentence with a preposition is something up

with which I will not put.” Here, again, is a clear instance of the influence of an explicit

cognitive-level rule influencing the lower levels from which our written language, and the

rule itself, emerge.

Sometimes there is the realization that a rule can account for what we have previously

been doing in a purely bottom-up manner. One of the authors, a native English speaker,

was teaching his boy to read English (he lives in France) and noticed what seemed to

him to be a regularity in English pronunciation, one that he had never before been aware

of (. . .ending a sentence with a preposition, again!). The regularity was this: When, at

the end of a word, there is a vowel followed by a consonant followed by an “e,” the first

vowel is pronounced as a long vowel. Thereafter, when doing reading exercises with his

children, whenever he encountered a word ending in a vowel-consonant-e, this rule

popped into consciousness, delaying, however slightly, his pronunciation of irregularities

with respect to this newfound rule (e.g., words like “glove,” “gone,” “native,” “none,”
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“have,” “give,” etc.). Clearly, the emergence of an explicit, chunked rule affected his pro-

nunciation performance—minimally, to be sure—as he taught his children to read Eng-

lish. One might say, “But the rule was present before he ever became explicitly aware of

it!” Yes, but once this explicit emergent rule had been internalized (i.e., encoded), it sub-
sequently had an effect on his perception of vowel-consonant-e words above and beyond
that produced by his implicit bottom-up pronunciation capacity. Further, only after

becoming aware of the rule did he explicitly notice that the words “dove” and “live,” in

different contexts, have different pronunciations, or that there was anything “odd” about

the pronunciation of “native,” “give,” “gone,” “sausage,” or “chocolate.”

So, does the emergent rule have genuine “causal powers” that were not present before

the explicit formulation of the rule? It depends. If the presence of the explicit emergent

rule affects how subsequent input is processed, then the answer is yes. If not, then no. Do

the explicit equations of General Relativity have any causal powers? It is hard to see how

one could answer that they do not. Without them no one could have predicted the deflec-

tion of light by the sun or black holes. In a similar manner, possessing the explicit

vowel–consonant-e rule causes us to hesitate, however slightly, when pronouncing the

words “give” or “gone” and, in that sense, is clearly causal, since that tiny hesitation

would not have occurred without the presence of the explicit rule.

9. Computational modeling of explicit interactive emergence

Certain connectionist models, such as the Simple Recurrent Network (SRN, Elman,

1990), can be shown to develop representational clusters at the hidden layer that reflect the

organization of the input. But the representational (i.e., hidden-layer) clusters formed in this

manner are not active. For an SRN one can argue that implicit structure (i.e., changes in the

synaptic weights) emerges, but no explicit “reentrant” chunks of information (Edelman,

1987) are formed and used by the network in subsequent processing. In contrast, the Recur-

sive Auto-Associative Memory (RAAM) model (Pollack, 1990) did chunk input and “rein-

ject” the chunked input into the network to create ever larger chunks of the input data. In a

recent model based on the RAAM architecture, French, Addyman, and Mareschal (2011)

showed how a recurrent connectionist network exposed to a continuous syllable stream

could discover syllable chunks and words in its input. To do this, their model, TRACX, dis-

covers syllable chunks in the input and subsequently uses these chunks as new input to the

system. It discovers these chunks by recognizing that it has seen pairs of items together fre-

quently on its input. If the model has seen two items together on input frequently, it con-

cludes that “these two items must be a chunk” and from then on, it replaces these paired

items on input with its “chunked” (i.e., hidden-unit) representation of them. This active re-

use of the model’s internal representations as input when the input is recognized at chunked

is very different from the “mere” emergence of the internal representations in an SRN.

Everyone knows that connectionist system can produce rule-like behavior without

recourse to explicit rules (Rumelhart & McClelland, 1986). But this is markedly different

than producing not only rule-like behavior but also producing the explicit rule, like the

R. M. French, E. Thomas / Topics in Cognitive Science 7 (2015) 213



one with the vowel-consonant-e rule cited above. In other words, neural networks also

need to be able to allow explicit rules to emerge that will have a direct effect on future

processing of input. The emergence and encoding by the system of explicit rules and their

effect on the future processing in an unsupervised connectionist network (Kohonen, 1982,

1993) have been studied recently in a model by Cowell and French (2011). Their aug-

mented Kohonen network is designed to be sensitive to patterns in the weights of the net-

work itself. Therefore, when a pattern of weights is spotted indicating that certain

features are regularly associated with a particular category (e.g., when “beak” on input

and “bird” on output), the network gradually formulates an explicit rule that encodes this

frequently observed association (e.g., “if beak, then bird.”). The emergence of this expli-

cit rule in the model can cause conflicts with its purely statistical (bottom-up) categoriza-

tion abilities based on perceptual features, thereby causing its recognition reaction times

to increase (see also Thibaut, Lemaire, & Quadri, 1998; where this type of conflict is

studied empirically). Fig. 2 is an example of this kind of incongruity: Our bottom-up per-

ception tells us the animal is a rodent; our top-down rule tells us that it is a bird. (It is, in

fact, a bird, but a highly atypical one: a kiwi.)

In short, this model’s incorporation of self-monitoring allows not only for rule-like

behavior to emerge in a bottom-up manner �a la Rumelhart and McClelland (1986) but

also provides a means for an explicit rule associated with this behavior to emerge and be

encoded in the system. Thereafter, this emergent rule can interact with the subsequent

bottom-up processing of the network. We feel that this work is a small step in the direc-

tion of the kind of explicit emergent interaction we are discussing here. However, for the

moment, neural network models in which explicit rules emerge and then interact actively

with the system’s subsequent processing of input are rare.

There are, of course, a number of non-connectionist computational models whose

design is such that chunks are gradually formed from the input data and these chunks

Fig. 2. A kiwi is likely to cause conflict in a categorization task because of the incongruity between its beak,

which triggers the rule “if beak, then bird,” and its visual similarity to a rodent (Cowell & French, 2011).
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influence subsequent processing and representation of new input. For example, the

“active-symbol” computational models of analogy-making initially developed in D. Hofs-

tadter’s research group in the late 1980s (French, 1995; Hofstadter, 1979; Hofstadter &

Fluid Analogies Research Group, 1995; Marshall, 2006; Mitchell, 1993; Mitchell & Hofs-

tadter, 1990) are examples of this type of model in which interactive emergence was a

core design principle. In these models there is a constant interaction between representa-

tional and computational levels, between bottom-up and top-down pressures. New struc-

tures are continually being discovered and influencing subsequent processing of input.

10. Conclusion

In this article we have argued that one of the challenges facing 21st-century computa-

tional cognitive science will be to gain a better understanding not only of the emergence

of new explicit structures over the course of learning but also of how these new structures

affect future processing of the system. The so-called connectionist revolution was intent

on showing that what appeared to be rule-driven behavior could emerge in the absence of

explicit rules from a distributed system of undifferentiated artificial neurons. This segued

in many cases into a de facto denial of the existence of explicit rules, which is certainly

wrong. Explicit rules, from group stereotypes to grammar heuristics, do emerge from our

interaction with the world. These rules then become an integral part of our cognitive sys-

tem, separate from the purely bottom-up processes that gave rise to them. The first battle

of the connectionist revolution—showing that what appears to be explicit rule-following

behavior can be produced in a bottom-up manner—has been won. Now, we need to better

understand how explicit emergent top-down rules can interact with a system driven by

bottom-up processes.
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